
DUJASE Vol. 6 (2) 39-48, 2021 (July) https://doi.org/10.3329/dujase.v6i2.59217

An Automatic Abstractive Text Summarization System

 Nasid Habib Barna and Hasnain Heickal
*

Department of Computer Science and Engineering, University of Dhaka, Dhaka, Bangladesh

*E-mail: hasnain@cse.du.ac.bd

Received on 01 April 2021, Accepted for publication on 06 September 2021

ABSTRACT

Abstractive text summarization is one of the most interesting problems in the research field of Natural Language

Processing. Recent advances in sequence to sequence model have made it possible to apply new approaches for

abstractive text summarization and perform significantly. But most of the existing systems suffer from some

drawbacks like word repetition, producing inaccurate or irrelevant information etc. In this work we propose a novel

architecture incorporating advanced word embedding layer and topical feature with a pointer generator network to

generate more topic oriented summaries in a logically sequenced way. Adding a word embedding layer with the

model can capture semantic features of words in the input sequence more accurately. Also our proposed system with

incorporated topical features ensures that the summaries focus on the most important parts of the source document.

We applied our model to the CNN/Daily Mail dataset and outperformed the baseline model by all the ROUGE

scores.

Keywords: Text summarization, Abstractive text summarization, Word embedding, Topical feature.

1. Introduction

As information is available in abundance for every topic on

the internet, it is most important to have an improved

mechanism to extract the information quickly and

efficiently. Condensing the important information in the

form of a summary would benefit a number of users.

Manual summarization by humans would become very

overwhelming. So the system has to be automatic while

giving a short summary of a large document, thus creating

an automatic text summarization technique. Extractive text

summarization (ETS) systems can generate summaries

quite successfully by extracting important sections of the

source. But summaries from ETS systems often lack the

ability to cover all the semantically relevant aspects of data

in an effective way. Here comes the challenge of the

abstractive text summarization system (ATS) that needs to

generate the summary with novel sentences and represent

the summarized information in a human readable form.

Another challenge of the ATS system is to preserve the

soundness and readability of the created summaries by

putting more attention to the semantic features of the source

texts. The logical flow of the generated summaries also

needs to be maintained.

Automatic text summarization systems have a wide range

of applications. When researching documents, summaries

make the selection process much easier. It can be a great

help for the researchers to identify the most important ideas

of any research paper. Also automatic summarizers can

assist in writing the abstract of a research work. Google’s

featured snippets are short selections of text that appear at

the top of search results to answer a searcher’s query in a

short form. This process is done through an extractive

approach which sometimes can result in delivering

insignificant or irrelevant data. An abstractive approach can

help in solving this problem by representing the overall

context of the article in a summarized form. In many cases,

reviews (of movies, books, products etc.) can be long and

descriptive. Automatic text summarization systems can

become a great help to bring out the outline of the reviews

through a summary.

Some extractive text summarization systems proved to be

quite successful in extracting the most relevant parts from a

document. But automatic abstractive text summarization is

a still developing research area. No system can completely

justify its accuracy in representing the gist of a large text

document with generated sentences. So, in the process of

trying to solve the problem of coping with the ever-growing

amount of online data we want to build an abstractive

automatic text summarization system. This system is

intended to reduce the limitations of existing systems and

produce a concise and fluent summary while preserving key

information content and overall meaning. Even with a small

vocabulary dictionary, this system will be able to handle

rare or out-of-vocabulary words. We aim to preserve the

soundness and readability of the created summaries by

handling semantic features of the source texts. We also

intend to ensure maximum topic coverage by incorporating

topical features with the system.

Automatic text summarization has always been a major

topic of interest in the field of NLP (Natural language

Processing). When we humans write a summary, we read

the entire document to get an overall understanding and

represent that in a short form only highlighting the

important points. Computers lack this language capability

and thus makes it extremely difficult to automatically

summarize text from a large document. Research interest in

automatic summarization gained attention in the late 50s

(Luhn et al. [1]) and there has been great improvement in

this field ever since.

