
Evolution of Random Forest from Decision Tree and Bagging: 
A Bias-Variance Perspective

Muhammad Ibrahim
Department of Computer Science and Engineering, University of Dhaka, Dhaka-1000, Bangladesh

Email: ibrahim313@du.ac.bd

Received on 24 November 2021, Accepted for publication on 07 June 2022

ABSTRACT

The ensemble methods are one of the most heavily used techniques in machine learning.  The random forest arguably 
spearheads this army of learners. Being sprung from the decision tree in the late 90s, the benefits of a random forest 
have rightfully attracted practitioners to widely and successfully apply this powerful yet simple-to-understand 
technique to numerous applications. In this study we explain the evolution of a random forest from a decision tree 
in the context of bias and variance of learning theory. While doing so, we focus on the interplay between the 
correlation and generalization error of the random forest. This analysis is expected to enrich the literature of random 
forests by providing further insight into its working mechanism. These insights will assist the practitioners of the random 
forest implement this algorithm more wisely and in an informed way.

Keywords: Supervised machine learning, Ensemble learning algorithms, Decision tree, Bagging, Random forests, Bias-variance tradeoff, 
Correlation.

1. Introduction

The late 90s witnessed a plethora of research works on 
inventing novel techniques of supervised machine learning. 
Among them, boosting [11], [12], support vector machines 
[6], bagging [2] and random forests [18], [4] gained much 
momentum. As there is no perfect solution to the generic 
supervised machine learning problem [30], researchers vied 
each other to develop approximate algorithms to tackle the 
learning problem. Each of these algorithms has its strengths 
and weaknesses, thereby offering a rich set of available 
options for the practitioners.

Ensemble methods [25], soon after their first 
postures in the early 90s [32], [3], rose to a wider 
applicability, thanks to their conceptual simplicity coupled 
with high effectiveness and to the abundance of computer 
processing power. These algorithms are relatively simpler 
to understand because the power of grouping together to 
enhance the individual capabilities has always been well-
known to human civilization. These techniques are effective 
in prediction because they can leverage more than a single 
thought while predicting future outcomes. 

In the sequel of ensemble methods, the term Random Forest 
(RF) was coined by the venerable statistician Leo Breiman 
in early 2000s [4]. It is called “random” because it randomly 
chooses features to split the available data at each node of a 
decision tree, and it is a “forest” because it deploys a collage 
of decision trees.

While a good number of works compare and 
contrast the performance of random forest with its 
predecessors such as bagging and decision trees from an 
empirical perspective (i.e., using experimental results), we 
have not found any work that explains its working principles 
by demonstrating the relationships among bias, variance, 

correlation, and error rate. This study aims to fill this gap in 
the literature.

The rest of this study is structured as follows: Section II 
introduces the random forest and its benefits. Section III lays 
the ground of this study. Section IV describes the contribution, 
i.e., the interplay among bias, variance, error rate and 
correlation of a random forest from both mathematical and 
intuitive perspectives. Section V highlights the implications 
of this study. Section VI briefly discusses some relevant 
existing works, which is followed by the conclusion in 
Section VII.

2. Random Forest and Its Benefits

The story of the random forest begins with a decision 
tree [5]. Being a very popular non-parametric 
method in the 80s and 90s among the machine learning 
researchers, a decision tree recursively splits the training 
data into sub-groups based on the “maximum perceived 
benefit”. For classification task, this maximum benefit is 
calculated using functions like information gain or gini 
co-efficient. For regression task, this is calculated by mean 
squared error. Since a decision tree allows the hypothesis to 
move almost freely in the hypothesis space and only guided 
by the available training data, it incurs a very low bias. It, 
however, for the same reason, incurs a high variance due to 
its capability of capturing the unnecessary nuances of the 
training data. Therefore, a small perturbation in the training 
data may yield a drastically different tree thereby making its 
prediction highly unstable in many occasions.

