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ABSTRACT: Soil acts as a large reservoir of Organic Carbon (OC) but the amount varies significantly with space and 
time. Thus, soil analysis and interpretation of spatial variability of Soil Organic Carbon (SOC) are keys to site-specific 
management. The study aimed to characterize the spatial variability of SOC in an active floodplain. Soil samples were 
collected in three major landform categories (natural levee, back slope, marsh land) from the lower Brahmaputra River 
floodplain and then analyzed for SOC measurement in the laboratory. The measured data were then analyzed for spatial 
variability interpretation using descriptive statistics and geo-statistical analysis. The study found that the amount of 
SOC varies with landform variation, soil texture and distance between sample points. The topsoil of marsh land has the 
highest (1.41%), back slope holds a moderate amount (1.15%) and the natural levee has the lowest (0.75%) amount of 
SOC. The amount of clay particles at the top layer was found to be positively correlated to the SOC whereas in the 
same layer of sand and silt showed a negative correlation. The geo-statistical analysis illustrated the nugget effect. Low 
(<1%) SOC is commonly found in the agricultural soils of Bangladesh which was corroborated in this study; moderate 
(1.1%) SOC was found in the floodplain. This study aimed to provide an insight into spatial variability to assist in 
predicting SOC in the active floodplain; consequently, the interpretation of spatial variability analysis can be 
implemented for site specific management strategies and to calculate carbon stock in floodplain soils. 

Keywords: Soil Organic Carbon (SOC), Spatial variability, Geo-statistical analysis, Interpolated map, Site specific 
management 

INTRODUCTION 

Soil is a dynamic natural body which develops 
because of pedogenic natural processes during and 
after the weathering of rocks (Breemen and Buurman, 
2002; Jenny, 1994; Nortcliff et al., 2011). It consists 
of mineral and organic constituents, possessing 
definite chemical, physical, mineralogical and 
biological properties which vary according to depth 
over the surface of the earth, and it provides a medium 
for plant growth (Biswas and Mukherjee, 1994; 
Mzuku et al., 2005). Soils are characterized by a high 
degree of spatial variability due to the combined effect 
of physical, chemical, and biological processes that 
operate with different intensities and at different 
scales (Goovaerts, 1998; Pennock and Kessel, 1997; 
Sağlam et al., 2011; Tan et al., 2003; Trangmar et al., 

1987). Soils, in particular, are a large organic carbon 
(OC) reservoir with significant spatial variability 
(Batjes, 1996; Lal, 2004). Organic carbon in soils and 
sediments is widely distributed over the earth’s 

surface occurring in almost all terrestrial and aquatic 

environments (Jobbágy and Jackson, 2000; Schnitzer 
and Khan, 1978). The floodplain surface and its 
shallow subsurface host a large reservoir for OC, 
including surface organic layers and soil organic 
carbon (Lininger et al., 20118; Perry et al., 2008).  

Carbon (C) moves from the atmosphere to plants 
and soils and then, back in a grand cycle (Donovan, 
2013) and in the context of the carbon cycle, 
floodplains can act as a major component of the 
biospheric carbon pool (Aufdenkampe et al., 1996; 
Battin et al., 1994). Like other soil properties, SOC 
levels exhibit variability because of dynamic 
interactions between parent material, climate, and 
geological history, on a regional and continental scale 
(Wang et al., 2001). Sanchez et al. (1997) stated that 
the nature and quantity of soil organic carbon affect 
many of the physical, chemical, and biological 
properties of soils. Soil pH, buffering capacity, 
nutrient supplies, and the activity of soil biota are all 
intimately related to soil organic carbon. Due to the 
importance of these relationships, soil organic carbon 
is considered a critical component when assessing soil 
quality (Karlen et al. 2008). 

Studies on SOC showed the highest levels of C at 
the surface horizons, decreasing quickly with 
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increasing soil depths and then sometimes changing 
slightly after a certain depth (Wang et al. 2010). The 
relative distributions of SOC with soil depth have 
been reported globally and are known to have a strong 
association with topography, soil types, vegetation 
types, soil properties, landuse and climate (Xiao-Wei 
et al. 2012; Yao et al., 2010; Zhang et al. 2013). Slope 
and surface characteristics are major topographical 
parameters that control the movement of water, 
sediments, and nutrients, and hence, modify soil 
formation, soil depth, moisture status, biomass 
production, and C inputs (Egli et al. 2009). Yao et al. 
(2010) illustrated that clay provides both chemical and 
physical mechanisms to protect SOC from microbial 
decomposition. 

