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Abstract 

In this paper, a new method is proposed for solving the problem in which the objective function is a linear fractional Bounded Variable 
(LFBV) function, where the constraints functions are in the form of linear inequalities and the variables are bounded. The proposed method 
mainly based upon the primal dual simplex algorithm. The Linear Programming Bounded Variables (LPBV) algorithm is extended to solve 
Linear Fractional Bounded Variables (LFBV).The advantages of LFBV algorithm are simplicity of implementation and less computational 
effort. We also compare our result with programming language MATHEMATICA.  

Key words: Bounded Variable, Lower & Upper Bound, Linear Fractional, Pseudo Code, Computer Algebra. 

I. Introduction 

Linear fractional programming (LFP) problems (i.e. ratio 
objective that have numerator and denominator) have 
attracted considerable research and interests, since they 
are useful in production management, financial and 
corporate planning, health care and hospital planning. 

The field of LFP, largely developed by Hungarian 
mathematician B. Martors and his associates in the 
1960’s, is concerned with problem of optimization. 
Several methods to solve this problem are proposed. In 
(1962), Charnes and Cooper[12] have proposed their 
method that depends on transforming the LFP to 
equivalent linear programs (LP). Another method called 
up dated objective function method derived from Bitran 
and Novaes (1973) is used to solve the LFP by solving a 
sequence of linear programs only re-computing the local 
gradient of the objective function. Also some aspects 
concerning duality and sensitivity analysis in LFP was 
discussed by Bitran and Magnant I (1976). Singh. C. 
(1981) in his paper made a useful study about the 
optimality condition in LFP. Swarup[13] extended the 
usual simplex method of Dantzig[10,11] for solving LFP 
problems. The above mentioned articles deal with 
variables of the type ≥0.  But when considering real-world 
applications of LFP, it may occur that one or more 
unknown variables  not only have a non- negativity 
constraints but are constrained by upper-bound 
constraints. Also they may have lower-bound constraints. 
In this case all of the methods described above may fail. 
Beside this we face a large number of LFBV in our real 
life. For solving such problems a method is discussed in 
ERIK B. BAJALINOV [1]. But this method is laborious. 
This reference also says, ‘Obviously, because of the 
increased size of the problem obtained, the approach is 
undesirable computationally ’. For this reason we try to 

find another procedure which takes less computational effort. 
So, in this paper, we propose a new method for solving LFBV 
problems. 

The proposed method depends mainly on solving LFBV 
problems in which the one or more of the variables are 
bounded. We use the concept of LP bounded variable (LPBV) 
method to solve this problem.  

The rest of the paper is organized as follows. In Section II, we 
discuss on Glossary background of LPBV &LFBV. In Section 
III and IV, we briefly discuss on the existing LPBV and LFBV 
methods respectively. In Section V, we propose our 
alg1orithm and in Section VI another algorithm and its 
computer code is given to calculate the result within a short 
time. Also, in Section VII, we compare the methods 
considered in this research. In Section VIII, we give a 
conclusion remarks about the proposed method and the 
implementation code.  

II. Preliminaries 

In this section, we briefly discuss some definitions of LP, LPBV 
and LFBV. Problems of LFP arise when there appears a necessity 
to optimize the efficiency of some activity. An application of LFP 
to solving real-world problems connected with optimizing 
efficiency could be as useful as in the case of LP. 

Standard Form of LP 

An LP problem may be defined as the problem of maximizing 
or minimizing.  

The standard LP problem can be expressed in a compact form 
as: 

Maximize (Minimize): Z =                       (1.1)    
               subject to   A x = b                      (1.2) 
                                 x ≥ 0                      (1.3) 
                                             b ≥ 0           (1.4) 
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Where A =    is a  
matrix, b , x, c , x is a  column 
vector, and c is a  row vector. 

Bounded variable LP 

In LP models, variables may have explicit positive upper 
and lower bounds. For example, in production facilities 
lower and upper bounds can represent the minimum and 
maximum demands for certain products. 