To reduce the high variance of a single decision 
tree, a random forest [4] employs many decision 
trees learnt from different patches of the (same) 
training dataset. Moreover, the decision trees are 
modified to increase the variability among the trees in the 
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following way: instead of considering all the attributes for 
a split, it selects a random subset of them, thereby offering 
a chance for the “marginalized” attributes/features to speak 
out. 

A random forest may be considered to be a framework 
rather than an algorithm because tweaking its 
various components gives birth to new instances of this 
generic technique [7]. A wide range of applications [10] have 
been reaping benefit of this simple yet powerful learning 
technique. Ibrahim [20] nicely summarizes the benefits of 
random forests; the major ones include being extremely 
parallelizable, able to work with both discrete and continuous 
feature values including missing ones, robust to outliers, in 
need of almost no parameter tuning, and not being sensitive 
to feature scaling.

3. Motivation

As mentioned earlier, the random forest’s main 
working strategy is to reduce the high variance 
of individual decision trees while, at the same 
time, retaining their low bias. Towards this end,  
two important ingredients to investigate are (1) the 
sample (aka training data) size and (2) the number 
of attributes to consider for each split of a tree. In 
bagging [2] which is considered to be a forerunner 
of random forest, the first of these two ingredients is utilized 
to reduce variance. A random forest furthers this trend by 
utilizing both of these ingredients. We elaborate the process 
below. 

In bagging (aka bagged ensemble), a collection 
of decision trees are employed where each tree is 
learnt using a bootstrapped copy of the training 
set. That is, a new training set of the same size 
is created by sampling-with-replacement instances from 
the available training set. It is shown that about 63% data 
are unique in the bootstrapped samples drawn from a single 
training sample [9]. Applying bootstrapping in a bagged 
ensemble ensures that the trees become different from each 
other.

Each tree is trained as follows. (For the sake of simplicity, 
we consider a regression task.) At the root of a tree, the entire 
available training data are split into two subsets in the feature 
space based on the mean squared error. The split-point 
(considering all the features and their values) that gives the mini- 
mum mean squared error is selected. This process is recursively 
continued for the children nodes until a termination criterion 
(such as a predefined minimum number of instances at 
a node or a predefined height of the tree etc.) is met. In a 
random forest, however, all the features are not considered, 
rather a small and random subset of the features are chosen 
to select the split-point. While this strategy does increase 
variability (or, in more technical term, decrease correlation) 
among the trees, it does risk increasing the individual tree 
variances, thereby warranting a deeper understanding the 

interplay of all the following quantities: ensemble variance, 
correlation among the trees, individual tree variance, bias, 
and error rate. In the rest of the article we attempt to shed 
some light on this interplay. Specifically, we deal with the 
research question: how can we mathematically expound the 
trade-off between variance and bias of a random forest and 
how does it help us understand their relation with error rate 
and correlation? Knowing the answer to this question would 
help the practitioners deploy these algorithms in various 
applications in a more informed way.

4. Interplay among Error Rate, Bias, Variance, and 
Correlation in A Random Forest

The theory of learning algorithms [15] tells us 
that for squared loss function (i.e., the regression 
task), the following equation holds:

GE = bias2 + variance + IE,   (1)

where GE and IE stand for Generalization Error 
and Irreducible Error respectively. In simple terms, 
bias is the error incurred due to the limitation of 
the hypothesis space, variance is the error incurred 
due to the peculiarities of a particular training set, 
and irreducible error exists due to the intrinsic noise 
present in the labels of the data. 

Before delving into our analysis we note here that 
since many research studies such as [13], [14], [27], 
[31], [29] demonstrate that bootstrapping without 
replacement works as well as bootstrapping with 
replacement, in the analysis that follow we use the former 
setting.

Let the variables T, B, and R denote a single 
regression tree, a bagged ensemble, and a random 
forest respectively; and b2 and σ2 denote the squared 
bias and variance of a learner respectively. We use 
Ts to denote that a tree is learnt using s percentage of the 
available training set; thus T63 and T100 denote that the tree 
is learnt from a bootstrap (without replacement) sample and 
from the full sample respectively. Bs denotes an ensemble of 
bagged trees where each tree is learnt using s percentage of 
the training set, and similar interpretation is used 
for Rs. If the meaning is obvious, we omit the 
subscripts; for example, sometimes we use bare 
B and R to denote the default cases for these two 
learners (bagging and random forest), i.e., B63 and R63 
respectively.

