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Abstract 
Linear Programming problem (LPP)s with upper bounded variables can be solved using the Bounded Simplex method (BSM), without the 
explicit consideration of the upper bounded constraints. The upper bounded constraints are considered implicitly in this method which 
reduced the size of the basis matrix significantly. In this paper, we have developed MATHEMATICA codes for solving such problems. A 
complete algorithm of the program with the help of a numerical example has been provided. Finally a comparison with the built-in code has 
been made for showing the efficiency of the developed code. 
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I. Introduction 

Linear Programming problem (LPP) with bounded 
variables has the form 

݁ݖ݅݉݅ݔܽܯ ,ܼ = ,ܣ) :ܺܥ}  = ܺ (ܫ  ܾ; 

                                        L ≤ ܺ ≤ ܷ}               (1) 

One can solve such problems by regular simplex method 
by considering the lower and upper bound constraints 
explicitly which is not computationally efficient as the 
number of constraints as well as the number of variables 
become very large.  

Dantzig1 developed the method for solving linear 
programming with upper bound restrictions on the 
variables. Wagner2 developed the dual simplex method 
for LPP with bounded variables, which is further studied 
by Maros3, 4. In 1972, Duguay5 et al. studied linear 
programming with relative bounded variables. Y. Xia and 
J. Wang6 used neural network for finding an approximate 
solution of LPP with bounded variables which converges 
globally to the solutions to the LPPs.  

However, most of the real life problems deal with large 
quantities of data and parameters, which can only 
reasonably be tackled by the calculating power of a 
computer and researchers, are actively engaged in 
developing programming codes for solving various 
problems in Operations Research e.g. Saha and Hasan7, 
Hasan.8, Morshed and Hasan9.  

In this paper, we will discuss the algorithm for solving 
LPP with Bounded Variables and develop a 
MATHEMATICA program for solving such problems, 
which is capable of dealing with any number of variables. 
Finally a numerical example obtained by using the 
program is provided and a comparison has been made 
with the built-in MATHEMATICA code. 

II. Bounded Simplex Method10 

In LP models variables may have explicit positive upper and 
lower bounds. An LPP may have in addition to the regular 
constraints, lower or upper bounds on some or all variables i.e. 
constraints of the type   

≥ ܮ           ܺ ≤ ܷ 

For the lower bounds i.e. ܺ ≥  in (1), the following ܮ 
substitution  

             ܺ − ܺ = ≤ ܺ      , ܮ  0                   (2)               

can be used throughout and solve the problem in terms of 
ܺ (whose lower bound now equals zero). The original ܺ is 
determined by back substitution which is legitimate because 
its guarantees that ܺ − ܺ =  will remain nonnegative for all ܮ
ܺ ≥ 0. 

However, for the upper bounding constraint,ܺ ≤ ܷ, the idea 
of direct substitution i.e. 

             ܺ + ܺ =  ܷ,ܺ ≥ 0 

is not correct because back substitution  

ܺ + ܺ = ܷ, does not ensure that ܺ will remain nonnegative. 

For simplicity we define the upper bounded LP model as  

= ܼ,݁ݖ݅݉݅ݔܽܯ ,ܣ) :ܺܥ}  = ܺ (ܫ  ܾ, 

                                         0 ≤ ܺ ≤ ܷ}                                      (3) 

The bounded algorithm uses only the constraints (ܣ, = ܺ (ܫ
ܾ,ܺ ≥ 0 explicitly, while accounting for ܺ ≤ ܷ implicitly 
through modification of the simplex feasibility condition. 

Let ܺ஻  =  ଵܾ be a current basic feasible solution ofିܤ 
,ܣ) = ܺ (ܫ  ܾ,ܺ ≥ 0 and suppose that according to the 
(regular) optimality condition, ௝ܲ  is the entering vector. Then, 
given that all the non-basic variables are zero, the constraint 
equation of the ith basic variable can be written as  

  (ܺ஻)௜  = ଵିܤ௜ – ൫(ଵܾିܤ) 
௝ܲ൯௜ݔ௝    
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When the entering variable ݔ௝  increases above zero level, 
(ܺ஻)௜ will increase or decrease depending on whether 
൫ିܤଵ ௝ܲ൯௜ is negative or positive, respectively. Thus, in 
determining the value of the entering variable ݔ௝  three 
conditions must be satisfied: 

Condition1: The basic variable (ܺ஻)௜ remains non-
negative-that is, (ܺ஻)௜  ≥ 0. 