Define the upper bounded LP models as 

Maximize z ={CX│ (A,I)X=b,0≤ X ≤ U} 

The bounded algorithm uses only the constraints 
(A,I)X=b, X ≥ 0 explicitly, while accounting for X ≤ U 
implicitly through modification of the simplex feasibility 
condition. 

Standard Form of LFP 

An LFP is said to be standard form if all constraints (2.2) 
are equations and all x  i.e 

Maximize  Z =      

 subject to  Ax b, 
                              x  0 

Where A =  is a  
matrix, b , x, c , . 

It is assumed that the feasible region 

} 

 is nonempty and bounded and the denominator 
.  

Let us consider a standard LFP defined as, 

(LFP)      Maximize F(x) =                                (2.1)                                          

subject to                            Ax=b                                (2.2) 

                                            x                                (2.3) 

 Where x, c, d   ; b   ;      ; A is  an 
m×n  matrix and the superscript T denotes transpose. 

Bounded variable LFBV 

Consider the following LFBV problems 
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Where                       (2.7) 

Let us assume that D(x)>0 for all 

 S, S denotes a 
feasible set defined by the constraints (2.5) and (2.6). We 
assume also that the feasible set S is non-empty and bounded. 

Lower and Upper –bound  

It may occur that one or more unknown variables  not only 
have a non- negativity constraints but are constrained by 
upper-bound constraints i.e. 

 , for some j  J= {1,2,.................,n} 

Since constraints of this form provide lower and upper bounds 
on variables,  are usually called upper-bound and  are 
usually called lower-bound of the constraints.  

III. EXISTING METHOD ON LPBV PROBLEMS  

In this section, we briefly discuss LPBV. For this, we first 
discuss the general a LP problems. 

Consider the following LP problem,  

                     Maximize Z=CX 

                     subject to    (A,I)X=b 

              L  

Where U=  and L= , U  

The elements of L and U for an unbounded variable are 0 and 
∞.The problem can be solved by the regular simplex method, 
in which case the constraints are put in the form 

(A,I)X=b 

X+ =U,  

X- =L, X, ,   

Where  and  are slack and surplus variables. This 
problem includes 3(m+n) variables and 3m+2n constraints 
equations. However, the size can be reduced considerably 
through the of special techniques that ultimately reduce the 
constraints to the set (A,I)X=b. 

Consider first lower bound constraints and we get 
."XLC   
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which, eliminate X from all remaining constraints. The 
new variables of the problem thus become 'X and 'X . 
There is no fear in this case that X may violate the non-
negativity constraints, since both L and  are non 
negative. The real difficulty occurs with the upper 
bounded variables. 

Rather than include the constraints X+ =U in the 
simplex tableau, one can account for their effect by 
modifying the feasibility condition for their effect by 
modifying the feasibility condition of their simplex 
method. 

In developing the new feasibility condition, two main 
points must be considered: 

1. The non negativity and upper-bound constraints 
for the entering variable. 

2. The non negativity and upper bound constraints 
for those basic variables that may be affected by 
introducing the entering variables. 

The method is discussed in detail in reference 4 & 6. 
 
IV. Existing Method on LFBV Problems 

In this section, we briefly discuss the existing method of 
solving LFBV and also include a numerical example. 

The given vector }.....,,.........{ 2,1 nxxxX  is a basic 
feasible solution (BFS) of LFP problem (2.4)-(2.6) if 
vector x satisfies system satisfies the system 
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systems of linear equations 

njXAA
m

i
ijsij ...............,.........3,2,1,

1



 

Suppose that we have some basis B and corresponding to 
it BFS vector x with the following index partitioning 
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Assume that the vector x is not optimal 
and nk jkx  ,0)( . In accordance with the general 
scheme of the ordinary simplex method, it means we have to 
enter vector into the basis and perform the simplex 
iteration. 

The main difference between the ordinary simplex method 
with bounded variables is that when updating BFS we have to 
use the following rule.  
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Note that in the non-degenerate case 0max   and 

0min   (Bajalinov[1]). 