Among the two approaches for automatic summarization,

the great majority of past work has been extractive. This is

because of the high level of difficulty of abstractive

summarization. In this case, the computer has to come up

with novel words to write the summary while preserving

the meaning of the original input. This requires advanced

40 Nasid Habib Barna and Hasnain Heickal

natural language techniques. Extractive summarization

depends on the extraction of important parts of the source

text. So the fundamental task here is to point out the most

important sentences from the input document. The research

on extractive text summarization began with the method of

extracting important sentences using features like word and

phrase frequency [1]. This paper proposed to extract the

sentences of a document consisting of high-frequency

words while ignoring the very high frequency common

words. Recently, using neural networks for extractive text

summarization has been showing effective results in

understanding more context in a source document [2] [3].

The neural models work to combine only the important

sentences while maintaining the semantics. Narayan et al.

[4] proposed an encoder—decoder architecture based neural

model consisting of RNNs and CNNs. They applied single-

layer convolutional neural systems over sequences of word

embeddings to acquire portrayals of sentences. Then to

make groupings out of sentences they used a recurrent

neural network.

On the other hand, abstractive summarization methods can

be divided into three different approaches. In a structure

based approach, important information of the text is

assigned to some predefined structure to create abstractive

summaries. There are different methods performed to

approach this problem that are based on tree, rule, ontology

or graphs. For semantic based approach semantic

representation of the input texts is created before feeding it

to a natural language generation system. The representation

is attained by creating semantic graphs or by finding the

informative part, argument-predicate structure. This system

outputs the ultimate summary by using the noun and verb

phrases [5]. In deep learning and neural network based

approach, it requires training and learning data in order to

extract features from the text. Abstractive summarization

has become one of the most important topics for current

researchers with the development of deep learning

technologies in recent years.

Recent success in sequence to sequence encoder-decoder

model [6] has mostly paved the way of abstractive text

summarization. Rush et al. [7] first introduced a neural

attention sequence to sequence model with an attention

based encoder and a neural network language model

decoder for text summarization. Chopra et al. [8] further

proposed an improvement to this model by replacing the

feed-forward neural network language model with a RNN.

Systems using these methods still could not reproduce

factual details due to uncommon words. To solve this

problem, different copy-mechanism approaches have been

proposed by researchers [9][10][11].

Song et al. [11] proposed an LSTM-CNN based abstractive

text summarization frame-work (ATSDL) that can construct

new sentences by exploring semantic phrases. First they

performed phrase extraction on the source document and

then used deep learning methods for generating summaries.

To improve the performance of the text summarizer they

combined LSTM and CNN together. They considered both

semantics and syntactic structure for summary generation.

After extracting phrases the model learns the collocation of

them using LSTM. The summary is formed by a sequence

of phrases that the model generated after training. To

handle out of vocabulary words they used phrase location

information.

See et al. [9] proposes an approach to solve these two

issues: (i) avoid reproducing factual details inaccurately and

(ii) avoid summaries repeating themselves. This model

creates a pointer mechanism that allows it to switch

between generating text and copying text from source. The

model uses a hybrid pointer-generator network that can

copy words from the source text via pointing. This method

helps to deal with out-of-vocabulary words which also

retains the ability to generate new words. The overall

mechanism helps to reproduce factual details accurately.

They also proposed a coverage to keep track of what has

been summarized to discourage repetition. Their model

consists of three major parts- (i) baseline sequence to

sequence model (ii) pointer generator model to handle rare

words and (iii) coverage mechanism to avoid word

repetition problems. In the context of multi sentence

summaries, their model shows great effective results.

Though their pointer module gives considerable accuracy

advantage, the overall model cannot attain a higher level of

abstraction -- which means it has a tendency to often copy

words from the original sentence which is mostly seen in

case of extractive text summarization.

We built the model with a sequence to sequence encoder-

decoder architecture using recurrent neural networks.

Topical feature learning is done by extracting topical words

from the source text and integrating this information with

the neural network.

Preliminary Concepts

For abstractive summarization, generating new sentences

from the original texts while preserving the overall meaning

requires advanced NLP techniques to form an entirely new

summary. Some terminologies and concepts that are

integral part of our proposed system are discussed here for

better explanation.

1.1 Sequence to Sequence Modeling

A sequence to sequence model works with sequential

information. In the case of text summarization, the input in

this model is a long sequence of words and the output is a

short sequence of words which is the summary. The

architecture of a sequence to sequence model consists of

two major components--encoder and decoder.

