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Abstract 
This paper is a survey of the basic theory of connection on bundles. A connection on tangent bundle  ܶܯ , is called an affine connection on 
an ݉-dimensional smooth manifold  ܯ. By the general discussion of affine connection on vector bundles that necessarily exists on  ܯ 
which is compatible with tensors.  

I. Introduction 

In order to differentiate sections of a vector bundle [5] or 
vector fields on a manifold we need to introduce a 
structure called the connection on a vector bundle. For 
example, an affine connection is a structure attached to a 
differentiable manifold so that we can differentiate its 
tensor fields. We first introduce the general theorem of 
connections on vector bundles. Then we study the tangent 
bundle.  ܶܯ is a ݉-dimensional vector bundle determine 
intrinsically by the differentiable structure [8] of an ݉-
dimensional smooth manifold  ܯ.  

II. Connections on Vector Bundles 

A connection on a fiber bundle [7] is a device that defines 
a notion of parallel transport on the bundle, that is, a way 
to connect or identify fibers over nearby points. If the 
fiber bundle is a vector bundle, then the notion of parallel 
transport is required to be linear. Such a connection is 
equivalently specified by a covariant derivative, which is 
an operator that can differentiate sections of that bundle 
along tangent directions in the base manifold [3]. 
Connections in this sense generalize, to arbitrary vector 
bundles, the concept of a linear connection on the tangent 
bundle of a smooth manifold, and are sometimes known 
as linear connections. Nonlinear connections are 
connections that are not necessarily linear in this sense. 
Definition 1. A connection on a vector bundle ܧ is a map 
   
ܦ ∶  Γ(ܧ) →
 Γ(ܶ∗ܧ⊗ܯ )                                                   (1)  
which satisfies the following conditions: 
   (i) For any ݏଵ, ଶݏ  ∈  Γ(ܧ), 

ଵݏ)ܦ             + (ଶݏ = ଵݏܦ +  ଶݏܦ
  (ii) For ݏ ∈ Γ (ܧ)  and any  ܥ߳  ߙஶ(ܯ) , 

(ݏߙ)ܦ             = ⊗ ߙ݀ ݏ +  ݏܦ ߙ 
Suppose  ܺ is a smooth tangent vector fields on  ܯ 
and  ݏ ∈ Γ (ܧ). Let   

ݏ ௑ܦ                   = < ݏܦ,ܺ >                                                      (2)  
where  <, >  represents the pairing between  ܶܯ and  ܶ∗ܯ. 
Then  ܦ௑ݏ is a section of ܧ, called the absolute differential 
quotient or the covariant derivative of the section ݏ along  ܺ. 
Theorem 1.  A connection always exists on a vector bundle. 
Proof. Choose a coordinate covering  { ఈܷ  }ఈ∈஺   of  ܯ. Since 
vector bundles are trivial locally, we may assume that there is 
local frame field  ܵఈ for any ఈܷ. By the local structure of 
connections, we need only construct a  ݍ ×  ఈ onݓ matrix  ݍ
each  ఈܷ such that the matrices satisfy  
ᇱݓ   = ଵିܣ.ܣ݀ +    ଵ                                                         (3)ିܣ.ݓ.ܣ 
under a change of the local frame field, which is the 
transformation formula for a connection, a most important 
formula in differential geometry. 
We may assume that  {ܷఈ} is locally finite, and  {݃ఈ} is a 
corresponding sub-ordinate partition of unity such that 
supp  ݃ఈ ⊂ ఈܷ  . When ܷఈ ∩  ఉܷ ≠  ∅, there naturally exists a 
non-degenerate matrix  ܣఈఉ of smooth functions on  ఈܷ ∩  ఉܷ  
such that  
              ܵఈ = .ఈఉܣ  ఉܵ ఈఉܣ ݐ݁݀   ,  ≠ 0                                     (4) 