Numerical Example 1 

Consider the following linear fractional bounded program 
(BAJALINOV[1])       

1124
105

21

21





xx

xxMaximize  

subject to:  

205 321  xxx
 

144 421  xxx  

,52 1  x ,124 2  x ,250 3  x 180 4  x  

Solution 

.5/6,0,4,5/16 4321  xxxx
 

V. Proposed Algorithm to Solve LFBV Problems 

In this Section, we propose an algorithm on LFBV and 
also include a number of numerical examples to 
clarification of the procedure. 

Step 1: If the R.H.S. of any constraints is negative make it 
positive by multiplying the constraint by -1. 

Step 2: Then convert the (LFBV), (Maximize) to its 
standard form by inserting slack and surplus variables to 
the constraints. If the constraint set is in a canonical form, 
go to step 3. If the constraint set is not in canonical form 
go to Step 9.   

Step 3: If any variable is at positive lower bound, it 
should be substituted at its lower bound. 

Step 4:  Now, one has to compute z1, z2, relative profit 
factor (cj-zj1), relative cost factor (dj-zj2) and the ratio j, 

   Where, z1= cB xB  +   

               z2=dB xB  +  

               zj1=cB aj 

               zj2 = dB aj            

        and  j = z2(cj-zj1) - z1(dj-zj2) 

Step 5: For maximization problem if j ≤o for all non-
basic variables at their upper bound optimum basic 
feasible solution is attained. If, not go to step-6. 

Step 6: Select the most positive j. 

Step 7: Let jx  be the non basic variable at zero level 
which is selected to enter the solutions. Compute the 
quantities 
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Here  jU  is the upper bound for the variable .jx  

Step 8: Set rBx )(  be the variable corresponding to 

 jU,,min 21.
   and follows the following Sub Step. 

    Sub Step (a): If = , rBx )( leaves the solution and 

jx enters by the using the regular row operations of the 
simplex method. 

    Sub Step (b): If = , rBx )(  leaves the solution and jx  
enters by the using the regular row operations of the simplex 
method.  

    Sub Step (c): If ,jx jx  is substituted at its upper 

bound by jj xU '  but remains non-basic. 

Step 9: If the constraint set is not set is not in a canonical 
form. Then follow the following sub step. 

        Sub Step1: Introduce artificial variables wherever it 
required. 

         Sub Step   2: If any variable is at positive lower bound, it 
should be substituted at its lower bound. 

         Sub Step 3: Then write it an artificial linear objective 
function as in Minimization type (Minimize: w1+w2+.....). In 
Phase I solve the problem as a linear program. 

       Sub Step 4:  Compute relative profit factor (cj-zj1). 

       Sub Step 5: For minimization problem if cj-zj1≥ 0 for all 
non-basic variables. 

        Sub Step 6:  When it is feasible and then final basic 
variables of (LP) will be used to solve LFBV using the 
original problem using Step 4 to Step 8. 

Solution Using Proposed Algorithm 

Since  and  has positive lower bound so we substituted at 
its lower bound. 

Let, ,   
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and ,   

Now substituted these value the given problem becomes                     

2424
245

21

21





yy

yyMaximize  

subject to  

65 321  xyy
 

64 421  xyy  

,30 1  y ,80 2  y ,250 3  x 180 4  x
 

Table. 1. Initial Table for LFBV 

cB dB Cj 
Dj 

5       1       0        0 
4       2       0        0 

  xBi y1     y2     x3      x4 
1 
0 

2 
0 

y2=6 
x4=6 

5       1        1        0 
4       0     -1         1 

z1=30 z2=30 Z=1  

  cj-zj1 
dj-zj2 

0       0     -1        0 
-6      0     -2        0 

  j 180   0     30       0 

1.1 5/6
4
6,

5
6min 







   

 Since, ,,0( 2   i
j     

  1U  =upper bound of 1y =3 

  121.
5/6,,min   jU . 

So the entering variable is  in replace of . 