This is not violated if  

௝ݔ ≤ ଵߠ ≡  

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
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              (4) 

Condition2: The basic variable (ܺ஻)௜  does not exceed its 
upper bound i.e., (ܺ஻)௜  ≤ (ܷ஻)௜ , where ஻ܷ comprise the 
ordered elements of ܷ corresponding to ܺ஻ .   

This is not violated if 

௝ݔ  ≤ ଶߠ    
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(5)
 
 

Condition3: The entering variable ݔ௝  cannot assume a 
value larger than its upper bound- that is ݔ௝ ≤ ௝ݑ  , where 
௝ݑ  is the jth element of ܷ. 

Combining the three restrictions together, ݔ௝  enters the 
solution at the level that satisfies all three conditions and 
the level is defined as  

௝ݔ   =  ݉݅݊ {ଵ,ଶ  ௝}            (6)ݑ,

The change of basis for the next iteration depends on 
whether ݔ௝  enters the solution at level 1, 2 or ݑ௝ . 
Assuming that (ܺ஻)௥ is the leaving variable, then we have 
the following rules: 

Rule1: ݔ௝ = ௝ݑ . The basic vector ܺ஻ remains unchanged 
because ݔ௝ =  ௝stops short of forcing any of the currentݑ
basic variables to reach its lower (=0) or upper bound. 
This means that ݔ௝  will remain nonbasic but at upper 
bound. Following the argument just presented, the new 
iteration is generated by using the substitution ݔ௝  =
௝ݑ  ௝ݔ –  . 

Rule2: ݔ௝ = ଵ ; (ܺ஻)௥ leaves the basic solution (becomes 
non-basic) at level zero. The new iteration is generated in 
the normal simplex manner by using ݔ௝  and (ܺ஻)௥  as the 
entering and the leaving variables, respectively. 

Rule3: ݔ௝ = ଶ;  (ܺ஻)௥ , becomes non-basic at its upper 
bound. The new iterations is generated as in the case 

of,ݔ௝ =  ଵ , with one modification that accounts for the fact 
that (ܺ஻)௥  will be nonbasic at upper bound. Because the 
values of ଵ and ଶ are developed under the assumption that 
all nonbasic variables are at zero level. This is achieved by 
using the substitution (ܺ஻)௥ = (ܷ஻)௥– (ܺ஻)௥, where (ܺ஻)௥ ≥
0. It is immaterial whether the substitution is made before or 
after the new basis is computed. 

 A tie among ଵ, ଶ, and ݑ௝  may be taken arbitrarily. However, 
it is preferable to implement the rule for ݔ௝ = ௝ݑ  because it 
entails less computation. 

The substitution ݔ௝ = ௝ݑ  − ௝ᇱ will change the original ௝ܿ, ௝ܲݔ  
and b to ௝ܿ

ᇱ =  − ௝ܿ , ௝ܲ
ᇱ  =  ௝ܲ  and ܾ-to-ܾ′ = ௝ݑ− ௝ܲ . This means 

that if the revised simplex method is used, all the computation 
(e.g, ିܤଵ,ܺ஻ , and ݖ௝ − ௝ܿ ) should be based on the updated 
values of ܣ,ܥ, and ܾ at each iteration.  

III. MATHEMATICA codes 

For convenience we have presented the developed 
MATHEMATICA codes for solving LPP with bounded 
variables while solving a numerical example. 

LPP1            

 Maximize,     ࢆ =  ૜࢞૚ + ૞࢞૛ + ૛࢞૜  

 Subject to,    ࢞૚ + ૛࢞૛ + ૛࢞૜  ≤  ૚૙ 

                    ૛࢞૚ + ૝࢞૛ + ૜࢞૜  ≤  ૚૞ 

૙ ≤ ૚࢞   ≤  ૝,૙ ≤ ૛࢞ ≤  ૜,૙ ≤ ૜࢞  ≤  ૜ 

Introducing slack variables x4 ≥ 0, x5 ≥ 0 one to each 
constraint, we have  

Maximize, ࢆ = ૜࢞૚ + ૞࢞૛ + ૛࢞૜ + ૙࢞૝ + ૙࢞૞ 

Subject to, 

૚࢞                      + ૛࢞૛ + ૛࢞૜  + ૝࢞ + ૙࢞૞  =  ૚૙ 

                     ૛࢞૚ + ૝࢞૛ + ૜࢞૜ + ૙࢞૝ + ૞࢞  =  ૚૞ 

૙ ≤ ૚࢞  ≤ ૝,૙ ≤ ૛࢞ ≤  ૜,૙ ≤ ૜࢞   ≤  ૜, ૝࢞  ≥  ૙, ૞࢞  ≥  ૙ 

 

