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Abstract 

Classical inference considers sampling variability to be the only source of uncertainty, and does not address the issue of 

bias caused by contamination. Naive robust intervals replace the classical estimates by their robust counterparts without 

considering the possible bias of the robust point estimates. Consequently, the asymptotic coverage proportion of these 

intervals of any nominal level will invariably tend to zero for any proportion of contamination.  

In this study, we attempt to achieve reasonable coverage percentages by constructing globally robust confidence 

intervals that adjust for the bias of the robust point estimates. We improve these globally robust intervals by 

considering the direction of the bias of the robust estimates used. We compare the proposed intervals with the existing 

ones through an extensive simulation study. The proposed methods have reasonable coverage percentage while the 

existing method show very poor coverage as sample size increases.  

Keywords: Coverage percentage (CP), Average length (AL), The pseudo-standard deviation (SPS), The median absolute 

deviation from the sample median (MAD), Student t confidence interval. 

I. Introduction 

Data collected in a broad range of applications frequently 

contain one or more atypical observations called outliers; 

that is, observations that are well separated from the 

majority of the data, or in some way deviate from the 

general pattern of data. These outliers in some sense also 

contaminate the data. 

An outlier may have a serious adverse influence of 

confidence interval or its coverage probability. Classical 

inference considers sampling variability to be the only 

source of uncertainty, and does not address the issue of bias 

caused by contamination. These outliers may have a strong 

influence on the classical (Student t) confidence interval in 

the sense that they pull the width of the confidence interval 

to much in their direction and alter the coverage probability. 

The literature showed that the sample median and inter-

quartile range or the sample median and median absolute 

deviations are indeed more resistant to departures from 

normality and presence of outliers. Some study incorporates 

this observation into constructing some interval estimators 

for the mean of the normal distribution with contaminated 

data. The sample median (MD) is used to estimate the 

parameter µ, whereas the population standard deviation σ is 

estimated by its robust counterparts such as: the Inter-

Quartile Range, the Median Absolute Deviation from the 

sample median (MAD), Gini’s mean difference (G). The 

confidence interval for µ, constructed by these estimators is 

called naive confidence interval. 

Park and Cho (2003)10 proposed robust design to develop 

improvement in industrial production. They showed that the 

sample mean and variance are useful estimates under 

normality without contamination and the sample median and 

MAD or the sample median and the IQR are more useful 

under a contaminated normal. Confidence intervals 

constructed by this method are resistance to outliers only 

when the mean of the clean and contaminated data are same, 

without any restriction of their variances. But, in the 

contaminated data, if (1-α) proportion of data comes from 

N(0,1) and α proportion comes from N(τ,1), the method did 

not work as we shown in our study. Therefore, if outliers are 

far from the clean data the coverage percentage invariably 

tend to zero for any nominal level of contamination. 

Naive robust intervals replace the classical estimates by 

their robust counterparts without considering the possible 

bias of the robust point estimates. Consequently, the 

asymptotic coverage proportion of these intervals of any 

nominal level will invariably tend to zero for any proportion 

of contamination. 

A confidence interval called globally robust if it is stable (in 

the sense of keeping coverage at or above the nominal level) 

and informative (in the sense of keeping a reasonable 

average length) not only at the central method, but also over 

the entire contamination neighborhood. 

Adrover et al. (2004)
2
 defined globally robust confidence 

intervals for the location among other things which takes into 

consideration a large scale of contaminated distributions. They 

considered intervals that are stable in the sense of achieving 

coverage near the nominal level and informative in the sense of 

having short lengths by taking into account the potential bias of 

the estimates but they did not consider the direction of the bias 

of the robust estimates used.  

In this study, we attempt to obtain globally robust intervals 

by considering the direction of bias of the robust estimator 

used. Therefore it is certain that the average length of the 

proposed method is always less than the existing globally 

robust confidence intervals method (results not shown in the 

table). Our result showed that the proposed confidence 

intervals SPS t* and MAD t* satisfy the two conditions of 

globally robust confidence intervals under normal and 

contaminated normal distributions. 
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The objective of this study is to investigate the coverage 

percentages of the proposed confidence intervals with the 

existing ones for different proportion of contamination and 

for different sample sizes.  Such investigations are carried 

by a simulation procedure to determine the coverage 

percentage (CP) and the average length (AL) of each 

confidence interval under the normal assumption with and 

without contaminated data and then select confidence 

interval which is more resistance against the presence of 

outliers or maintain a CP close to the desired nominal 

confidence interval 100(1-α)% and more informative 

(smaller AL). 