Low SOC is a general problem in most 
agricultural soils of Bangladesh. More specifically, it 
was reported that almost 50% of the land area in 
Bangladesh has <1% SOC (Karim and Iqbal, 2001) 
which was later supported by (Rijpma and Jahiruddin, 
2004; Uddin and Rahman, 2020) who also noted that 
about 60% of arable land has 0.87% OC. A similar 
trend was observed in the case of organic matter (OM) 
which was reported to vary between 10 g/kg and 17 
g/kg (Hossain, 2001) and for basin soil, organic 
carbon was 0.095 g/kg (Uddin et al., 2020). The 
depletion of soil organic matter is reflected in low 
productivity which, unless addressed as a priority, 
may lead to a serious threat to the future sustainability 
of agriculture in Bangladesh. Huq and Shoaib (2013) 
and later Uddin et al. (2019) reported that several 
factors are responsible for low OM availability and 
includes intensive cropping, rapid decomposition of 
organic matter, deforestation, soil erosion, removal of 
crop residues, inundation etc. A better understanding 
of spatial variability of SOC is also important for 
refining agricultural management practices and for 
improving sustainable landuse. It provides a valuable 
base against which subsequent and future 
measurements can be evaluated (Liu et al., 2006). 

Place-to-place variations within soil units 
influence floodplains study and use of soil, but this is 
seldom formally acknowledged in soil maps and 
descriptions (Campbell, 1979). This spatial 
information based on descriptive statistics and geo-
statistics allow accurate description of the floodplain 
soil variation (Oliver and Webster, 2015; Webster and 
Oliver, 1990). Kriging is commonly used as a method 
in spatial interpolation, after estimating semi-

variogram parameters of soil properties using 
geostatistical tools (Goovaerts, 1998; Zhao et al. 2015; 
Zhao et al. 2009). Presence of accurate information 
about the variability of soil properties is important to 
apply this information in environmental predictions, 
appropriate farming practices, and natural resource 
management (Minasny et al., 2013; Mousavi et al. 
2017). Given this background in the context of a 
floodplain, knowledge of spatial variation of soil 
properties is important in precision farming and 
environmental modelling (Breemen and Buurman, 
2002).  

Studies at a national scale provide generalized 
insights of SOC but at a local scale, uncertainty 
remains about the OC concentration in floodplain 
soils.  It remains to be determined if it follows a 
predictable longitudinal variation or is controlled by 
local factors (Scott and Wohl, 2018). A floodplain has 
a landmass of different height, and the altitude 
controls the inundation level, vegetation type, 
agricultural practice, biogenic activity, and so on; all 
these factors are linked to the availability of SOC. 
Thus, it is expected that in the study area the amount/ 
percentage of SOC availability should reflect the 
heterogeneity within the floodplain with varying 
landform/ elevation, soil layer, soil texture and 
distance from the bank line. Considering these 
floodplain heterogeneities, this study seeks to explore 
the availability of SOC across the floodplain and to 
examine if there is any pattern to these occurrences 
which could be used for further predictions.  

MATERIALS AND METHODS 

Study Site 

This study was carried out on an active floodplain 
(regularly flooded on a periodic basis); a portion of the 
lower Brahmaputra River system located in 
Bangladesh. The lower Brahmaputra River is braided in 
nature and the study floodplain belongs to the young 
Brahmaputra. According to Banglapedia, (2020), this 
young Brahmaputra floodplain comprises 5924 km2; 
the soil is of Gheor series (SRDI, 2003) and types are 
generally non-calcareous alluvium and grey in colour. 
They are mostly raw silty alluvium, which restricts the 
penetration of vegetation roots because of poor air 
causes aeration deficit. It has low fertility and poor 
moisture holding capacity (Huq and Shoaib, 2013). 
Figure 1 shows the location of the study area, which 
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covers 39.21 km2 area of the study floodplain. The 
study site is characterized by a tropical monsoon 
climate and average annual temperature and rainfall are 
25.7o C and 186 cm, respectively (SRDI, 2003). The 
study identifies three major landforms (Figure 1) are: a) 
Natural levee (8 km2), b) Back slope (27.23 km2), and 
c) Marsh land (3.97 km2.  

