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Abstract 
Forward selection (FS) is a step-by-step model-building algorithm for linear regression. The FS algorithm was expressed in terms of 
sample correlations where Pearson’s product-moment correlation was used. The FS yields poor results when the data contain 
contaminations. In this article, we propose the use of Spearman’s rank correlation in FS. The proposed method is called FSr. We 
conduct an extensive simulation study to compare the performance of FSr with FS. The proposed FSr performs better than the FS 
algorithm in the contaminated data. We also demonstrate a real data application of FSr.   
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I. Introduction 

When the number d  of candidate covariates is small, one 
can choose a linear prediction model by computing a 
reasonable criterion (e.g., Mallows CP, AIC, FPE or cross-
validation error) for all possible subsets of the predictors. 
However, as d increases, the computational burden of this 
approach (sometimes referred to as all possible subsets 
regression) increases very quickly. Typically, when we have 
a large collection of possible covariates, we hope to select a 
parsimonious set from the large collection for the efficient 
prediction of a response variable. This is one of the reasons 
why step-by-step model-building algorithms like Forward 
selection (“FS”) or Stepwise (“SW”) (Furnival and Wilson 
1974, Weisberg 1985, Gatu and Kontoghiorghes 2006, Huo 
and Ni 2007, and Das and Kempe 2008) is popular. Khan et 
al. (2007) expressed the FS algorithm in terms of sample 
correlations. They used Pearson’s product-moment 
correlation )(r  in FS in variable selection. Since 
Spearman’s rank correlation )(  is a standard estimate of 
association that is invariant to monotone transformation of 
the data, we propose the use of Spearman’s   in FS. We 
replace the Pearson’s product-moment correlations in FS 
with Spearman’s ,  and call the proposed algorithm FSr.  

It should be emphasized that with our approach we consider 
the problem of “selecting” a list of important predictors, but 
we do not yet “fit” the selected model. The final model 
resulting from the selection procedure usually contains only 
a small number of predictors compared to the initial 
dimension ,d  when d  is large. Note that we always use 
models with intercepts.  

The rest of the article is organized as follows. In section II, 
we review the FS procedure and present FSr. In section III, 
we present the results of a simulation study comparing the 
performance of FSr and FS. Section IV contains a real-data 
application. Section V contains the limitations of FSr, and 
section VI is the conclusion. 

II. Forward selection (FS) and the use of Spearman’s   
in FS 

Let dXXX , , , 21   be n dimensional vectors representing 
the covariates, and Y  the n-dimensional vector representing 
the response. By location and scale transformations we can 
always assume that the variables have been standardized to 
have mean zero and unit length. The FS procedure selects 
the covariate ( ,1X  say) that has the maximum absolute 
correlation yr1  with ,Y  and calculates the residual vector 

.11 XrY y  All other covariates are then ‘adjusted for 1X ’ 
and entered into competition. That is, each jX  is regressed 
on ,1X  and the corresponding residual vector 1.jZ  (which 
is orthogonal to 1X ) is obtained. The correlations of these 

1.jZ with the residual vector ,11 XrY y  called partial 
correlations between jX  and Y  adjusted for ,1X  decide 
the next variable to enter the regression model, and so on. 
We need )1( d  steps to get the ordering of all d 
predictors.  

Let jyr  denote the correlation between jX  and ,Y  and 

XR  the correlation matrix of the covariates 
., , , 21 dXXX   Suppose without loss of generality that 

1X  has the maximum absolute correlation with .Y  Then 
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1X  is the first entered variable in the regression model. The 
predictors in the current regression model are active 
predictors. The remaining candidate predictors are inactive 
predictors. The partial correlations between 1)( jX j  
and Y  adjusted for 1X  are denoted by .1.jyr  The second 
covariate 2X  (say) that enters the regression model is then 
the covariate that has the maximum absolute partial 
correlation 1.jyr  with .Y  

Each inactive covariate jX  should be regressed on 1X  to 

obtain the residual vector 1.jZ  as follows 
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The partial correlation 1.jyr  is given by 
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Note that the factor )( 11 XYSD y  in the denominator of 

(5) is independent of the covariates ), 3, 2,( djX j   

being considered. Hence, when selecting the covariate jX  

that maximizes the partial correlation ,1.jyr  this constant 

factor can be ignored. This reduces computations and 
therefore is more efficient. It thus suffices to calculate 
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where 1.
~

jyr  is proportional to the actual partial correlation. 