After numerous works such as [8], [22], [23], we 
ignore the irreducible term of Equation 1 for our 
analysis. We can thus write for decision tree, bagged 
ensemble and random forest:

ErrT = b2
T + σ2

T     (2)

ErrB = b2
B + σ2

B

ErrR = b2
R + σ2

R
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We begin with the analysis of a bagged ensemble (aka 
bagging) because it can be considered as a predecessor to a 
random forest.

A. Bagging for Variance Reduction

It is known that the bias of a bagged ensemble is 
equal to that of a single tree of the ensemble [17,  
Ch. 15].1 Therefore:

b2
B = b2

T63 ,     (3)

and variance:

σ2
B = ρσ2

T63 + ((1 − ρ)σ2
T63) / E ,   (4)

where ρ is the correlation between two trees (at a 
datapoint) and E is size of the ensemble, i.e., the 
number of trees respectively.2 If E is large enough, the 
2nd term of Equation 4 tends to vanish irrespective of the 
values of ρ and σ2 T. For an ensemble of identical trees, ρ = 
1. The idea of bagging is to decrease ρ by using a different 
training set to learn each tree. However, in reality only one 
training set is available. To overcome this problem, each tree 
is learnt from a bootstrap sample thereby making each tree 
different from one another. But bootstrapping gives rise to 
two additional concerns: (1) it increases σ2 T (i.e., σ2

T63 > 
σ2

T100 ), because individual trees are now learnt using less 
information than before and hence the overfitting tendency 
of a tree learnt from a bootstrapped sample is more than that 
of a tree learnt from the original sample, and (2) it increases 
bias of individual trees (i.e., b2

T63 (= b2
B ) > b2

T100 ), because, 
again, now the sample space is smaller which, in turn, 
shrinks the hypothesis space. The good news is, empirically 
it has been observed the positive effect of decreasing ρ is 
much greater than the negative effect of increasing σ2

T63 (cf. 
Equation 4), which can be expressed as:

σ2
B << σ2

T100 .

We can thus summarize the above discussion as follows:

b2
B > b2

T100     (5)

σ2
B << σ2

T100 .     (6)

Empirically it has been found for the above two equations 
that:

b2
B + σ2

B < b2
T100 + σ2

T100

⇒ ErrB < ErrT100 (using Equation 2).

Therefore, from the above mathematical derivations, 

1 This can be explained as follows. The (squared) bias at a data point 
xk is (lk − E[f(xk )])2 where lk is the label of xk and f(xk) is the prediction. 
Given the model complexity is fixed (a tree with fixed parameters 
is being used in all cases, i.e., trees are identically distributed [17, 
Ch. 15]), increasing the number of trees cannot improve the bias 
component of error. This is because increasing the number of trees 
to compute their average simply brings the average closer to the true 
average; it does not systematically increase/decrease the average.
2 To see a derivation of Equation 4, please see [19].

the following can be said about bagging in a nut- 
shell: the benefit of aggregating predictions of many 
trees learnt from comparatively smaller training 
sets (i.e., bootstrapped training sets) outweighs the benefit 
of using a single prediction from a tree learnt from a 
comparatively larger training set. 

Another way to explain the benefit of the diversity in an 
ensemble is as follows. By increasing diversity across trees 
we enable the ensemble to capture increasing amount of non-
linear (complex) relationship between labels (by making 
the ensemble decision boundary smoother when averaging 
many different axis-parallel decision boundaries), given that 
the ensemble size is sufficiently large.