 
Figure 1: Study Site and Soil Sampling Location of the 
Lower Brahmaputra River Floodplain Along with Major 
Landform Types 

Soil Sampling and Lab Analysis 

Soil samples were collected during mid-May to 
early June 2019 from the study site. A systematic 
unaligned random sampling method was used for soil 
sample collection and the collected soil was mostly 
from agricultural land under different landform types 
(Figure 1). Considering the time, resources, and 
minimal requirements of samples for spatial 
prediction, it was (Figure 1) decided to collect soil 
samples from 50 sample points under three major 
landform types. For even distribution of sample 
numbers under each landform type, the samples were 
divided proportionately to the landform area. So, a 
total of 50 samples were collected from topsoil layer 
(depth 0-10 cm). A soil auger was used to collect the 
sample from the site and the position (latitude and 
longitude) values of each sampling point were 
recorded using a Global Positioning System (GPS, 
accuracy 3 m). The collected samples were then 
prepared for laboratory analysis and the amount of 

SOC was measured using the Walkley and Blacks’ 

(1934) wet oxidation method. The textural properties 
of soil was measured using the Hydrometer method. 

Data Analysis Method 

To study the relationship between SOC and the 
factors affecting it and to quantify the spatial 
distribution patterns of SOC, statistics and geo-
statistics have been widely applied. The data analysis 
conducted in two stages:  

Descriptive Statistics 

Distribution was analyzed by descriptive statistics 
(minimum, maximum, mean, median, standard 
deviation/ SD), and the coefficient of variation/ CV. 
In statistical analysis CV <15% signifies low 
variability, CV <35% signifies moderate variability, 
CV >35% signifies high variability (Daniel et al., 
2017). The relation between SOC and soil texture was 
explored using correlation analysis and then the 
significance of the relation was tested by Regression 
analysis. All the descriptive statistical analyses were 
conducted using Microsoft Excel 2013 software. 

Geostatistical Analysis 

Geostatistical parameters were calculated for each 
variable as a result of the corresponding semi-
variogram. Geostatistical analysis, including fitting the 
semi-variogram model and the ordinary kriging 
procedure, was carried out using ArcGIS (v.10.6) to 
assess the degree of spatial variability of each soil 
property used in this study. Based on the theory of a 
“regionalized variable” (Matheron, 1963), geo-statistics 
provides advanced tools to quantify the spatial features 
of soil parameters and to carry out spatial interpolation. 
Spatial structure referring to the spatial autocorrelation 
of field data was investigated through variogram 
analysis; the experimental semi-variance �̂�(ℎ) is the 

average of the squared variance between the pairs of 
field observations and is calculated using: 

�̂�(ℎ)= 
𝟏

𝟐𝑵(𝒉)
∑ [ 𝒛 (𝒔𝒊  + 𝒉) − 𝒛(𝒔𝒊

𝑵(𝒉)
𝒊=𝟏 ) ]  (1)  

Where, �̂�(ℎ) is the predictor of experimental semi-
variance at distance lag ℎ, 𝑁(ℎ) is the number of data 

pairs separated by distance ℎ, 𝑧(𝒔𝒊) and 𝑧(𝒔𝒊  + 𝒉) are 
actual measurements of two locations separated by ℎ 

(Cressie, 1990). 

A variogram is usually characterized by three 
measures- nugget, sill, and range. A variogram 
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function is fitted to the experimental variogram to 
obtain geo-statistics, including nugget variance (C0), 
structured variance (C1), sill (C0 + C1), and range 
(A0) (Huang et al., 2015).  Kriging depends on first 
computing an accurate variogram (Figure 4), which 
measures the nature of spatial dependence for the soil 
property (Burgess and Webster, 2019). 

𝐷𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒 =  
𝐶0

𝐶0+𝐶1
 × 100% (2) 

Where, nugget variance (C0), structured variance 
(C1), sill (C0 + C1), and range (A0).  

To explore the degree of spatial dependency, the 
ratio of the nugget to the sill (i.e., the nugget ratio) was 
calculated. According to (Huang et al., 2015) a nugget 
ratio <25% indicates a strong spatial dependency; a 
nugget ratio >75% indicates no spatial dependency; 
otherwise, the spatial dependency is moderate.  