The following codes are used to take the necessary inputs. 
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The inputs are made into the following input box:  

 
Enter the desire function Z: 
૜࢞૚ + ૞࢞૛ + ૛࢞૜ ;  
Then, n = 5; 
Enter Row 1: 1, 2, 2, 1, and 0 
Enter Row 2: 2, 4, 3, 0, and 1 
Enter co-eff. of objective function: 3, 5, 2, 0, and 0 
Enter upper bound: 4, 3, 3, 9999, and 9999. 
Enter co-eff. of basis element: 0, 0 
Enter constant: 10, 15  
ଵܺ = 0;ܺଶ = 0;ܺଷ = 0; ܺସ = 0; ܺହ = 0 

The initial simplex table is generated by the following 
codes. 
 
 
 

 
 
 
Here, a, b are the 1st and 2nd row of the initial table, K is the 
coefficient matrix, U[[ i ]] represents the upper bounds of ݔ௜, 
CNT is the initial basic feasible solutions (ܾ௜), B is the basis 
matrix and CJ[[ i ]]  represents the co-efficient of the profit 
vector (ܥ௜). 

 
Table. 1. Initial simplex table 

 
 
 
 

 ௝ܥ      
   
Basis    

3       5         2         0         0  
Solution(ܾ௜) 

x1      x2        x3        x4        x5 

0 
 
0 

x4 
 
x5 

1       2         2        1         0 
 
2                  3        0         1 

10 
 
15 

ఫഥܥ  3       5         2        0         0 Z = 0 

4 
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The following codes are used for identifying the entering 
non-basic variable. 
 

 
Here, l4 = ܥఫഥ = ௝ܥ − ௝ݖ  = relative profit vector, MP = 
ఫഥܥ}ݔܽܯ ఫഥܥ: > ଷߠ ,{0  is the value of ߠଶ  in (5), ߠଵ  is the 
value of ߠଵ  in (4) and ߠ represents the value of ݔ௝  in (6). 

By Rule1 in section 2, we obtained Table 2 as,  
 

Table. 2. 

Basic      ݔଵ        ݔଶ        ݔଷ          Solution 

ܼ      3        –5          2        15 

 ସݔ

             ହݔ         

     1      − 2          2         

              −4           3         

4 

3 

The developed codes for Rule1 are,  

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 is obtained by rule 2 in section 2 as, 
Table. 3. 

Basic      ݔଶ        ݔଷ           ݔହ Solution 

ܼ       1     −5/2     3/2 39/2 

 ସݔ
 
 ଵݔ        

      0       1/2        -1/2 
                
                3/2        1/2 

5/2 
 
3/2 

 

The developed codes for Rule2 are, 

 
For Rule3, developed codes are: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−2  
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These codes are iteratively implemented until the 
optimum table is obtained. 

Table. 4. 

Basic ݔଵ           ݔଷ            ݔହ Solution 
ܼ    1/2       -7/4        -5/4 75/4 
 ସݔ
 ଶݔ

    0          1/2         -1/2 
 -1/2       -3/4         -1/4 

 5/2 
-3/4 

 
Table. 5. Optimum table 

Basic ݔଵ        ݔଷ           ݔହ Solution 
ܼ    -1/2      -7/4        -5/4 83/4 
 ସݔ

 ଶݔ
      0        1/2         -1/2 
    1/2      -3/4        -1/4 

5/2 
5/4 

 
By back substitution the optimal values of ݔଵ,ݔଶ, and ݔଷ 

are ݔଵ  = ଵݑ  − ଵݔ = ଶݔ         ,4   = ଶݑ − ଶݔ  =
4
7

 and 

ଷ  = 0. Finally, the optimal value of ܼ isݔ
4

83
.  

Output 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

Table. 6. Comparison of used timed for solving LPP1 

Machine 
Configurations 

Time Used(Sec.) 

Intel[R] 4 CPU 
2.00GHz,512M
B of RAM 

Built-in 
Code 

Developed Code 

 
0.591  
 

 
0.48  

 
IV. Algorithm of BSM10, 11 

In this section we present the algorithm of our developed code. 

Step 1. Calculate the net evaluation ܥ௝ − ௝ܼ . For a 
maximization problem if ܥ௝ − ௝ܼ ≤ 0 for the non-basic 
variables at their upper bound, optimum basic feasible solution 
is attained. It not, go to step-2, revenue is true for a 
minimization problem. 