Table. 2. Optimal table 

cB dB Cj 
Dj 

5       1       0       0 
4       2       0       0 

  xBi y1     y2     x3     x4 
5 
0 

4 
0 

y1=6/5 
 x4=6/5 

1      1/5    1/5     0 
0      -4/5  -9/5     1 

z1= 
30 

z2=1
64/5 

Z= 150/164  

  cj-zj1 
dj-zj2 

0      0        -1      0 
0     6/5    -4/5     0 

  j 0     -36   -44/5    0 

This is now optimal and feasible solution. By using this, 
we have reached a solution y1=6/50,  x4 = 6/5  with   Z 
max = 150/164  which is correct optimal value .Now the 

optimal solution in terms of the original variables x1, x2, x3 & 
x4 is found as follows: 

x1=2+6/5=16/5, (4)(16/5)-x3 + 6/5 =14, x3=0 ,  x2=4 and 
x4=6/5. The obtained result is identical with the Section 4 
method.  

In the above section, we discussed of our propose LFBV 
algorithm with an example. In the following Section, we 
develop an algorithm for solving LFBV and then use a 
computer program to solve LFBV problems. 

VI. Solving LFBV Using Computer Algebra 

In this section, we present our computational procedure in 
terms of some steps for solving LFBV for the programming 
language MATHEMATICA[8,9]. 

Algorithm for Solving LFBV 

In this section, we give an Algorithm corresponding to the 
MATHEMATICA code. 

Step 1: Express the LFBV to its standard form. 

Step 2: Find all  sub-matrices of the coefficient matrix 
A by setting  variables equal zero. 

Step 3: Test whether the linear system of equations has unique 
solution or not. 

Step 4: If the linear system of equations has got any unique 
solution, find it. 

Step 5: Dropping the solutions with negative elements. 
Determine all basic feasible solutions.  

Step 6: Calculate the values of the objective function for the 
basic feasible solutions found in step 5. 

Step 7: For the maximization of LFBV the maximum value of 
Z is the optimal value of the objective function and the basic 
feasible solution which yields the optimal value is the optimal 
solution.  

Pseudo Code  

In this section, we give a short presentation corresponding to 
the above algorithm. 

We demonstrated our computer algebra using pseudo code to 
find the LFBV. 

Begin of the pseudo code: 

► Finding All basic Variables 

begin the function basic[AA_,bb] 

Initialize ← Matrix AA, set bb 

For k ← 1 to Length[ss] // “ss is the list of columns 
positionfor construct m×m matrix i.e. for the basis matrix” 

        find  { all the basic solutions 

define the function bs [k_] 

       find  { all the basic feasible solutions 
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Initialize ←  MatrixAA, cost coefficients set cc 

define the function optimal[AA_,bb_,cc] 

         find  { all the Optimal solution  and the  

Optimal value of LFBV. 

End of the pseudo code. 

MATHEMATICA Code on LFBV 

We develop a code for solving LFBV using the 
programming language MATHEMATICA. It is available 
in our hand. If anyone interest to see this code please 
contract with authors. 

Input for Numerical Example 1 

A={{5,1,1,0,0,0,0,0,0,0}, 

     {4,0,-,1,0,0,0,0,0,0}, 

     {1,0,0,0,-1,0,0,0,0,0}, 

     {1,0,0,0,0,1,0,0,0,0}, 

     {0,1,0,0,0,0,-1,0,0,0}, 

     {0,1,0,0,0,0,0,1,0,0}, 

     {0,0,1,0,0,0,0,0,1,0}, 

     {0,0,0,1,0,0,0,0,0,1}}; 

b={20,14,2,5,4,12,25,18}; 

c= {5,1,0,0,0,0,0,0,0,0}; 

d= {4,2,0,0,0,0,0,0,0,0}; 

 =10; 

 = 12; 

basic[A,b] 

optimal[A, b, c] 

Output for Numerical Example 1 

The possible all basic solution is: 

{{2,4,6,12,0,3,0,8,19,6}, 

{16/5,4,0,6/5,6/5,9/5,0,8, 

25,84/5}, 

{2,10,0,6,0,3,6,2,25,12}} 

The optimal value of the objective function is 75/82. 

The optimal solution is {16/5,4,0,6/5,6/5,9/5,0,8,25,84/5}. 

Numerical Example 2 

Consider the following linear fractional bounded program 
(Bajalinov [1]).       