For every ߙ ∈ ݍ   choose an arbitrary , ܣ × matrix  ߶ఈ ݍ  of 
differential 1-forms on  ఈܷ. Let 

ఈݓ   =  ෍  ݃ఉ
ఉ∈஺

. ൫݀ܣఈఉ.ܣఈఉିଵ 

.ఈఉܣ +  ߶ఉ  ఈఉିଵ ൯                                          (5)ܣ. 

where the terms in the sums over  ߚ with  ఈܷ ∩  ఉܷ =  ∅  are 
zero. Then  ݓఈ is a matrix of differential 1-forms on  ఈܷ. We 
need only demonstrate the following transformation formula 
for ܷఈ ∩  ఉܷ ≠  ∅:  

ఈݓ     = ఈఉܣ݀  + ఈఉିଵܣ. ఈఉܣ ఉݓ.  ఈఉܣ. 
ିଵ .                                        (6) 

This can be done by a direct calculation. First observe that 
when  ఈܷ ∩  ఉܷ ∩  ఊܷ ≠  ∅, the following is true in the 
intersection: 

ఈఉܣ ఉఊܣ.  = ఈఊܣ . 

Thus on  ఈܷ ∩  ఉܷ ≠ ∅  we have  
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ఉݓ.ఈఉܣ = ఈఉିଵܣ.   ෍  ݃ఊ
ఊ

௎ഀ∩ ௎ഁ∩ ௎ംஷ ∅

ఈఉܣ. . ൫݀ܣఉఈ.ܣఉఈିଵ 

ఉఊܣ + .  ߶ఊ .ܣఉఊିଵ ൯.ܣఈఉିଵ  

                             = ఈݓ − ఈఉܣ݀    ఈఉିଵܣ.

This is precisely (6). We see from the above that there is 
much freedom in the choice of a connection. This 
completes the proof of the theorem.                                 □ 

Remark 1. In particular, if we let  ߶ఉ = 0 in  (6), then 
we obtain a connection  ܦ on  ܧ  whose connection matrix 
on  ఈܷ  is  

ఈݓ =  ෍  ݃ఉ
ఉ

. ൫݀ܣఈఉ  ఈఉିଵ ൯ܣ.

By the transformation formula (3) for connection 
matrices, the vanishing of a connection matrix is not an 
invariant property.  In fact, for an arbitrary connection, we 
can always find a local frame field with respect to which 
the connection matrix is zero at some point. This fact is 
useful in calculations involving connections.                          

Theorem 2. Suppose ܦ is a connection on a vector bundle 
∋ ݌  and ,ܧ  Then there exists a local frame field ܵ in a .ܯ
coordinate neighborhood of ݌ such that the corresponding 
connection matrix  ݓ  is zero at  ݌. 

Proof. Choose a coordinate neighborhood (ܷ;ݑ௜) of ݌ 
such that ݑ௜(݌) = 0, 1 ≤ ݅ ≤ ݉.  Suppose  ܵᇱ is a local 
frame field on  ܷ with corresponding connection matrix 
௜ݓ = ఈݓ) 

ᇱఉ), 

where                         

ఈݓ         
ᇱఉ = ෍Γ ఈ௜

ᇱఉ
௠

௜ୀଵ

௜ݑ                                                          (7) 

and the  Γ ఈ௜
ᇱఉ are smooth functions on  ܷ. Let  

ܽఈ
ఉ = ఈߜ 

ఉ −  ෍Γ ఈ௜
ᇱఉ

௠

௜ୀଵ

.(݌) ௜ݑ  

Then  ܣ = (ܽఈ
ఉ) is the identity matrix at  ݌. Hence there 

exists a neighborhood  ܸ ⊂  ܷ of  ݌ such that  ܣ  is non-
degenerate in  ܸ. Thus  

                              ܵ =  ᇱ                                                     (8)ܵ.ܣ

is a  local frame field on  ܸ. Since  

(݌)ܣ݀                        =  ,(݌)ᇱݓ−

we can obtain from  (3), 

(݌)ݓ                = ଵିܣ.ܣ݀) +  (݌)(ଵିܣ.ᇱݓ.ܣ 

                         = (݌)ᇱݓ− +  (݌)ᇱݓ 

                         = 0 

Thus ܵ is the desired local frame field.                                    □ 

Theorem 3. Suppose  ܺ,ܻ  are two arbitrary smooth tangent 
vector fields on the manifold  ܯ. Then 