II. Some Robust Estimators and Naive Intervals 

We introduce several robust estimators against outliers that 

are used for constructing naive intervals for mean µ where σ 

is unknown. 

The sample median (MD): The sample median for a 

random sample of n observations X1, X2,…, Xn is defined as 

follows: 

 

The sample median is best known for being insensitive to 

outlier. Under the normal distribution, the efficiency of the 

sample median drops off rapidly towards its asymptotic 

value of 0.64 as sample size increases. The sample median 

has a maximum 50% breakdown point
11

. Also, the sample 

median is difficult to handle in mathematical equations, 

does not use all available values and can be misleading in 

distributions with a long tail because it discards so much 

information
4
. Even that the sample median has emerged as a 

good estimator and is generally considered as an alternative 

average to the sample mean especially when outliers are 

present in the data. For a normal distribution with mean µ 

and standard deviation σ, the standard error for the sample 

median is given by . 

The pseudo-standard deviation (Sps) and Sps t confidence 
interval: The pseudo-standard deviation Sps based on the 

IQR can be written as: 

 

Under the normal distribution with mean µ and standard 

deviation σ, the scale estimate is unbiased estimator of σ. It 

has a breakdown point of 25%, but an efficiency of only 

0.37
13

. 

The Sps t confidence interval
1
 is a modification of the 

Student t confidence interval based on the MD, as an 

estimate of µ and the pseudo-standard deviation, Sps as an 

estimate of σ. Therefore the Sps t confidence interval for µ 

as: 

 

The median absolute deviation from the sample median 

(MAD) and MAD t confidence interval: 

For a random sample X1, X2,…, Xn with a sample median 

(MD), the median absolute deviation from the sample 

median is defined as follows: 

 

The MAD is a more robust scale estimator than the sample 

standard deviation, measures the deviation of the data from 

the median. It was proposed first by Hampel (1974)
7
, who 

attributed it to Gauss. It is often used as an initial value for 

the computation of more efficient robust estimators. The 

statistic bnMAD will be an approximately unbiased 

estimator of σ where, bn is an correction factor needed to 

make bnMAD unbiased when X1, X2,…, Xn are normally 

distributed
11

. This correction factor is given for  by: 

n:  2 3 4 5 6  7 8 9 

bn: 1.196   1.495   1.363   1.206   1.200 1.140    1.129    1.107  

and when  then: 

 

Abu-Shawiesh et al., (2009) also consider the MAD t 

confidence interval for µ, is given as: 

 

This confidence interval is based on the sample median, 

MD, as an estimate for µ and the median absolute deviation 

from the sample median, MAD, as an estimate for σ. 

The Downton estimator (σ*) and Downton t confidence 
interval: Downton (1966)6 introduced a family of 

estimators based on ordered sample values. Among this 

family of estimators, Downton proposed σ* as an estimator 

for the standard deviation σ of a normal population. Let X1, 

X2,…, Xn bea random sample from a normal distribution 

with mean µ and standard deviation σ. Let 

denotes the corresponding order 

statistics. The Downton’s estimator (σ*) is given by: 

 

Downton estimator has been also studied by David (1968)
5
, 

where he showed that this estimator is equivalent to Gini’s 
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mean difference which is a robust estimator of the standard 

deviation σ
8
. Therefore, the Downton estimator can be 

written using the Gini mean difference, G, as: 

 

 

Nair (1936)
9
 found that for a normal distribution  

may be used as an unbiased estimator for σ. The Downton 

estimator has been recommended as a robust scale estimator 

by Iglewicz (1983)
14

 but this gives a little extra protection 

against outliers
12

. Barnett et al. (1967)
3
 studied Downton’s 

estimator and obtained its first four moments in a closed 

form.  