1232
63

21

21





xx
xxMaximize  

subject to 

                 
102 21  xx

 

                 
6032 21  xx  

                  ,155 1  x .304 2  x  

Solution Using Our Propose Method 

First, we will find basic variable for the LFBV minimize  

subject to the same set of constraints. Then we have the 
following simplex table. 

Min: w 

Subject to,     

                      

                      

 

Table. 3. Finding basic variable final table 

       
CB 

c 
j 0 0 0 0 1 B 

Basis     W 

      0  .5 1 -.5 0 .5 5 

     .5  .5 0 3/2 1 -3/2 45 

 
0 0 0 0 1 Z=

0 

Since all ≥0 so we get the basic variable. We 
use this basic variable in the original LFBV problem to solve 
the original problem. 

After the above calculations we get the following result. 

x1=5+y1 

x2=4+y2 

0≤y1≤10   

and  0≤y2≤ 26. 

Converting the problem in standard form, we have 

 Maximize Z=                         

 subject to  
                        

                     8                                                                                

                     ,01 y ,02 y ,01 s
 

                      
0,03  ws
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Table. 4. Initial Table for LFBV 

cB dB Cj 

Dj 

1        3        0       0          0 

2        3        0       0          0 

  xBi y1      y2            s3         w 

3 

0 

3 

0 

Y2= -3 

S3=38 

-1/3    0       1        -1        -2/3 

2/3     1       0          0         1/3 

z1=14 z2=25 Z=14/25  

  cj-zj1 

dj-zj2 

0        1       1         -1           0 

0       -1       2         -2           0 

  j 0        0       9         -9           0 

Table. 5. Optimal table 

cB dB Cj 

Dj 

1       3        0         0       0 

2       3        0         0       0 

  xBi y1     y2              s3     w 

0 

3 

0 

3 

S1= 85/3 

Y2=38/3 

-1/3    0       1        -1  -2/3 

2/3     1       0         0    1/3 

z1=61 z2=72 Z=61/72  

  cj-zj1 

dj-zj2 

-1       0       0         0          
-1 

0        0       0         0          
-1 

  j -133   0       0         0         
-11 

We have y2=38/3, s1= 85/3 with   Z max = 61/72 which is 
correct optimal value. 

Finally, the optimal solution in terms of the original 
variables x1& x2 is found as follows: 
x2=4+y2=4+(38/3)=50/3;y1=0; x1=5+y1=5. 

This shows that our solution is identical with the exact 
solution. 

Input for Numerical Example 2 

A={{1,2,-1,0,0,0,0,0},{2,3,0,1,0,0,0,0}, 

{1,0,0,0,-1,0,0,0},{1,0,0,0,0,1,0,0}, 

{0,1,0,0,0,0,-1,0},{0,1,0,0,0,0,0,1}} 

;b={10,60,5,15,4,30}; 

c= {1,3,0,0,0,0,0,0}; 

d= {2,3,0,0,0,0,0,0}; 

 =6;  = 12; 

basic[A,b]; 

optimal[A, b, c] 

Output for Numerical Example 2 

The possible all basic solution is: 

  {{5,4,13,18,10,0,0,26}, 

  {5,4,3,38,0,10,0,26}, 

  {15,10,25,0,10,0,6,20}, 

  {5,50/3,85/3,0,0,10,38/3,40/3}} 

The optimal value of the objective function is 61/72. 

The optimal solution is {5,50/3,85/3,0,0,10,38/3,40/3}. 

In the above section, we showed input and output for solving 
LFBV using the programming language MATHEMATICA. In 
the following Section, we show a comparison chart using 
iteration and CPU time.                                                         

VII. Comparison for Solving LFBV Problems 

In this section, we give a comparison chart to show the 
efficiency of our algorithm and computer technique with the 
existing method. To find the run time of our implementation 
code we use “TimeUsed[ ] ” command. We use the following 
computer configuration. Processor: Intel(R) Pentium(R) Dual 
CPU E2180@2.00GHZ 2.00GHZ, Memory(RAM):1.00 GB, 
System type: 32-bit operating system. 