Step 2. Select the most positive ܥ௝ − ௝ܼ .   

Step 3. Let ݔ௝  be a non basic variable at zero level which is 
selected to enter the solution. Compute the quantities defined 
in (4) & (5) 

Step 4. ݔ௝ =  ݉݅݊ (ଵ,ଶ,  .(௝ݑ

Sub-step 1:  If  = ଵ . (ܺ஻)௥ leaves the basic solution 
(because non-basic) at level zero and ݔ௝  enter by using the 
regular row operation of the simplex method. 

Sub-step 2:  If  = ଶ . (ܺ஻)௥leaves the basic solution at 
level zero and ݔ௝  enters then (ܺ஻)௥  being non-basic at its upper 
bound must be substituted out by using 

(ܺ஻)௥  =  ( ஻ܷ)௥  – (ܺ஻)௥   

where, 

0 ≤  (ܺ஻)௥   ≤  ( ஻ܷ)௥ 

Sub-step 3: If  = ௝ݑ ௝ݔ ,  is substituted at its upper bound by 
௝ݔ = ௝ݑ −   .௝ᇱ while remaining non-basicݔ
 Flowchart: 
 
The flowchart of the developed code is presented in this 
section. 
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V. Conclusion 

Now-a-days computer programming plays an important 
role for solving various problems in Operations Research 
and is a much needed tool for solving large scale 
problems. In this paper we have discussed the algorithm 
for solving LPP with Bounded Variables, have developed 
a MATHEMATICA program for solving such problems. 
It is evident from table 6 that the developed program can 
reduce significantly the time taken to provide optimum 
solution. Despite the restrictions, this program may be 
used more efficiently for solving LPP with bounded 
variables. 

--------------------- 

1. Dantzig, G. B., 1955, Upper Bounds, Secondary Constraints and 
Triangularity in Linear Programming, Econometrica, 23, No. 2. 

2. Wagner, H. M., 1958, The Dual Simplex Algorithm for Bounded 
Variables, Nav. Res. Log. Quart. 5, 257-261. 

3. Maros I, 2003a, A piecewise linear dual phase-I algorithm for the 
simplex method, Computational Optimization and Applications, 
26, 63-81. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. Maros I, 2003b, A generalized dual phase-2 simplex algorithm, 

European Journal of Operational Research, 149, 1-16. 
5. C. Duguay, M. Todd and H.M. Wagner, 1972/73, Linear programming 

with relative bounded variables, Management Sci., 19, 751-759. 
6. Youshen Xia and Jiasong Wang, 1995, Neural Network for Solving 

Linear Programming Problems with Bounded Variables, IEEE 
transaction on neural networks, 6(2). 

7. Roni Saha and M. Babul Hasan, 2010, “A Computer Technique for 
Sensitivity Analysis in Linear Programs, Dhaka Univ.J.Sci. 58(2), 279-
286. 

8. Hasan, M.B. Hasan, 2008, “Solution Linear Fractional Programming 
Problems through Computer Algebra, The Dhaka University Journal of 
Science, 57(1), 23-28. 

9. Morshed, M.B. Hasan, 2005, Graphical representation of feasible region 
of Linear programming problems using Mathematica, The Dhaka 
University Journal of Science, 53(1), 87-96. 

10. Taha H. A., 1999, Operation Research An Introduction, Prentice-Hall of 
India Pvt. Ltd, New Delhi.  

11. Gupta, P.K. & Hira, D.S., 1998, Problems in Operations Research, S. 
Chand & Company, New Delhi. 

Yes 

Start Input 

Construct initial Table 

௝ܥ − ௝ܼ ≤ 0 

Yes 

No Print 

Stop 
Identifying pivot column  

,(3)&(2) ݉݋ݎܨ ଵߠ ݁ݐ݈ܽݑ݈ܿܽܿ ଶߠ &   ݕ݈݁ݒ݅ݐܿ݁݌ݏ݁ݎ 

௝ܷ = ௝ݔ of ݀݊ݑ݋ܾݎ݁݌݌ݑ    

௝ݔ  =  ݉݅݊ {ଵ,ଶ ,  {௝ݑ

௝ݔ = ଵ 

௝ݔ  ℎ݁ basis (ܺ஻)௥ݐ ݏݎ݁ݐ݊݁  

௝ݔ = ଶ  ݔ௝ =  ௝ݑ

( ஻ܺ)௥ = (ܷ஻)௥– (ܺ஻)௥ 

Yes 

௝ݔ  = ௝ݑ  ௝ݔ –   

Yes 