Since 1.jZ and 1X  are orthogonal and by using (3) and (4), 

1.
~

yjr can be written as follows 
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Now, suppose without loss of generality that 2X  (or, 
equivalently )1.2Z  is the new active covariate, because it 
maximizes 1.

~
jyr (and thus also the partial correlation ).1.jyr  

All the inactive covariates should now be orthogonalized 
with respect to .1.2Z  

Orthogonalization of 1.jZ  with respect to :1.2Z  Each 

inactive vector 1.jZ  should be regressed on 1.2Z  to obtain 

the residual vector 12.jZ  as follows 
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Thus, 1.
~

jyr  and 1.2j  are expressed in terms of original 

correlations. By mathematical induction, kyjr 1.
~  can be 

expressed as 
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where,  

.)1(1.)1(1.)1(1.1.  kkkjkkjkj ZZZ    

Now, FS algorithm is summarized as follows (Khan et al. 
2007): 
1. To select the first covariate ,1mX  determine 1m  

argmax . jr  
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2. To select the kth covariate ),3, ,2 k  calculate  

)1(....1.
~

kmmjyr , which is proportional to the partial 

correlation between jX  and Y  adjusted for 

)1(1 , kmm XX   and then determine 

|~|maxarg
)1(....1. 


kmmjyk rm . 

The FSr algorithm: The Spearman’s rank correlation   is 
just the Pearson’s product moment correlation r  applied to 
the rank ordered data. Since Spearman’s   is a more 
reliable estimate of association in the presence of 
contaminations in the data, we propose to use this in FS. 
That is, we rank the values of each covariate, and then 
consider these ranks as the original values to apply the FS 
algorithm. 

III. Simulations 

To investigate the behavior of our FSr proposals, we 
consider a simulation setting similar to that used by Frank 
and Friedman (1993). We first create a linear model, 

,21 ikLLLY                                             (i) 

with k  latent variables, where kLLL ,, , 21   and   are 
independent standard normal variables. The value of   is 
chosen so that the single-to-noise ratio is 3. A set of d  
candidate predictors is created as follows. Let 

deee ,, , 21   be independent standard normal variables 
and let 

iii eLX   ,  ,, ,2 ,1 ki   

,  111   kk eLX   

,  212   kk eLX   

,  323   kk eLX   

        

,  1313   kkk eLX   

,  33 kkk eLX   

and 

, ii eX      ., ,23 ,13 dkki   

The constants 5  and 5.0  are chosen so that 
 ) ,(corr 11 kXX   ) ,(corr 21 kXX  

 ) ,(corr 32 kXX .
3
1) ,(corr 3 kk XX   

Note that covariates kXXX , , , 21   are low noise 
perturbations of the latent variables and constitute our target 
covariates. Variables dkk XXX , , , 2313   are 
independent noise covariates and variables 

kkk XXX 321 , , ,   are noise covariates that are 
correlated with the target covariates.    

To allow for a fraction  of outliers, we consider the 
following sampling distributions, listed in increasing order 
of difficulty: 

(1) ),1 ,0(~ N  no contamination 

(2) )1  ,0(/)1 ,0()1 ,0()1(~ uniformNN  , 
symmetric, slash contamination 

 (3) Same as (2), except that contaminated cases come 
along with high leverage X -values  

 (normal random variables with mean 50 and 
variance 1 in our simulation) 

(4) ),1 ,50()1 ,0()1(~ NN   asymmetric, shifted 
normal contamination.  

