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Abstract 
Flexible robotic manipulators pose various challenges in modelling, design, structural optimisation and control. This paper presents 
investigations into practical dynamic modelling of a flexible manipulator system using genetic algorithm (GA). Conventional genetic 
algorithms (GAs) often converge prematurely to a suboptimal region and fail to provide effective solutions due to lack of diversity in the 
population set as the algorithm proceeds. In order to improve and maintain diversity in the population set, a relatively new variant of GA, 
namely, fitness sharing based replacement genetic algorithm (FSR-GA1) is employed where some individuals are replaced periodically 
based on a fitness sharing method. The algorithm is utilised to extract dynamic model of 1-DOF (degree of freedom) motion of a flexible 
manipulator system. A comparative assessment between FSR-GA and conventional GA is presented in the same application to highlight the 
novelty of the used GA. Results show that the FSR-GA significantly improves the searching capability of the optimisation process compared 
to conventional GA. Time domain and frequency domain results clearly reveal the potential of the proposed method in modelling flexible 
manipulator systems. 
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I. Introduction 

Flexible robot manipulators are widely applied in 
industrial practice. Dynamic modelling and identification 
of flexible manipulator systems are of considerable 
interest in many engineering and scientific 
applications2,3,4,5. The structural flexibility leads to a high 
degree of elastic vibration especially during high-velocity 
manoeuvre of the manipulator. Also, some nonlinear 
phenomena such as joint friction will play more important 
role in the dynamics of a lightweight manipulator. 
Furthermore, the dynamic equations of motion are 
nonlinear and of large dimensions. These problems 
aggravate the difficulty of the modelling and control of 
flexible manipulators2.  

Dynamic modelling is the model estimation process of 
capturing system dynamics using measured data6. Since 
soft computing algorithms are bio-mimetic-based 
strategies and can handle qualitative techniques with no 
mathematical model, they are easily applied to complex 
systems. After David Goldberg7 gave a basic framework 
of GAs in his popular book “Genetic Algorithms in 
Search, Optimisation and Machine Learning”, there has 
been growing interest among scientists and engineers in 
the use of GAs. Although a large volume of work has 
been reported in recent years in various application areas8, 
little work has been reported in dynamic modelling of 
flexible manipulator systems using GA5. Assuming that 
only input–output measurements of unknown dynamic 
systems are available; this paper presents a dynamic 
modelling technique of flexible manipulator system using 
fitness sharing based replacement genetic algorithm 

(FSR-GA). A comparative assessment of FSR-GA with 
conventional GA in modelling context is also presented. 

II. Genetic Algorithm with Fitness Sharing Based replace-
ment policy 

GAs, introduced by Holland9, are global, parallel, search and 
optimisation methods, founded on the principles of natural 
selection and population genetics. One of the most important 
factors that determines the performance of the GA, especially 
in multimodal problems, is the diversity of the population10. In 
order to maintain higher diversity in the population set, a new 
variant of GA algorithm, FSR-GA is proposed1.  

Fitness sharing  

Fitness sharing lowers the fitness of each element of the 
population by an amount nearly equal to the number of similar 
individuals in the population. Typically, the shared fitness if   
of an individual i  with fitness if  is simply10 
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where im  is the niche count which measures the approximate 

number of individuals with whom the fitness if  is shared. 
The niche count is calculated as11: 
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where N denotes the population size and ijd  represents the 

distance between  individuals i  and j . The sharing function 
(sh) measures the similarity level between two elements of the 
population and is calculated as11: 
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where s denotes the threshold of dissimilarity (the niche 
radius) and   is a constant parameter which regulates the 
shape of the sharing function. In most applications, an 
 =1 or 2 is used and s  must be set right to define the 
niche size12. For phenotypic sharing, the Euclidean 

distance ijd  between two variable vectors )(X i  and 

)(X j  can be calculated as11: 
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Using normalised distance values11: 
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where  U
kx  and  L

kx  are upper and lower limits of 
parameters. 

Replacement policy and period 

In fitness sharing, individuals in the crowded region 
reduce fitness values of one another and thus shared 
fitness, if  , reduces significantly depending on the value 

of niche radius, s . As a result individuals with lower 
shared fitness values indicate that they belong to crowded 
region in the solution space and larger shared fitness 
values indicate that the individuals remain in less crowded 
regions. A certain percentage of the population, 
say repN , residing in the most crowded region are 

identified based on the lower shared fitness value. Then 
these individuals are removed and the same number of 
new individuals is introduced in the population. These 
newly introduced individuals (solutions) are evaluated in 
the problem domain and corresponding objective 
functions are calculated and the whole objective space of 
the population is updated. This process is repeated after 
every predefined number of generations, say repGEN . 

In FSR- GA, the percentage of total population to be 
replaced, repN , and the of period of  generation for 

replacement, repGEN  should be chosen by trading-off 

between performance and computational cost.  