B. Adding Further Randomness to Make a Random Forest

The idea of the random forest is to reduce the 
correlation, ρ even more, yet without substantially 
increasing single-tree variance, σ2

T63 and bias, b2
T63 (= b2

R63 ). 
The way a random forest achieves this is by modifying the 
tree building procedure as follows. At each node a small 
number (denoted by K) of features are randomly chosen and 
the optimal split is then determined over only those K chosen 
features. An additional benefit of this scheme is, the features 
which did not get “chance to speak” due to the influence of 
some other stronger features now get an opportunity to be 
selected as a split-point, thereby escaping the local minima 
problem of the pure greedy learning strategy of a decision 
tree. (We note that there are other possible ways to achieve the 
same correlation reduction effect, for example, the approach 
of using even further smaller sub-samples per tree [19].)

The formulation of variance of a random forest is the same 
as that of bagging (cf. Equation 4) because a random forest 
simply adds, on top of the bagging’s idea of bootstrapping, 
an extra source of randomness to a tree. Again, empirically 
it has been found that the (positive) effect of reduction of ρ 
on σ2

R is greater than the (negative) effect of rise of σ2
T63 (cf. 

Equation 4), thereby causing:

σ2
R < σ2

B << σ2
T100 (using Equation 6).  (7)

As for the bias of a random forest, it, like bagging, 
is equal to that of a single tree of the ensemble. 
As long as K is not too small and the ensemble size is 
sufficiently large, the additional randomness does not harm 
the systematic error of the ensemble (i.e., the expected error 
across multiple ensembles learnt from different samples), 
thereby causing b2

R to be roughly of similar level to b2
B .3 

Thus, we can write:

b2
R >≈ b2

B > b2
T100 (using Equation 5).  (8)

Now we use the same reasoning of the discussion of bagging: 

3 We note that due to the greedy nature in which each tree is built, it 
is likely but not necessarily the case that the trees in a random forest 
have higher bias than the trees in bagged ensemble.
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empirically it has been found that considering Equations 7 
and 8 we can write:

b2
R + σ2

R < b2
B + σ2

B < b2
T100 + σ2

T100

⇒ ErrR < ErrB < ErrT100 (using Equation 2).

We highlight the following point again: reducing 
correlation helps only if the single-tree variance,  
σ2

T63 and single-tree bias, bT63 are not greatly 
increased; that is why using a very small number of 
random features at each node of a random forest does not 
yield good performance [17, Ch. 15].4 

From the above mathematical discussion, in a 
nutshell the following can be said about a random 
forest: as we reduce correlation ρ by bootstrapping 
and by selecting a subset of random features, we 
increase both the variance σ2

T63 and squared bias b2
T63 of 

random forest as compared to σ2
T100 and b2

T100 .
5 However, σ2

R 
continues to decrease due to the reduction of ρ (cf. Equation 
4). The result of this reduction is, if we continue to increase 
randomness (by decreasing the number of randomly chosen 
features used to determine each split), then up to some point 
the ensemble error, ErrR continues to decrease. Beyond 
this point, ErrR, however, starts to increase again; and the 
question is, is higher variance σ2

T63 , or higher squared bias 
b2

T63 , or both, responsible for this rise in ErrR? This study is 
scant in the literature; in fact we found only one such work 
[17, Ch. 15] who conduct a pilot experiment on a synthetic 
regression dataset to show that if K is reduced greatly, both 
the single tree variance and bias increase which in turn 
increase the error rate. This interesting direction of research 
needs further attention from researchers.

C. Beyond Standard Random Forest

The random forest, like many other reputed learning 
algorithms, sprung a good number of variations. 
We briefly discuss two of them that are relevant to the theme 
of this article here, namely Extremely Randomized Trees 
[16] and random forest with aggressive sub-sampling [19].

Geurts et al. [16] almost go wild in adding further randomness 
in a random forest. They not only select a random subset of 
features to split the data at a node, but also randomly select 
the split point among those features. To mitigate the possible 
negative effect in terms of high variance, they, in contrast to 
the standard random forest’s settings, advocate not to use any 
subset of the training set to learn a tree, rather they advocate 
using the entire training set. The authors report better 
performance in many scenarios that has made the extremely 
randomized trees quite popular among the practitioners.