To compare our FSr with the FS, we generate 1000 
independent samples of size 150n  from the four 
simulation designs just described, with 10k  latent 
variables and 50d  candidate covariates. For each 
simulated data set, we sequence the variables using FSr and 
FS.  

To summarize the simulation results, for each sequence we 
determine the number mt   of target variables included in the 
first m  sequenced variables, with m  ranging between 1 
and 20. Fig. 1 shows the average (over 1000 data sets) of 

mt  for each of the methods and sampling situations. We 
display here the results for the case where .15.   

From Fig. 1(a), we see that the two procedures perform well 
in the uncontaminated case. But the performance of FSr is 
slightly better than the FS. Figs. 1(b)–1(d) show that, as 
expected, the performance of FS deteriorates considerably 
under contamination, but the FSr procedure is much less 
affected by contamination. In the design with high leverage 
but asymmetric, shifted normal contamination, FSr shows 
slightly better performance than FS [Fig. 1(d)].  Generally, 
all the figures show that FSr procedure is much less affected 
than FS in the contaminated data. 
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Fig. 1. Averages of the number of target variables mt  versus m  for each of the methods and sampling situations considered. (a) No 
contamination; (b) slash contamination; (c) slash contamination/high leverage; (d) normal contamination/high leverage. We generated data 
sets of  50d  predictors, 10k  latent variables and 15% of contamination )15.0(  (— FS;  --- FSr). 
 

IV. Example 

In this section, we use a real data set to further illustrate the 
performance of FSr compared to FS. A part of the data set 
considered in Table L of Draper and Smith (1998) is 
considered for this purpose. The response variable is the 
overall grade. We consider the 6 continuous covariates, 
which are numbered from 1 to 6. 

In practice, we do not often know the number of covariates 
that are needed in the model. Thus, a graphical tool to select 
the size of the reduced set would be useful. For this purpose, 
Figure 2 was used. Starting with the first variable in the 
sequence, we increase the number of variables (along the 
sequence) and each time fit a regression model to compute 
the coefficient of multiple determination  2R . We then plot 

these 2R  values against the number of variables in the 
model to obtain a learning curve (see also, Croux et al. 
2003). The size of the reduced set, ,m  can be selected as the 
point at which the learning curve no longer has a 
considerable slope.  

FSr sequenced the covariates in the following order: (3,1, 6, 
5, 4, 2). Figure 2(a) shows the learning curve for this data 
set. This plot suggests a reduced set of size 2, which 
includes covariates (3, 1). For comparison, the following 
different sequence was obtained by the FS: (2, 3, 1, 4, 5, 6). 
Fig. 2(b) shows the learning curve for this data set. The plot 
for FS suggests a reduced set of size 3, which includes 
covariates (2, 3, 1). That is, FS includes an additional 
covariate to get the same performance as FSr.  
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Fig. 2. Learning curve for the data set of Students Questionnaire Averages for 12 instructors 

 
V. Limitations of FSr 

If we sequence all d  covariates, the FS procedure requires 

)( 2ndO  time. However, when applied with a stopping 
criterion, the complexity of FS depends on the number of 
covariates selected in the model. Assuming that the model 
size will not exceed a certain number ,dm   the 
complexity of FS is less than or equal to ).(ndmO  Since 
computational complexity of Spearman’s   is ),log( nnO  
therefore, the maximum complexity of FSr is 

),)log(( dmnnO  which is slightly larger than the FS. 

VI. Conclusion 

FS is a popular and computationally suitable algorithm for 
building linear prediction models. Khan et al. (2007) 
expressed FS in terms of Pearson’s product moment 
correlations. The FS is very sensitive when the data contain 
contaminations. Since Spearman’s rank correlation is a 
more reliable estimate of association in the presence of 
contaminations in the data, we have introduced this in FS. 
That is, we have ranked the values of each covariate, and 
then considered these ranks as the original values to apply 
the FS algorithm, and obtained FSr algorithm.  

Our proposed FSr method has much better performance 
compared to the FS algorithm when the data contain 
contaminations.  That is, FSr is more resistant than FS to 
the contaminated data.  
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