Algorithm pseudo-code: Algorithm pseudo-code for FSR-
GA is as follows: 

1) Initialisation: Number of individuals = N (population 
size), Maximum number of generation = MAXGEN  
and initialise generation counter, 1iter , Number of 
variables = NVAR , Number of binary bits to represent 
each parameter = NBIT , Generation gap = GGAP , 
Probability of mutation mp , Probability of crossover, 

cp  
Initialise repN  and repGEN  

2) Generate a random binary population, CHROM  of 
size NBITNVARN   
3) Decode CHROM  to real value within specified 

range of  UL XX ,  and thus create real valued 

population, PHEN  
4) WHILE  MAXGENiter   DO 
a) Evaluate objective function for every individual 
(each row of PHEN ) 
b) Select GGAP % of fit individuals based on 
stochastic uniform sampling method  
c) Reproduce individuals using crossover (binary)  
d) Mutation (binary) 
e) Evaluate children 
f) Reinsertion  
g) Update population CHROM  
h) IF  0  repGENMODiter  DO 

(i) Decode CHROM to real value within   UL XX ,  to 

form PHEN  
(ii) Calculate the shared fitness of each individual using 

equations (1) – (4) 
(iii) Save the best individual (solution), found so far  
(iv) Sort individuals based on their shared fitness values 

in the ascending order. 
(v) Identify the first ( %repN  of N ) individuals 

according to shared fitness values. 
(vi) Generate a random binary population, repCHROM  

of size   NBITNVARNN rep  %  
(vii) Decode repCHROM  to real value within 

 UL XX ,  to form repPHEN  

(viii) Evaluate objective function of each individual of 
repPHEN  

(ix) Update population CHROM by replacing 
individuals as identified in (v) with repCHROM ; 

END  
i) Increment generation counter iter := iter +1;  
END WHILE 
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III. Genetic Algorithms in Modelling 
The basic schematic diagram is shown in Figure 1. 
Generally a dynamic modelling or system identification 
problem is formulated as an optimization task where the 
objective is to find a model and a set of parameters that 
minimize the prediction error between system output  ty , 
i.e. the measured data, and the model output  ̂ ,ˆ ty  at each 
time step t . The process consists of two subtasks; a) 
structural identification of the equations in the model M, 
and b) identification of parameters ̂  of the model. The 
sum of squared error (SSE) is a commonly used measure 
of the prediction error. 

 Input 

+ 

– 

Prediction error 


 

System 

Model  ̂M  

System output 

 Model output 

)( tu  )( ty  

)̂ ,( ̂ ty  
 

Fig. 1. Basic schematic diagram for modelling 
Dynamic modelling of a single-link flexible manipulator 

The experimental rig, as shown in Figure 2, is equipped 
with a U9M4AT type printed circuit motor driving the 
flexible manipulator13. This motor drive amplifier (current 
amplifier) delivers a current proportional to the input 
voltage. It serves as a velocity/position controller as well 
as a motor driver. The measuring devices used to record 
the various responses of the manipulator are shaft 
encoder, tachometer and accelerometer along the arm. 
The shaft encoder is used for measuring the hub-angle of 
the manipulator. A precision interface circuit PCL 818G 
is used to interface the flexible manipulator system with a 
computer.  
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Fig. 2. Block schematic diagram of the experimental rig 

The tachometer is used for measurement of the hub angular 
velocity of the manipulator. The accelerometer is located at 
the end-point of the flexible arm measuring the end-point 
acceleration. In this study, an aluminium type flexible 
manipulator of dimensions  900×19.008×3.2004mm3, 
E=71×109N/m2, I=5.253×10-11m4, ρ=2710kg/m3, and 
Ih=5.8598×10-4kgm2  is considered13.  

Preliminary experiment 

The flexible manipulator was excited with a sequence of 
psudo-random binary signal (PRBS), within ±0.1 volts and 
bandwidth (0-100Hz) so as to ensure that all system resonance 
modes within this range of frequencies are captured3. The 
system was run for 15s. and 1500 input-output data points 
were recorded at a sampling rate of 0.01s. The input and 
corresponding hub angle response are shown in Figures 3 and 
4 respectively. Out of 1500 data points 300 are used for 
modelling and the next 200 for validating the model. 