ܴ(ܺ,ܻ) = ௑ܦ ௒ܦ  − ௑ܦ௒ܦ  − [ ௑ ,௒ ]ܦ                                          (9)  

Proof. Because the absolute differential quotient and the 
curvature operator are local operators, we need only consider 
the operations of both sides of   (9)  on a local section. 
Suppose ݏ ∈  Γ(ܧ)  has the local expression  

ݏ =  ෍ߣఈ ఈݏ 

௤

ఈୀଵ

 

Then 

ݏ ௑ܦ  = ∑ ఈߣ ܺ ) +∑ ఉߣ  < ఉఈݓ, ܺ >)௤
ఉୀଵ ఈݏ 

௤
ఈୀଵ ,                               (10) 

and  ܦ௒ܦ௑ ݏ  =    ∑ (ఈߣܺ)ܻ } + ∑ ఉߣܺ)  < ఉఈݓ, ܻ >௤
ఉୀଵ

௤
ఈୀଵ

ఉߣܻ+  < ఉఈݓ, ܺ >) 
∑ > ܻ)ఉߣ  ఉఈݓ, ܺ >  + ∑ <௤

ఊୀଵ ఉݓ, ܺ
ఊ > < ఊఈݓ, ܻ >)}௤

ఉୀଵ  .ఈݏ

Hence ܦ௑ ݏ௒ܦ  − ݏ௑ܦ௒ܦ  =  ∑ ఈߣ[ܻ,ܺ] }  +  ∑ ఉ( <௤ߣ
ఉୀଵ

௤
ఈୀଵ

ఉఈݓ,[ܻ,ܺ] > + < ఉఈݓ݀,ܻ ߉ ܺ >   − ∑ ఉݓ
ఊ௤

ఊୀଵ ఊఈݓ ߉ ఈݏ {(<  =
ݏ[ ௑ ,௒ ]ܦ  + ∑ ఉߣ < ఉఈߗ,ܻ ߉ ܺ > ఈݏ 

௤
ఈ,ఉୀଵ                 (11) 

That is, 

ݏ(ܻ,ܺ)ܴ   = ݏ௒ܦ ௑ܦ − ݏ௑ܦ௒ܦ  −  ݏ[ ௑ ,௒ ]ܦ 

This completes the proof of the theorem.              □ 

Theorem 4.  The curvature matrix  ߗ  satisfies the Bianchi 
identity  

ߗ݀ = −ߗ ߉ ݓ  .ݓ ߉ ߗ 

Proof: Apply exterior differentiation [9] to both sides of  
ߗ   = ݓ݀ − ߗ݀  ݓ ߉ ݓ  = ݓ ߉ ݓ݀−  +   ݓ݀ ߉ ݓ 

                        = ߗ )−  + ݓ ߉ (ݓ ߉ ݓ + +ߗ ) ߉ ݓ   (ݓ ߉ ݓ

                        = −ߗ ߉ ݓ                                                                                               ݓ ߉ ߗ 

This completes the proof of the theorem.                          □ 

Remark 2. If a section  ݏ of a vector bundle ܧ satisfies the 
condition ݏܦ = 0, then  ݏ is called a parallel section. 