RESULTS 

Descriptive Statistics of SOC and Soil Texture 

Table 1 shows the descriptive statistical analysis 
value of SOC and soil textural properties (i.e. Sand, 
Silt, and Clay) of the Lower Brahmaputra River 
Floodplain. The minimum and maximum values of 
topsoil SOC were 0.19% and 1.95%, respectively. CV 
values of all selected properties, except silt (16.98%), 
showed strong variability, ranging from 40.7% for 
clay particle up to 150.92% for sand. The study found 
that the average amount of SOC for the topsoil layer is 
1.1%.  
Table 1. Descriptive Statistical Summary (Minimum, 
Maximum, Median, Mean, Standard Deviation) and 
Coefficient of Variation of SOC and Textural Properties 
across the Lower Brahmaputra Active Floodplain 

Soil 
Properties % 

Min Max Median Mean SD CV% 

SOC 0.19 1.95 1.12 1.1 0.46 41.58 
Sand 0.01 44.54 2.42 6.41 9.68 150.92 
Silt 38.49 85.41 64.61 63.1 10.71 16.98 
Clay 7.12 58.98 30.37 30.52 12.42 40.70 

Variability of SOC and Textural Properties in 
Different Landforms  

The spatial variability of the mean amount of SOC 
and soil textural properties within the identified 
landform types across the selected floodplain 
topography is presented in Table 2. The study found 
that the amount of SOC and clay increase with 

decreasing land elevation while the sand and silt 
particles showed the opposite trend; the relationship is 
illustrated in Figure 2. For example, SOC of topsoil 
increased with decreasing elevation as it resulted in 
the lowest (0.75%) mean amount in the natural levee, 
followed by medium (1.15%) in the back slope and 
the highest (1.41%) in the marsh-land (note that the 
natural levee has the highest elevation, the back slope 
is moderately elevated and the marsh-land lies at the 
lowest level). The reverse scenario is seen for sand 
particles as the mean amount decreased (8.47%, 6.2%, 
and 4.37%) with waning elevation (natural levee, back 
slope, marsh land).  
Table 2. Variability of Mean Values of Selected Soil 
Properties within the Identified Landform Types (Natural 
Levee /NL, Back Slope/BS and Marsh land/BS) 

Landform 
Types 

Number of 
samples 

SOC% Sand% Silt% Clay% 

NL 12 0.75 8.47 67.00 24.51 
BS 29 1.15 6.2 63.17 30.64 
ML 9 1.41 4.37 57.46 38.17 

 
Figure 2: Land Elevation Controls the Variation of SOC in 
Floodplain. High Elevated Area Possess Low SOC due to 
Low Clay and High Sand While Low Lying Area Does the 
Opposite 

Spatial Relation between SOC and Soil Textural 
Properties 

Following is the correlation (r) matrix table (Table 
3) of SOC, Pearson correlation coefficient. The topsoil 
and subsoil SOC showed high strong positive 
correlation (r = 0.69). Among textural properties, only 
the clay particle resulted in a positive correlation with 
both topsoil (r = 0.63) and subsoil (r = 0.28) SOC 
while all other (i.e. sand, silt) properties are negatively 
correlated with each other. There is a strong negative 
correlation between the silt and clay particles (r = -
0.66) and moderate for topsoil SOC and clay (r = -
0.47) and Clay and sand particles (r = -0.55). There is 
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a weak to extremely weak/ no relation between topsoil 
textural properties and subsoil SOC. 

Table 3. The Correlation Matrix Calculated through 
Pearson’s Correlation r of Selected Soil Properties 

Soil Properties SOC % Sand % Silt % Clay % 
SOC%  1    
Sand%    -0.47** 1   
Silt%   -0.31* -0.26 1  
Clay%   0.63**   -0.55** -0.66** 1 
* presenting p <0.05 and ** presents p <0.01. The value of p is 
obtained by regression analysis. 

Spatial Variability of SOC 

Maps derived from the geo-statistical kriging 
method are presented in Figure 4 showing predicted 
spatial variation of topsoil SOC. A spherical model 
was used to calculate the variogram for SOC, as it 
fitted for both topsoil SOC. Figure 3 presents the 
fitted variogram graph of SOC.  

 
Fig. 3. Fitted Variogram Graph of SOC (0-10 cm) in Which 
the x- axis is Lag Distance (h) and on the y-Axis is Semi-
Variance �̂�.  

