
Dhaka Univ. J. Sci. 60(2): 163-168, 2012 (July)

* Correspondence author : E-mail: Chowdhury_sher@yahoo.com

A Computer Technique for Solving LP Problems with Bounded Variables

S. M. Atiqur Rahman Chowdhury* and Sanwar Uddin Ahmad
Department of Mathematics; University of Dhaka, Dhaka-1000, Bangladesh

Received on 27.02.2011. Accepted for Publication on 15. 12.11

Abstract
Linear Programming problem (LPP)s with upper bounded variables can be solved using the Bounded Simplex method (BSM), without the
explicit consideration of the upper bounded constraints. The upper bounded constraints are considered implicitly in this method which
reduced the size of the basis matrix significantly. In this paper, we have developed MATHEMATICA codes for solving such problems. A
complete algorithm of the program with the help of a numerical example has been provided. Finally a comparison with the built-in code has
been made for showing the efficiency of the developed code.

Keywords: LPP, bounded simplex method, bounded variable, computer program, restrictions.

I. Introduction

Linear Programming problem (LPP) with bounded
variables has the form

݁ݖ݅݉݅ݔܽܯ ,ܼ = ,ܣ) :ܺܥ} = ܺ (ܫ ܾ;

 L ≤ ܺ ≤ ܷ} (1)

One can solve such problems by regular simplex method
by considering the lower and upper bound constraints
explicitly which is not computationally efficient as the
number of constraints as well as the number of variables
become very large.

Dantzig1 developed the method for solving linear
programming with upper bound restrictions on the
variables. Wagner2 developed the dual simplex method
for LPP with bounded variables, which is further studied
by Maros3, 4. In 1972, Duguay5 et al. studied linear
programming with relative bounded variables. Y. Xia and
J. Wang6 used neural network for finding an approximate
solution of LPP with bounded variables which converges
globally to the solutions to the LPPs.

However, most of the real life problems deal with large
quantities of data and parameters, which can only
reasonably be tackled by the calculating power of a
computer and researchers, are actively engaged in
developing programming codes for solving various
problems in Operations Research e.g. Saha and Hasan7,
Hasan.8, Morshed and Hasan9.

In this paper, we will discuss the algorithm for solving
LPP with Bounded Variables and develop a
MATHEMATICA program for solving such problems,
which is capable of dealing with any number of variables.
Finally a numerical example obtained by using the
program is provided and a comparison has been made
with the built-in MATHEMATICA code.

II. Bounded Simplex Method10

In LP models variables may have explicit positive upper and
lower bounds. An LPP may have in addition to the regular
constraints, lower or upper bounds on some or all variables i.e.
constraints of the type

≥ ܮ ܺ ≤ ܷ

For the lower bounds i.e. ܺ ≥ in (1), the following ܮ
substitution

 ܺ − ܺ = ≤ ܺ , ܮ 0 (2)

can be used throughout and solve the problem in terms of
ܺ (whose lower bound now equals zero). The original ܺ is
determined by back substitution which is legitimate because
its guarantees that ܺ − ܺ = will remain nonnegative for all ܮ
ܺ ≥ 0.

However, for the upper bounding constraint,ܺ ≤ ܷ, the idea
of direct substitution i.e.

 ܺ + ܺ = ܷ,ܺ ≥ 0

is not correct because back substitution

ܺ + ܺ = ܷ, does not ensure that ܺ will remain nonnegative.

For simplicity we define the upper bounded LP model as

= ܼ,݁ݖ݅݉݅ݔܽܯ ,ܣ) :ܺܥ} = ܺ (ܫ ܾ,

 0 ≤ ܺ ≤ ܷ} (3)

The bounded algorithm uses only the constraints (ܣ, = ܺ (ܫ
ܾ,ܺ ≥ 0 explicitly, while accounting for ܺ ≤ ܷ implicitly
through modification of the simplex feasibility condition.

Let ܺ஻ = ଵܾ be a current basic feasible solution ofିܤ
,ܣ) = ܺ (ܫ ܾ,ܺ ≥ 0 and suppose that according to the
(regular) optimality condition, ௝ܲ is the entering vector. Then,
given that all the non-basic variables are zero, the constraint
equation of the ith basic variable can be written as

 (ܺ஻)௜ = ଵିܤ௜ – ൫(ଵܾିܤ)
௝ܲ൯௜ݔ௝

S. M. Atiqur Rahman Chowdhury and Sanwar Uddin Ahmad

164

When the entering variable ݔ௝ increases above zero level,
(ܺ஻)௜ will increase or decrease depending on whether
൫ିܤଵ ௝ܲ൯௜ is negative or positive, respectively. Thus, in
determining the value of the entering variable ݔ௝ three
conditions must be satisfied:

Condition1: The basic variable (ܺ஻)௜ remains non-
negative-that is, (ܺ஻)௜ ≥ 0.