III. Affine Connections 

Definition 2.  Let ܯ be a smooth n-dimensional manifold, ܱெ  
be the set of smooth functions and  Γ(ܶܯ) be the vector space 
of smooth vector fields. An affine connection on  ܯ is a map 
(denoted by  ߘ ) 

∶ ߘ                 Γ(ܶܯ) ×  Γ(ܶܯ)  →  Γ(ܶܯ)  

                                        ( ܺ ,ܻ )   ↦   ܻ ௑ߘ

such that          
௑ߘ  (݅)                ( ଵܻ + ଶܻ) = ௑ߘ  ଵܻ  + ௑ߘ  ଶܻ 

௑భା௑మߘ  (݅݅)               ܻ = + ௑భܻߘ   ௑మܻߘ 
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(ܻ ݂) ௑ߘ  (݅݅݅)              =  ܺ(݂) ܻ +        ௑ܻߘ  ݂

= ௙ ௑ܻߘ    (ݒ݅)             ݂ ∀;   ௑ܻߘ ݂ ∈ ܱெ   and                  
                                                         ܺ ,ܻ ∈  Γ(ܶܯ) 

IV. Affine Connection in Two Coordinates Charts 

 Let (ܷ,߮) be a coordinate chart on a manifold  ܯ, with 
coordinates ( ݔଵ,ݔଶ, … ,  ௡).  Then the vector fields  ܺ andݔ
 ܻ can be expressed as  

 ܺ =  ෍ܺ௜
௡

௜ୀଵ

  (ݔ)
߲
௜ݔ߲

ܻ =  ෍ܻ௝
௡

௝ୀଵ

(ݔ)   
߲
௝ݔ߲

 

For some smooth functions  ܺ௜(ݔ) and   ܻ௝(ݔ). In ܷ,   డ
డ௫೔

 

are smooth vector fields.   ∇ ങ
ങೣ೔

 డ
డ௫ೕ

   is again a smooth 

vector field. Thus  

ߘ డ
డ௫೔

 
߲
௝ݔ߲  =  ෍  Γ௜௝௞

௡

௞ୀଵ

  
߲
 ௞ݔ߲

For some smooth functions   Γ௜௝௞(ݔ) . Here   Γ௜௝௞(ݔ) is a  ݊ଷ 
function. 
⇒ ௘೔ߘ    ௝݁  =  ∑  Γ௜௝௞௡

௞ୀଵ   ݁௞  ; where   ௜݁ =  డ
డ௫೔

  , ௝݁ =  డ
డ௫ೕ

  

and  ݁௞ = డ
డ௫ೖ

 
Let us compute  ߘ௑ ܻ 
=  ܻ ௑ߘ  ∑ ߘ   ௑೔೙

೔సభ ௘೔   ∑ ܻ௝௡
௝ୀଵ ௝݁  

= ∑  (௡
௝ୀଵ ∑ ߘ  ௑೔೙

೔సభ ௘೔   ܻ
௝
௝݁  )                       [By axiom (݅)] 

= ∑ ∑  (௡
௝ୀଵ

௡
௜ୀଵ ௑೔௘೔ ߘ    ܻ

௝
௝݁  )                    [By axiom (݅݅)] 

= ∑ ∑  (௡
௝ୀଵ

௡
௜ୀଵ ܺ௜   ߘ ௘೔  ܻ

௝
௝݁)                  [By axiom (݅ݒ)] 

= ∑ ∑  ௡
௝ୀଵ

௡
௜ୀଵ ܺ௜ ( ௜݁(ܻ௝) ௝݁ +  ܻ௝ ௘೔ ߘ   ௝݁) [By axiom (݅݅݅)] 

௑ߘ    ܻ =  ∑ ∑  ௡
௝ୀଵ

௡
௜ୀଵ ܺ௜ ( డ

డ௫೔
(ܻ௝) ௝݁ +  ∑  Γ௜௝௞௡

௞ୀଵ   ݁௞  
ܻ௝) 

The functions  Γ௜௝௞(ݔ) are called coordinate symbols of the 
affine connection  ߘ. The vector field   ߘ௑  ܻ is often called 
covariant derivative of vector field  ܻ along the vector 
field  ܺ.      