 

Figure 4: Krigged Maps of SOC (0-10 cm) of Lower 
Brahmaputra Active Floodplain. Predicted Map Presents 
More Diversity and Area with High to Moderate SOC.  

Variogram of topsoil SOC show the nugget effect 
(0.13) and moderate spatial dependence (59.09) where 
spatial dependence is calculated from nugget (0.13) 
and sill (0.09). The lag distance for measured 
variogram was 670.46 m. The Root Mean Square 
Error (RMSE) was found low (0.43) from predictions 
variogram. The results indicate that topsoil SOC 
covered a high range 4224.09 m. The prediction map 
reflected the effect of landform variation as the high 
predicted SOC cluster around low elevated area and 
low SOC near high elevated land area. 

DISCUSSION 

The primary finding of the study is that there exists 
heterogeneity in the distribution of SOC throughout the 
floodplain with varying conditions, thus, the hypothesis 
is accepted. The results showed that there exist strong 
variability (CV) for most of the properties, considering 
topographic variations or variations in soil depth or 
among the selected soil properties. The average amount 
of SOC in the study floodplain found moderate (1.1%) 
which is a common phenomenon for the soils of 
Bangladesh as described in the introduction. Results 
showed that there is an inverse relationship between 
land level and SOC, with decreasing land level (Natural 
levee to marsh land) the amount of SOC increases.  
Shelukindo et al. (2014) determined that topography 
modifies overall climatic conditions and sediment 
deposition which affect the decomposition, 
accumulation, and formation of SOC in the floodplain.  

The textural properties were included in the study 
as they are a direct controlling factor of SOC 
concentration in a floodplain. In this study area, it was 
found that soils fall under 6 different textural classes 
and the amount of sand, silt, clay varies at the intense 
range (very low to very high). Huq and Shoaib (2013) 
described tidal and estuarine floodplains containing 
low sand (<5%) compared to meandering floodplains, 
while this study had a braided river floodplain 
containing very low (<1%) amounts of sand, 
especially in agricultural soils. The results also 
presented a strong positive correlation (r = 0.63) 
between SOC and clay, which is statistically 
significant (p <.05); the reason behind this might be 
due to the formation of clay-organic complex.  
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Spatial dependency that predicted the spatial 
variation of SOC was the main focus of the study. The 
geo-statistical analysis resulted in a long-range 
dependency for SOC (variogram range A0 > 400 m) 
which reflects the topographic variation as confirmed 
earlier by Liu et al. (2013). The prediction map of 
topsoil SOC (Figure 4) indicates a high concentration 
of SOC on the southwestern and midwestern part of 
the floodplain which is acceptable because the area is 
mostly low lying facilitating the accumulation of 
SOC. The study considered the local variation of land 
level/altitude which was considered during soil 
sampling as it is the most important factor influencing 
SOC concentration. The relation between SOC and 
land level is reflected in the predicted maps. 

CONCLUSIONS 

The active floodplain has a distinct environmental 
setting and provides a suitable condition for OC 
generation. In the study area, the available volume of 
SOC is slightly higher (1.1%) than the national 
average (<1%) but the difference is not an outlier. The 
available amount of SOC in the floodplain is moderate 
and the spatial dependence is also moderate. Local 
factors, land level variations and textural variations 
are appeared to be very closely related to SOC 
concentration in the studied floodplain soils. The 
study tried to provide a comprehensive 
characterization of the distribution of SOC and its 
spatial prediction in an active floodplain at the local 
scale. This prediction approach can be used in farm-
level/site-specific agricultural practices such as a 
better understanding of the concentration of SOC, 
agricultural zoning, or grading the use of fertilizer or 
calculation of the carbon stocks.  

In this study, it was not possible to incorporate the 
relationship between subsoil SOC and textural 
properties. Furthermore, with other influential factors 
(e.g., organisms, time, vegetation type, soil chemical 
properties etc.) affecting SOC concentrations were not 
determined. Thus, there remains scope for further 
study on floodplain SOC and its distribution in space. 
Besides, there are limited studies on the spatial 
variability of SOC within and among different 
floodplain soils of Bangladesh at a local scale.  This 
research makes an important contribution to studies 
related to the prediction of floodplain soils and 
agricultural management strategies.  
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