Ibrahim [19] explores yet another direction. His 

4  For example, Ibrahim [20] shows that an ensemble of completely 
randomized trees that has very low correlation may not perform 
well on big data.
5  Also, σ2

T63 is increased as compared to bagger’s variance.

study ensues from the study of famous theoreticians 
Friedman and Hall [14]: whereas the latter investigate 
what happens when K is tuned in a bagging 
setting, the former looks into what happens when 
the sub-sample size per tree is tuned in a random 
forest setting.

5. Implication of This Study

Being a theoretical explanation of some hidden 
aspects of a machine learning algorithm, this study 
does not warrant any experiments. That said, we can link 
the analysis of this study with a few empirical experiments 
conducted in the existing literature. If the motivation of many 
empirical investigations like Geurts et al. [16], Freidman and 
Hall [14], Ibrahim [19], and the like is not well-understood 
by the ordinary practitioners, our analysis presented in this 
paper will be quite helpful for them. Needless to say, to 
successfully implement of a machine learning algorithm, it 
is imperative for the practitioners to have a reasonable level 
of understanding of the theoretical aspects of the algorithm 
in question.

6. Related Work

There exist some reading materials to understand bias-
variance decomposition of randomized tree ensembles such 
as [4] and [17, Ch. 15]. However, their explanations of the 
bias and variance of random forests are not particularly 
thorough, rather they focus on only small parts of the big 
picture.

A. On Correlation and Strength of Random Forest

Bernard et al. [1] plot strength (i.e., predictive accuracy of 
individual trees) and correlation between the trees along 
with error rate of random forests for classification. They also 
examine the effect of ensemble size. Their findings include: 
the relationship between strength, correlation and error rate 
formulated in Theorem 2.3 of Breiman’s seminal paper on 
random forests [4] largely holds in practice.

B. On Parameter Tuning of Random Forest

Segal [28] tunes the minimum node size parameter 
nmin of a tree for the regression setting. Lin and 
Jeon [24] also work with nmin and, in addition, with 
the number of candidate features at each node K  
(usually set to log(#features) + 1). Their findings 
indicate that slight improvement in performance 
may be found by tuning these parameters, although default 
values work well in practice. Hastie et al. [17, Ch. 15] 
comment that while for regression tuning nmin helps slightly, 
for classification it rarely makes any difference.

C. On Theoretical Analysis of Random Forest

The theory behind random forest was not given 
much attention until recently. Some notables works 
are: Wager [31], Scornet [26] and the references therein. 
Most of these works analyze simplified versions of random 
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forest because the standard random forest where the best 
split is found among a random subset of the variables is 
difficult to theoretically analyze.

We see from the above discussion that while some work do 
analyze the strength, correlation, and generalization error 
of a random forest, no thorough explanation of the bias-
variance interaction of random forests exists in the literature. 
This article is an attempt to narrow down this gap.

7. Conclusion

Random forest is among the top machine learning 
algorithms that are simple to understand and 
deploy and yet highly effective and efficient in 
performance. Having a clear understanding of a 
machine learning algorithm is pivotal for successful 
application of that algorithm. Although many works do study 
various properties of a random forest from the viewpoint of 
empirical results, exactly how to explain the interplay among 
its bias, variance, correlation, and error rate is, to the best of our 
knowledge, missing in the literature. In this paper we 
have provided an explanation of random forest’s working 
mechanism from a bias-variance perspective as well as 
of their interplay with the error rate and correlation of the 
ensemble. This analysis is expected to assist the practitioners 
better understand the evolution of a random forest from a 
single tree, thereby employing this powerful technique in a 
more informed and wise fashion. Future directions emanated 
from this study include an empirical investigation (cf. 
Section IV-B) of the behaviour of single tree variance and 
bias as the number of randomly chosen features at each split 
is reduced greatly. Also, empirical investigations like [21] 
can reap benefit from the analysis presented in this study.
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