Definition 3.   If the torsion tensor of an affine connection  
 .is zero, then the connection is said to be torsion free ߘ

A torsion-free affine connection always exists. In fact, if 
the coefficients of a connection  ߘ  are Γ ௝௞௜  , then the set  

Γ෨௝௞௜  =
1
2
൫Γ ௜௞

௝ + Γ ௞௜
௝ ൯. 

Obviously, Γ෨௝௞௜   is symmetric with respect to the lower 
indices and satisfies  

  Γ௜௞
ᇱ௝ =  ௣௥

௤  
௝ݓ߲

௤ݑ߲
௣ݑ߲

௜ݓ߲
௥ݑ߲

௞ݓ߲ +
߲ଶݑ௣

௞ݓ௜߲ݓ߲ .
௝ݓ߲

௣ݑ߲
                         (12) 

under a local change of coordinates. Therefore the Γ෨௜௞
௝  are the 

coefficients of some connection ߘ෨ and ߘ෨ is torsion-free. 

Theorem 5. Suppose  ߘ is a torsion-free affine connection on 
݌  Then for any point .ܯ ∈  there exists a local coordinate ܯ
system   ݑ௜  such that the corresponding connection 
coefficients  Γ ௜௞

௝  vanish at  ݌. 

Proof. Suppose  (ܹ;ݓ௜) is a local coordinating system at  ݌ 
with connection coefficients Γ෨௜௞

ᇱ௝.  Let 

௜ݑ = ௜ݓ  +
1
2

 Γ ௝௞ᇱ௜ ௝ݓ)(݌) ௞ݓ) ((݌)௝ݓ−

 (13)                                                   ((݌)௞ݓ−

Then, డ௨
೔

డ௪ೕቚ௣ = ௝௜ߜ  ,    
డమ௨೔

డ௪೔డ௪ೖቚ௣ =   Γ௝௞ᇱ௜(݌)                                (14) 

Thus the matrix  (డ௨
೔

డ௪ೕ) is non-degenerate near  ݌, and  (13) 
provides for a change of local coordinates in a neighborhood 
of  ݌. From  (12) we see that the connection coefficients   Γ௜௞

௝   
in the new coordinate system  ݑ௜  satisfy  

                  Γ ௜௞
௝ (݌) = 0     ;     1 ≤ ݅, ݆, ݇ ≤ ݉ 

This completes the proof of the theorem.                             □ 

Theorem 6. Suppose ߘ is a torsion-free affine connection on 
 :Then we have the Bianchi identity .ܯ

                    ܴ௜௞௟,௛
௝ +  ܴ௜௟௛,௞

௝ +  ܴ௜௛௞,௟
௝ = 0 .    

Proof. From Theorem 4, we have 

௜ߗ݀              
௝ = ௜ݓ

௞ ௞ߗ ߉ 
௝ − ௞ݓ ߉ ௜௞ߗ 

௝ , 

that is,  

߲ ܴ௜௞௟
௝

௛ݑ߲
௟ݑ݀ ߉௞ݑ݀ ߉௛ݑ݀  

= ൫  Γ௜௛
௣   ܴ௣௞௟

௝ − Γ ௣௛
௝  ܴ௜௞௟

௣  ൯ ݀ݑ௛ݑ݀ ߉௞ݑ݀ ߉௟ . 