This is not violated if

௝ݔ ≤ ଵߠ ≡  












01:

)1(

)1(
min

ijPB
ijPB

ibB

i
 (4)

Condition2: The basic variable (ܺ஻)௜ does not exceed its
upper bound i.e., (ܺ஻)௜ ≤ (ܷ஻)௜ , where ஻ܷ comprise the
ordered elements of ܷ corresponding to ܺ஻ .

This is not violated if

௝ݔ ≤ ଶߠ   












01:
)1(

)()1(
min

ijPB
ijPB

iBUibB

i

(5)

Condition3: The entering variable ݔ௝ cannot assume a
value larger than its upper bound- that is ݔ௝ ≤ ௝ݑ , where
௝ݑ is the jth element of ܷ.

Combining the three restrictions together, ݔ௝ enters the
solution at the level that satisfies all three conditions and
the level is defined as

௝ݔ = ݉݅݊ {ଵ,ଶ ௝} (6)ݑ,

The change of basis for the next iteration depends on
whether ݔ௝ enters the solution at level 1, 2 or ݑ௝ .
Assuming that (ܺ஻)௥ is the leaving variable, then we have
the following rules:

Rule1: ݔ௝ = ௝ݑ . The basic vector ܺ஻ remains unchanged
because ݔ௝ = ௝stops short of forcing any of the currentݑ
basic variables to reach its lower (=0) or upper bound.
This means that ݔ௝ will remain nonbasic but at upper
bound. Following the argument just presented, the new
iteration is generated by using the substitution ݔ௝ =
௝ݑ ௝ݔ – .

Rule2: ݔ௝ = ଵ ; (ܺ஻)௥ leaves the basic solution (becomes
non-basic) at level zero. The new iteration is generated in
the normal simplex manner by using ݔ௝ and (ܺ஻)௥ as the
entering and the leaving variables, respectively.

Rule3: ݔ௝ = ଶ; (ܺ஻)௥ , becomes non-basic at its upper
bound. The new iterations is generated as in the case

of,ݔ௝ = ଵ , with one modification that accounts for the fact
that (ܺ஻)௥ will be nonbasic at upper bound. Because the
values of ଵ and ଶ are developed under the assumption that
all nonbasic variables are at zero level. This is achieved by
using the substitution (ܺ஻)௥ = (ܷ஻)௥– (ܺ஻)௥, where (ܺ஻)௥ ≥
0. It is immaterial whether the substitution is made before or
after the new basis is computed.

 A tie among ଵ, ଶ, and ݑ௝ may be taken arbitrarily. However,
it is preferable to implement the rule for ݔ௝ = ௝ݑ because it
entails less computation.

The substitution ݔ௝ = ௝ݑ − ௝ᇱ will change the original ௝ܿ, ௝ܲݔ
and b to ௝ܿ

ᇱ = − ௝ܿ , ௝ܲ
ᇱ = ௝ܲ and ܾ-to-ܾ′ = ௝ݑ− ௝ܲ . This means

that if the revised simplex method is used, all the computation
(e.g, ିܤଵ,ܺ஻ , and ݖ௝ − ௝ܿ) should be based on the updated
values of ܣ,ܥ, and ܾ at each iteration.

III. MATHEMATICA codes

For convenience we have presented the developed
MATHEMATICA codes for solving LPP with bounded
variables while solving a numerical example.

LPP1

 Maximize, ࢆ = ૜࢞૚ + ૞࢞૛ + ૛࢞૜

 Subject to, ࢞૚ + ૛࢞૛ + ૛࢞૜ ≤ ૚૙

 ૛࢞૚ + ૝࢞૛ + ૜࢞૜ ≤ ૚૞

૙ ≤ ૚࢞ ≤ ૝,૙ ≤ ૛࢞ ≤ ૜,૙ ≤ ૜࢞ ≤ ૜

Introducing slack variables x4 ≥ 0, x5 ≥ 0 one to each
constraint, we have

Maximize, ࢆ = ૜࢞૚ + ૞࢞૛ + ૛࢞૜ + ૙࢞૝ + ૙࢞૞

Subject to,

૚࢞ + ૛࢞૛ + ૛࢞૜ + ૝࢞ + ૙࢞૞ = ૚૙

 ૛࢞૚ + ૝࢞૛ + ૜࢞૜ + ૙࢞૝ + ૞࢞ = ૚૞

૙ ≤ ૚࢞ ≤ ૝,૙ ≤ ૛࢞ ≤ ૜,૙ ≤ ૜࢞ ≤ ૜, ૝࢞ ≥ ૙, ૞࢞ ≥ ૙

The following codes are used to take the necessary inputs.