The Downton t confidence interval for µ, is given as: 

 

III. The Proposed Confidence Intervals 

In practice outlier can arise at any one side of the centre of 

data. If the outliers (may or may not be drastic) occurred at 

the right side of the centre of data then for the entire 

population, mean median, consequently, the naive 

procedure constructed a confidence interval for µ whose 

centre is greater than the length calculated as the distance of 

maximum bias of median and µ. Conversely, if for the entire 

data mean median, the naive procedure constructed a 

confidence interval for µ whose centre is smaller than the 

length calculated as the distance of maximum bias of 

median and µ.  

The maximum bias of median (MB) can be shown to be 

, where F(.) is a cumulative distribution 

function of a N(0,1) variate. 

Assumption 

In this process, it is assumed that our data contains 

maximum 25% outliers. Therefore the maximum bias of 

median used for this study is  

 

Therefore the confidence interval suggested in this study is 

given as: 

 

 

It has a breakdown point of 25%. 

Where: I(A) is an indicator function such that 

 

The Sps t* confidence interval 

 

 

 

The MAD t* confidence interval 

 

 

 

IV. Results 

In this study, we are interested in comparing and studying 

the behavior of the proposed confidence intervals with the 

others under the normal distribution at different proportion 

of contamination and how the presence of outliers affects 

them by using a simulation study. The programs by the 

programming language R for window version 2.9.2 are used 

to run the simulation and to make the necessary tables. We 

generated 1,000 normal samples of different sizes, contains 

various proportion of contamination by considering the 

following two situations: 

• Uncontaminated distribution (Clean data) where all 

samples are generated from the standard normal 

distribution i.e., N(0,1) 

• Contaminated distribution where outliers are 

introduced in the data in four different 

combinations as follows: 

� C05N30: A situation where 95% observation come 

from N(0,1) and 5% from N(30,1). 

� C10N30: A situation where 90% observation come 

from N(0,1) and 10% from N(30,1). 

� C15N30: A situation where 85% observation come 

from N(0,1) and 15% from N(30,1). 

� C20N30: A situation where 80% observation come 

from N(0,1) and 20% from N(30,1). 

The simulated results for coverage percentage (CP) and 

average length (AL) of the confidence intervals different 

levels of contamination are given in the Table 1-5. 
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Table. 1. Coverage percentage and average length for the standard normal distribution 

 
        95% confidence intervals for the existing methods           95% confidence intervals for the proposed methods 

     ………………………………………………………...          ……………………………………………………... 

       SPS t     MAD t   Downton t       SPS t*         MAD t* 

 ……………… ……………… ……………….  ………………    ……………… 

   n CP AL CP AL CP AL  CP AL       CP       AL 

 
 20 93.8 1.10 94.2 1.17 95.5 1.17  95.2 1.53 95.3 1.60 

 50 94.8 0.69 95.1 0.71 96.1 0.71  95.2 1.12 95.4 1.14 

100 94.1 0.49 94.1 0.50 95.3 0.50  94.5 0.92 94.4 0.93 

200 95.8 0.35 95.4 0.35 95.6 0.35  95.9 0.78 95.5 0.78 

500 94.5 0.22 94.7 0.22 95.0 0.22  94.9 0.65 95.2 0.65 

 
 

Table. 2. Coverage percentage and average length for the 5% contaminated normal distribution 

 
           95% confidence intervals for the existing methods        95% confidence intervals for the proposed methods 

         ………………………………………………………...     ……………………………………………………... 

       SPS t     MAD t    Downton t      SPS t*         MAD t* 

 ……………… ……………… ……………….  ……………… ……………… 

   n CP AL CP AL CP AL  CP AL CP AL 

  20 94.0 1.17 95.4 1.26 100 4.17  98.1 1.60 98.5 1.69 

 50 93.5 0.72 94.7 0.75 100 2.14  98.6 1.15 98.8 1.18 

100 92.1 0.52 92.7 0.53 100 1.72  99.8 0.95 99.8 0.96 

200 91.4 0.37 91.4 0.37 100 1.20  100 0.80 100 0.80 

500 81.1 0.23 81.3 0.23 100 0.76  100 0.66 100 0.66 

  

Table. 3. Coverage percentage and average length for the 10% contaminated normal distribution 

 
           95% confidence intervals for the existing methods    95% confidence intervals for the proposed methods 

         ……………………………………………………    ……………………………………………………... 