 
Fig. 3.  PRBS input (time domain) 

 
Fig. 4. Hub angle response 

Structure formulation 

Considering performance and computation costs, an 
autoregressive moving average (ARMA) structure is chosen to 
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model the flexible manipulator from input to hub angle 
response. This is expressed as6 
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where ia , jb  are denominator and numerator 

coefficients, N  and M  are number of coefficients in the 
denominator and numerator,  y , u , y , and   are 
measured output, input, predicted output and noise 
respectively. The order of the transfer function depends 
on N . Taking the values of N  and M  as 4 and 3 and 
neglecting the noise term  , equation (6 ) can be 
simplified as: 
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In matrix form, the above equation can be written as: 
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where T represents transposition. This can be further 
simplified as: 

   kky  
  … (9) 

where 


 is a row vector that contains the estimated 
parameters of the model as indicated in Figure 1 and 
expressed as ],,,,,,,[ 32104321 bbbbaaaa


 

whereas  k  is a column vector that contains previous 
output and input experimental data points as 

 k =[-y(k-1, -y(k-2), -y(k-3), -y(k-4), u(k-1), u(k-2), u(k-
3), u(k-4)]T   

Parameter Optimization 

The GA optimisation process begins with a randomly 
generated initial population called chromosomes. 
Randomly generated binary codes of dimension 50×8×16 
are created where the number of individuals and 
parameters in each individual are 50 and 8 respectively. 
Each parameter is encoded as 16 bit binary code which is 
logarithmically mapped into real numbers as specified 
within ranges of the real numbers are defined as -1 to +1, 
i.e., the randomly generated 16 bit binary codes for each 
parameter falls within -1 to +1 when converted into real 
numbers. Each individual or row represents a solution 
where the first four elements are assigned to 30 ,...,bb  

and the next four to 41,...,aa  as indicated in equation 
(8). The predicted output y , at any sample instant, is 

calculated based on equation (8) and taking the elements of 
first chromosome, actual input and output data. Subsequent 
predicted outputs are calculated in the same way with the same 
parameters while taking consecutive input and output data. 
The difference between the predicted and actual output is 
recorded as error )()()( kykyke  , which in turn is used to 
form the objective function  xf  of the optimization process. 
In this work, sum of absolute error is chosen as the objective 
function. This is given as: 
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where 300n . After evaluating all individuals in the 
objective domain, fit individuals are selected based on 
stochastic universal sampling selection technique to form the 
mating pool12. The number of individuals in the mating pool 
depends on the generation gap GGAP ; for example, if 
GGAP = 80% and the number  of individuals in the 
population set is 50, then 80% of the total individuals, i.e. 40 
are selected for mating. Genetic operators such as crossover, 
mutation and reinsertion are applied to form the new 
population for the next generation. For selection, the stochastic 
universal sampling technique is used whereas shuffle 
crossover with reduced surrogate technique is used for 
crossover14. The probability of crossover, cp , is set at 80%. 
Binary uniform mutation is used where the probability of 
mutation, mp , is set at 0.001%. In order to maintain diversity 
in the population, shared fitness of all individuals of the 
current population is calculated after every repGEN  

generations. The shared fitness values become lower for 
densely populated individuals whereas solutions that are 
widely separated from each other have higher values. Then 
solutions are sorted based on their shared fitness value and the 
first repN % of solutions are identified with lower values. 

These solutions are replaced with newly generated random 
solutions as defined by the initial field descriptor14. These 
solutions are evaluated and genetic operators are applied as 
usual to continue the GA optimization process. It is mentioned 
that the whole modelling process using GA optimization is 
encoded and implemented in Matlab15 and GA toolbox14. 

IV. Results: Effect of Niche Radius 

The performance of fitness sharing based GA depends on 
suitable selection of the niche radius ( s )10,12. The optimal 
value of s  is selected heuristically. Figure 5 shows the 
convergence of FSR-GA algorithm with different s . In 
order to compare the performance of FSR-GA with 
conventional GA, the convergence of conventional GA in the 
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same problem domain is shown in the same figure. It is 
clearly evident from Figure 5 that, convergence of FSR-
GA varies with s  and gives better performance with 
niche radius of 0.9. 

Selection of  repN  and repGEN  

In FSR-GA, the percentage of total population to be 
replaced, repN , and the period of  generation for 
replacement, repGEN  are two important parameters. 
The optimum values of repN  and  repGEN  are 
selected based on a trade-off curve drawn in a two-
objective domain, namely, best objective function 
obtained and central processing unit (CPU) execution 
time of the optimisation process for a specific number of 
generations. In this process, FSR-GA was run several 
times with the same GA parameters, such as, number of 
individuals, objective function, total number of 
generations, crossover, mutation, niche radius ( s = 0.9)  
etc but different values of repN , repGEN  and  two 
performance measures; best objective function and CPU 
execution time were recorded. FSR-GA was run for a 
maximum generation of 500.   In order to select optimum 
values of repN  and repGEN , a trade-off curve is 
introduced (see Figure 6) where all runs of FSR-GA are 
presented in a two-dimensional space where CPU 
execution time is plotted along the horizontal axis and 
best objective function is plotted along the vertical axis. 
The circles in Figure 6 represent the location of solution 
and associated numbers indicate the run number. It is 
clearly evident that, solutions for run-5, run-15, run-12 
and run-16 dominate other solutions in the 2-dimensional 
performance space. From Figure 6, it is easier to select a 
particular solution under a specific trade-off condition 
between the two performance measures. In this work, the 
values of repN  and repGEN  correspond to run-5 are 
selected and for run-5, both the values of repN  and 

repGEN  are 10, i.e. 10% of the total individuals in the 
population set to be replaced after every 10 generations in 
FSR-GA.  