Therefore 

 ܴ௜௞௟,௛
௝ ௟ݑ݀ ߉௞ݑ݀ ߉௛ݑ݀   =

 −൫ Γ ௞௛
௣   ܴ௜௣௟

௝ −  Γ ௟௛
௣  ܴ௜௞௣

௝  ൯ ݀ݑ௛ݑ݀ ߉௞ݑ݀ ߉௟  = 0,             

where in the last equality we have used the torsion-free 
property of the connection. Hence 

(ܴ௜௞௟ ,௛
௝ +  ܴ௜௟௛,௞

௝ +  ܴ௜௛௞,௟
௝ ௟ݑ݀ ߉௞ݑ݀ ߉௛ݑ݀ ( = 0                 (15)    

Now since the coefficients of  (15) are skew-symmetric with 
respect to  ݇, ݈, ℎ , we have 

 ܴ௜௞௟,௛
௝ +  ௜ܴ௟௛,௞

௝ +  ܴ௜௛௞,௟
௝ = 0 

This completes the proof of the theorem.                                □ 
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V. Connection Compatible with Tensors  

Let M be a smooth manifold and  be any tensor in M. 
Mostly this can be interested in the case when  = g is a 
semi-Riemannian metric tensor on M, i.e.,  is a non--
degenerate [1] symmetric (2, 0)- tensor, or when   is 
symplectic form on M, i.e.,  is a non-degenerate closed 
2-form [7], [9]. If  is a connection in M, i.e., a 
connection on the tangent bundle TM, then we have 
naturally induced connections on all tensor bundles on M, 
all of which is denoted by the same symbol  .  

Definition 4. The torsion of 
 
is the anti-symmetric 

tensor  
],,[),( YXXYYXT YX   

where ],[ YX  denotes the Lie brackets of the vector fields 
X and Y;   is called symmetric if .0T  

The connection 
 
is said to be compatible with  is  - -

parallel, i.e., when .0   

Establishing whether a given tensor  admits compatible 
connections is a local problem. Namely, one can use 
partition of unity to extend locally defined connections 
and observe that a convex combination of compatible 
connections is a compatible connection. In local 
coordinates, finding a connection compatible with a given 
tensor reduces to determining the existence of solutions 
for a non homogeneous linear system for the Christoffel 
symbols of the connection.  

It is well known that semi-Riemannian metric tensors 
admit a unique compatible symmetric connection, called 
the Levi-Civita connection of the metric tensor, which can 
be given explicitly in [4]. Uniqueness of the Levi-Civita 
connection can be obtained by a curious combinatorial 
argument, as follows.  

Suppose that  and 
~  are connections on M; their 

difference 
~  is a tensor, that is denoted by t  

,~),( YYYXt XX   

where X and Y are smooth vector fields on M. If both 
and ~ are symmetric connection, then t is symmetric  

.0],[],[

~~),(),(




XYYX
XXYYXYtYXt YYXX  

Lemma 1. Let U be a set and  UUU:  be a map 
that is symmetric in its first two variables and anti--
symmetric in its last two variables. Then  is identically 
zero.  

Proof. Let Uuuu 321 ,,  be fixed. We have  

),,,(
),,(),,(),,(

123

132312321

uuu
uuuuuuuuu







 

so that  is anti-symmetric in the first and the third variables. 
On the other hand   

),,,(
),,(),,(),,(

231

132123321

uuu
uuuuuuuuu







 

so that  is symmetric in the second and the third variables. 
This concludes the proof.                     □  

Theorem 7. There exists at most one symmetric connection 
which is compatible with a semi Riemannian metric.  

Proof. Assume that g is a semi-Riemannian metric on M, and 
let  and 

~  are two symmetric connections such that 
;0~

 gg  for all ,Mp  consider the map 
 MTMTMT ppp:  given by  

),),,((),,( ZYXtgZYX   

where t is the difference 
~ . Since t is symmetric, then 

is symmetric in the first two variables. On the other hand,  is 
anti-symmetric in the last two variables  

.0),,(),,(~
),(),~(),(

),~(),,(),,(







ZYXZYX

YZgYZgZYg

ZYgYZXZYX

gg

XXX

X
 

By Lemma 1, ,0  hence t =0, and thus .~
  Hence 

completes the proof.                                   □             
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