Table. 6. Comparison table 

Numerical 
Example 1 

Bajalinov 
LFBV 

Iteration 
use 

Computer 
Time taken 

  
 Three 1.106 Sec 
Propose 
method of  
LFBV 

One 

Numerical 
Example 2 

Bajalinov 
LFBV 

Three  
0.329 Sec 

Propose 
method of  
LFBV 

Two 

VIII. Conclusions 

In this paper, we developed a new method for solving the 
problem in which the objective function is a linear fractional 
Bounded Variable (LFBV) function, where the constraints 
functions are in the form of linear inequalities and the 
variables are bounded. The advantages of LFBV algorithm are 
simplicity of implementation and less computational effort. 
We developed an all basic feasible based computer technique 
for solving such problems by using the programming language 
MATHEMATICA[8,9]. We also compared the results 
obtained by our methods with that of the other existing 
method. 



H. K. Das and M. Babul Hasan 
 
230 

------------------- 
1.  Erik B. Bajalinov, “Linear-fractional-Programming Theory, 

Methods, Applications And Software”, Kluwer Academic 
publishers, Boston/ Dordrecht/ London. 

2.  Murty, K.G.,Fathi,“A feasible direction method for linear 
programming,Operations Research Letters” 3,3, 121-7, 
Y.1984. 

3.   Sakthivei, S.E.Ramraj, “A new approach to solve linear 
fractional programming problems”. The Mathematics 
Education XXX X, 1-8, 2005. 

4. Hamdhy.A.Taha, “Operation Research: An introduction, 

edition”, Prentice Hall of India,PVT.LTD,New 
Delhi(1862). 

5. Lemke, C.E., “The Dual Method of Solving the linear 
programming problem”, Naval Research Logistics 
Quarterly, 1(1954),36-47. 

6. Gupta P.K., D.S Hira, "Problems IN Opereation 
Reasearch",S.Chand & Company LTD,Ram Nagar,New 
Delhi-110055. 

7. Schaible, S.,“ Bibliography in fractional programming, 
Zeitschrift fur Operation Research” 26,211-24,1, 1982. 

8. Don, Eugene, “Theory and Problems of Mathmatica”, 
Schaum’s Outline Series, McGraw-Hill, New york San 
Francisco Washington, D .C(2001). 

9. Stephen Wolfram, “Mathmatica”, Addision-wesley 
Publishing company,Menlo Park, California, 
Newyork(2000). 

10. Dantzig G. B., “Linear Programming and extension”, 
Princeton university press,Princeton,N,J(1962). 

11. Dantiz, G B., “Inductive Proof of the Simplex Method”, IBM 
Journal of Research and Development, 14, No.5,1960. 

12. Charnes,A., & Cooper, W.W., “Programming with Fractional 
Functionals”, Naval Research Logistics quarterly 9, Page 181-
186,1962. 

13. Swarup, K., “Linear Fractional Programming”, Operation 
Research, 13, No.6, 1029-1036. 

14. Kambo N.S., “Mathmatical Programming Techniques,Revised 
edition”, Affiliated east-west press PVT LTD.,New Delhi 
Madras Hyderabad Banglore(1984,1991). 

15. Gerald J. Lieberman, Stanford University, Frederick S. Hiller, 
Stanford University, “Introduction to Operation 
Research”, edition, McGraw-Hill Book Co. 

16. Beale E.M.L., “Cycling in the dual simplex algorithm” , Naval 
Research Logistics uarterly, Vol 2 (1955), No.4 . 

17. Marcus M.,”A Survey of Finite Mathematics” . Houghton 
Mifflin Co. Boston.1969,312-316. 

18. Thomas L. Saaty, “Mathematical Methods of Operations 
Research”,McGraw-Hill Book Company,Inc,New York St.Louis 
San Francisco . 

19. Sasieni M., A. Yaspan, L. Friendman, “Operations 
Research........methods and problems”, 9th edition,November, 
1966,John Wiley & Sons,Int.. 

20. Hasan M.B, Khodadad Khan A.F.M. and M. Ainul Islam “Basic 
solution of Linear Syestem of Equations through Computer 
Algebra”, “Ganit:j.Bangladesh Math”,Soc.21,1-7, 2001. 

 

 

 

 

 

 
 