       SPS t     MAD t    Downtont      SPS t*         MAD t* 

 ……………… ……………… ……………….  ……………… ……………… 

   n CP AL CP AL CP AL  CP AL CP AL 

 
 20 92.1 1.26 93.9 1.35 100 6.86  98.8 1.69 99.0 1.78 

 50 89.2 0.79 91.0 0.81 100 4.06  99.8 1.22 99.8 1.24 

100 85.1 0.57 86.3 0.57 100 2.81  100 1.00 100 1.00 

200 73.1 0.40 73.6 0.40 100 1.97  100 0.88 100 0.83 

500 40.4 0.25 40.2 0.25 100 1.24  100 0.68 100 0.68 

 
Table. 4. Coverage percentage and average length for the 15% contaminated normal distribution 

 
           95% confidence intervals for the existing methods           95% confidence intervals for the proposed methods 

         ………………………………………………………...         ……………………………………....……………... 

       SPS t     MAD t    Downton t      SPS t*         MAD t* 

 ……………… ……………… ……………….  ……………… ……………… 

   n CP AL CP AL CP AL  CP AL CP AL 

 
 20 91.1 1.39 94.3 1.48 100 9.23  99.3 1.82 99.5 1.91 

 50 83.6 0.90 84.7 0.91 100 5.71  99.8 1.33 99.8 1.34 

100 74.8 0.63 74.2 0.62 100 3.77  99.9 1.06 99.9 1.05 

200 50.3 0.45 49.5 0.44 100 2.62  100 0.88 100 0.87 

500 8.6 0.28 7.7 0.27 100 1.66  100 0.71 100 0.70 
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Table. 5. Coverage percentage and average length for the 20% contaminated normal distribution 

 
         95% confidence intervals for the existing methods          95% confidence intervals for the proposed methods 

     ………………………………………………………...                 ……………………………………………………... 

       SPS t     MAD t   Downton t      SPS t*         MAD t* 

 ……………… ………………  ……………….  ……………… ……………… 

   n CP AL CP AL CP AL  CP AL CP AL 

 
 20 91.8 1.61 94.6 1.65 100 11.29  99.7 2.04 99.9 2.08 

 50 81.2 1.03 80.5 0.99 100 6.66  99.8 1.46 99.9 1.42 

100 64.3 0.74 58.6 0.69 100 4.61  99.9 1.16 99.9 1.12 

200 28.6 0.52 22.2 0.49 100 3.22  100 0.95 100 0.92 

500 1.3 0.33 0.7 0.30 100 2.03  100 0.76 100 0.73 

 

V. Discussion 

The performance of the proposed methods for the normal 

distribution when there are no outliers is examined first. 

Also, the estimated coverage percentage and the average 

length for all confidence interval methods are displayed in 

Table 1. The results in table 1 suggest that the proposed 

methods have coverage percentage closed to the nominal 

confidence coefficient when sampling from a normal 

distribution which is as expected. However, it is less 

informative than the Student t followed by other methods. 

Table 2, 3, 4 and 5 give the estimated coverage percentages 

and the average lengths for all confidence interval methods 

under a normal distribution with 5, 10, 15 and 20% 

contamination respectively. The results in tables 2-5 

demonstrated that, although the Student t followed by other 

method gives smaller average lengths, their asymptotic 

coverage percentages are close to zero except the Downton 

t. From these tables it is clear that our proposed methods 

have the coverage percentage at or above the nominal level, 

which is also satisfied by Downton t method. But the 

Downton method has the AL much more than our proposed 

methods. Consequently, the Downton t method is less 

informative than our methods. Inspection of these tables 

also suggest that MAD t* followed by SPS t* confidence 

intervals are more resistant to drastic outliers. It is evident 

also, that for the all sample sizes and contaminated normal 

distribution, MAD t* and SPS t* intervals are resistant to 

contaminated data and had good coverage percentages with 

average interval lengths, but MAD t* is better for large 

sample sizes ( ). At any rate of contamination, we 

suggest that the MAD t* followed by SPS t* confidence 

intervals should be used when the population is normal with 

outliers. The MAD t* followed by SPS t* are more resistant 

to outliers (may or may not be drastic) than other method. 
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