A Computer Technique for Solving LP Problems with Bounded Variables 165

The inputs are made into the following input box:

Enter the desire function Z:
૜࢞૚ + ૞࢞૛ + ૛࢞૜ ;
Then, n = 5;
Enter Row 1: 1, 2, 2, 1, and 0
Enter Row 2: 2, 4, 3, 0, and 1
Enter co-eff. of objective function: 3, 5, 2, 0, and 0
Enter upper bound: 4, 3, 3, 9999, and 9999.
Enter co-eff. of basis element: 0, 0
Enter constant: 10, 15
ଵܺ = 0;ܺଶ = 0;ܺଷ = 0; ܺସ = 0; ܺହ = 0

The initial simplex table is generated by the following
codes.

Here, a, b are the 1st and 2nd row of the initial table, K is the
coefficient matrix, U[[i]] represents the upper bounds of ݔ௜,
CNT is the initial basic feasible solutions (ܾ௜), B is the basis
matrix and CJ[[i]] represents the co-efficient of the profit
vector (ܥ௜).

Table. 1. Initial simplex table

 ௝ܥ

Basis

3 5 2 0 0
Solution(ܾ௜)

x1 x2 x3 x4 x5

0

0

x4

x5

1 2 2 1 0

2 3 0 1

10

15

ఫഥܥ 3 5 2 0 0 Z = 0

4

S. M. Atiqur Rahman Chowdhury and Sanwar Uddin Ahmad

166

The following codes are used for identifying the entering
non-basic variable.

Here, l4 = ܥఫഥ = ௝ܥ − ௝ݖ = relative profit vector, MP =
ఫഥܥ}ݔܽܯ ఫഥܥ: > ଷߠ ,{0 is the value of ߠଶ in (5), ߠଵ is the
value of ߠଵ in (4) and ߠ represents the value of ݔ௝ in (6).

By Rule1 in section 2, we obtained Table 2 as,

Table. 2.

Basic ݔଵ ݔଶ ݔଷ Solution

ܼ 3 –5 2 15

 ସݔ

 ହݔ

 1 − 2 2

 −4 3

4

3

The developed codes for Rule1 are,

Table 3 is obtained by rule 2 in section 2 as,
Table. 3.

Basic ݔଶ ݔଷ ݔହ Solution

ܼ 1 −5/2 3/2 39/2

 ସݔ

 ଵݔ

 0 1/2 -1/2

 3/2 1/2

5/2

3/2

The developed codes for Rule2 are,

For Rule3, developed codes are:

−2

A Computer Technique for Solving LP Problems with Bounded Variables 167

These codes are iteratively implemented until the
optimum table is obtained.

Table. 4.

Basic ݔଵ ݔଷ ݔହ Solution
ܼ 1/2 -7/4 -5/4 75/4
 ସݔ
 ଶݔ

 0 1/2 -1/2
 -1/2 -3/4 -1/4

 5/2
-3/4

Table. 5. Optimum table

Basic ݔଵ ݔଷ ݔହ Solution
ܼ -1/2 -7/4 -5/4 83/4
 ସݔ

 ଶݔ
 0 1/2 -1/2
 1/2 -3/4 -1/4

5/2
5/4

By back substitution the optimal values of ݔଵ,ݔଶ, and ݔଷ

are ݔଵ = ଵݑ − ଵݔ = ଶݔ ,4 = ଶݑ − ଶݔ =
4
7

 and

ଷ = 0. Finally, the optimal value of ܼ isݔ
4

83
.

Output

Table. 6. Comparison of used timed for solving LPP1

Machine
Configurations

Time Used(Sec.)

Intel[R] 4 CPU
2.00GHz,512M
B of RAM

Built-in
Code

Developed Code

0.591

0.48

IV. Algorithm of BSM10, 11

In this section we present the algorithm of our developed code.

Step 1. Calculate the net evaluation ܥ௝ − ௝ܼ . For a
maximization problem if ܥ௝ − ௝ܼ ≤ 0 for the non-basic
variables at their upper bound, optimum basic feasible solution
is attained. It not, go to step-2, revenue is true for a
minimization problem.