 

Fig. 5. Convergence of convention GA and FSR-GA for different 

values of s
 

 

Fig. 6. Trade-off curve of different solutions of FSR-GA 

V. Model Formulation and Validation of Flexible 
Manipulator 

The FSR-GA was run for 500 generations with 50 individuals. 
Considering the convergence to minimum objective function, 
parameters of GA optimisation process for niche radius of 0.9 
has been selected to formulate the model hub angle response 
of the flexible manipulator. To improve and maintain higher 
density in the population set, a replacement policy based on 
fitness sharing technique is invoked, as discussed, where repN  

and repGEN  are set at 10, i.e., 1/10th of the total solutions 

(population set) is replaced after every 10 generations. Using 
eight parameter values, b0,…,b3 and a1,…,a4 obtained at the 
end of maximum generations and employing relevant Matlab15 
functions the transfer function is formed. The discrete transfer 
function for input to hub angle output of the flexible 
manipulator at a sampling time of 0.01sec is as follows: 
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The derived model was validated with a separate input-
output data set, and the actual and one-step-ahead 
predicted outputs are shown in Figure 7. Time domain 
tracking reveals that the predicted output follows the 
actual output very well. The frequency domain plots 
(Figure 8) of the predicted and actual outputs indicate that 
the model has successfully captured the system dynamics, 
especially the first three main dominance modes. The 
pole-zero diagram (Figure 9) shows that all poles lie 
inside the unit circle while some zeros remain outside. 
This indicates that the model is stable and non-minimum 
phase. 

Comparative Assessment  

A comparative assessment is presented in this section 
where performance of the FSR-GA, is compared with 
conventional GA. The performance measure considered 
here is based on the best objective function at the end of 
certain number of generations and convergence of the 
algorithm. Both algorithms were run several times with 
same parameters. Firstly, each algorithm with a 
population of 50 individuals was run 10 times, each time 
with a maximum of 500 generations. In each run, the best 
objective function and CPU execution time at the end of 
generation were recorded. Figure 10 shows performance 
measures of different GAs at generation 500. It is 
observed that the values of best objective function values 
obtained with conventional GA were quite higher 
compared to FSR-GA. It is noted that, in all runs the best 
objective function values obtained with FSR-GA were 
lower than conventional GA. 

 
Fig. 7. Actual and predicted output of hub angle response (time 
domain) 

 
Fig. 8. Actual and predicted output of hub angle response 
(frequency domain) 

The convergence curves for the two algorithms at different 
runs are shown in Figure 11. It is observed that the 
conventional GA converged slowly to higher value in the 
objective domain. It is noted that FSR-GA converged faster 
and to lower value compared to conventional GA. The 
improvement in convergence compared to conventional GA 
was much higher and this is clearly noted in Figure 11. This 
better convergence of FSR-GA may be attributed to the 
additional diversity introduced due to fitness sharing based 
replacement policy.  

 
Fig. 9. Pole-zero diagram 
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Fig. 10. Comparative assessment 
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VI. Conclusion 

A relatively new variant of GA, namely, FSR-GA has 
been employed and tested in dynamic modelling of 
flexible manipulator system. In FSR-GA, a replacement 
policy based on fitness sharing technique is incorporated 
with conventional GA operators. The percentage of total 
population to be replaced and the period of generation for 
replacement are selected heuristically generating trade-off 
curve between two conflicting objectives; best objective 
function obtained and CPU execution time. Results 
showed that the FSR-GA yielded good result when both 
parameters were set at 10. i.e. 10% of total population to 
be replaced after every 10 generations.  

 

 
Fig. 11. Convergence of different GAs for different runs at 
generation 500 

In this work, modelling of motion has been formulated as 
minimization problems with 8-dimentional searching 
space where FSR-GA has been used to estimate 
parameters of the model so as to minimize the prediction 
error between system output, i.e., the measured data, and 
the model output at each time step. From modelling 
results, it is evident that the algorithm, with same 
parameters, can extract stable and satisfactory model for 
hub angle response of a single-link flexible manipulator. 
The time-domain and frequency-domain results of 
modelling have clearly revealed the effectiveness of the 
modelling approach and the FSR-GA in characterising 
flexible manipulator system. The performance of FSR-GA 
has been assessed in comparison with conventional GA. It 
has been observed that FSR-GA can significantly improve 
the search ability in terms the objective function and the 
convergence in the search space compared to 
conventional GA. 
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