Step 2. Select the most positive ܥ௝ − ௝ܼ .

Step 3. Let ݔ௝ be a non basic variable at zero level which is
selected to enter the solution. Compute the quantities defined
in (4) & (5)

Step 4. ݔ௝ = ݉݅݊ (ଵ,ଶ, .(௝ݑ

Sub-step 1: If  = ଵ . (ܺ஻)௥ leaves the basic solution
(because non-basic) at level zero and ݔ௝ enter by using the
regular row operation of the simplex method.

Sub-step 2: If  = ଶ . (ܺ஻)௥leaves the basic solution at
level zero and ݔ௝ enters then (ܺ஻)௥ being non-basic at its upper
bound must be substituted out by using

(ܺ஻)௥ = (஻ܷ)௥ – (ܺ஻)௥

where,

0 ≤ (ܺ஻)௥ ≤ (஻ܷ)௥

Sub-step 3: If  = ௝ݑ ௝ݔ , is substituted at its upper bound by
௝ݔ = ௝ݑ − .௝ᇱ while remaining non-basicݔ
 Flowchart:

The flowchart of the developed code is presented in this
section.

S. M. Atiqur Rahman Chowdhury and Sanwar Uddin Ahmad

168

V. Conclusion

Now-a-days computer programming plays an important
role for solving various problems in Operations Research
and is a much needed tool for solving large scale
problems. In this paper we have discussed the algorithm
for solving LPP with Bounded Variables, have developed
a MATHEMATICA program for solving such problems.
It is evident from table 6 that the developed program can
reduce significantly the time taken to provide optimum
solution. Despite the restrictions, this program may be
used more efficiently for solving LPP with bounded
variables.

1. Dantzig, G. B., 1955, Upper Bounds, Secondary Constraints and
Triangularity in Linear Programming, Econometrica, 23, No. 2.

2. Wagner, H. M., 1958, The Dual Simplex Algorithm for Bounded
Variables, Nav. Res. Log. Quart. 5, 257-261.

3. Maros I, 2003a, A piecewise linear dual phase-I algorithm for the
simplex method, Computational Optimization and Applications,
26, 63-81.

4. Maros I, 2003b, A generalized dual phase-2 simplex algorithm,

European Journal of Operational Research, 149, 1-16.
5. C. Duguay, M. Todd and H.M. Wagner, 1972/73, Linear programming

with relative bounded variables, Management Sci., 19, 751-759.
6. Youshen Xia and Jiasong Wang, 1995, Neural Network for Solving

Linear Programming Problems with Bounded Variables, IEEE
transaction on neural networks, 6(2).

7. Roni Saha and M. Babul Hasan, 2010, “A Computer Technique for
Sensitivity Analysis in Linear Programs, Dhaka Univ.J.Sci. 58(2), 279-
286.

8. Hasan, M.B. Hasan, 2008, “Solution Linear Fractional Programming
Problems through Computer Algebra, The Dhaka University Journal of
Science, 57(1), 23-28.

9. Morshed, M.B. Hasan, 2005, Graphical representation of feasible region
of Linear programming problems using Mathematica, The Dhaka
University Journal of Science, 53(1), 87-96.

10. Taha H. A., 1999, Operation Research An Introduction, Prentice-Hall of
India Pvt. Ltd, New Delhi.

11. Gupta, P.K. & Hira, D.S., 1998, Problems in Operations Research, S.
Chand & Company, New Delhi.

Yes

Start Input

Construct initial Table

௝ܥ − ௝ܼ ≤ 0

Yes

No Print

Stop
Identifying pivot column

,(3)&(2) ݉݋ݎܨ ଵߠ ݁ݐ݈ܽݑ݈ܿܽܿ ଶߠ & ݕ݈݁ݒ݅ݐܿ݁݌ݏ݁ݎ

௝ܷ = ௝ݔ of ݀݊ݑ݋ܾݎ݁݌݌ݑ

௝ݔ = ݉݅݊ {ଵ,ଶ , {௝ݑ

௝ݔ = ଵ

௝ݔ ℎ݁ basis (ܺ஻)௥ݐ ݏݎ݁ݐ݊݁

௝ݔ = ଶ ݔ௝ = ௝ݑ

(஻ܺ)௥ = (ܷ஻)௥– (ܺ஻)௥

Yes

௝ݔ = ௝ݑ ௝ݔ – 

Yes