Both of them are basically two neural network models

where different kinds of Recurrent Neural Networks

(RNNs) can be used. In the case of text summarization,

Gated Recurrent Neural Network (GRU) or Long Short

Term Memory (LSTM) have shown better performance.

1) Encoder: The encoder is fed the entire input sequence,

one word at a time. Each time it first transforms the

input sequence into a vector representation and then it

An Automatic Abstractive Text Summarization System 41

updates its hidden states based on the current word and

the previous words that it has already read, using a

multi layer neural network. The encoder extracts

information from the given input sequence which is

forwarded to the decoder in order to help it to create

the probability distribution over the next word.

2) Decoder: The decoder generates the summary one

word at a time. It predicts the next word in the output

sequence given the previous word. It creates a

probability distribution over the next word and the

word with maximum probability is selected. So the

encoder here converts overall information from the

input texts into a fixed length vector which is used by

the decoder to predict the next word. This can only

work for short sequences of input texts as memorizing

a long sequence into a fixed length vector can be quite

hard. The attention mechanism can solve this problem.

1.2 Attention Mechanism

Attention mechanism decides how much attention should

be paid to each word while generating the next word at a

given time. The decoder increases the importance of

specific parts of the input by accessing the intermediate

hidden states in the encoder and predicts the next word

using all that information.

1.3 Word Embedding

Word embedding is a technique in Natural Language

Processing (NLP) which allows words with similar

meaning to have a similar but unique representation. Here

every word in the dictionary of a language is represented as

real-valued vectors in a predefined vector space. Firth et al.

[12] first proposed the idea of capturing information from a

source based on the relationships among the words. Global

Vectors for Word Representation (GloVe) [13] is one of the

most significant word embedding systems. It consists of

300 dimensional pretrained vectors that have been trained

on Wikipedia and Gigaword. This embedding system is

based on matrix factorization of word co-occurrence

statistics. It considers the relationships between word pair

and word pair rather than word and word. By giving lower

weight for highly frequent word pairs, this embedding

system prevents the meaningless stop words (eg: “the”,

“an” etc.) dominating the training progress. It creates a

global co-occurrence matrix by estimating the probability

of a given word co-occurring with other words. In order to

come up with word vectors, GloVe captures both global

statistics and local statistics of a corpus.

2. Proposed System

We are proposing an abstractive text summarization system,

a method to generate summary with new sentences from the

original texts while preserving the overall meaning. Our

method for generating text summary is performed through

some major steps:

1. Building a sequence to sequence model

2. Choosing words between vocabulary set and the source

document using pointer

3. Ensuring coverage to solve word repetition problem

4. Using a pre-trained word embedding system to

preserve semantic similarity.

5. Integrating topical features to generate context aware

summary.

2.1 Data Preprocessing

The sequence to sequence model takes the source document

by splitting the input texts into words. So as the first

preprocessing step, the sentences are tokenized into words

based on space. Punctuation marks are also considered as

words. Then the tokens are converted to lowercase to get

uniformed data. A vocab file is created with all the words

with their frequency from the dataset. To point out the start

and end of a sentence, unique symbols are added with each

sentence. IDs are given to all the words as well as to the

unknown tokens, ‘start decoding’ token and ‘stop decoding’

token. This data preprocessing step is very important as

using jumbled or confusing words to train the model can

create catastrophic results.

2.2 Building Model

Now we have to build our model by training them on the

preprocessed data.

2.2.1 Attention based sequence to sequence model

We are aiming to read a document and compress its

information to generate a meaningful summary. So to

generate an output sequence from a given input sequence. It

means we need a sequence to sequence model. This model

aims to generate a fixed-length output vector from a fixed-

length input vector where their lengths can differ. Here our

basic sequence to sequence model has an encoder-decoder

architecture with a bidirectional LSTM encoder, a

unidirectional LSTM decoder and an attention mechanism

to produce a probability distribution of each word in the

source document.

2.2.2 Feeding the input sequence through a bidirectional

LSTM Encoder

An encoder processes the input sequence to get concise

information and create a context vector of a fixed length.

This vector represents a conceptual summary of the

meaning of the input document. We are using a

bidirectional LSTM encoder which consists of a forward

LSTM and a backward LSTM and thus becomes very

effective in capturing semantic information of previous and

following words. First the encoder RNN will read the

source document each word at a time. This will produce a

sequence of encoder hidden states. The hidden states

capture contextual information from the input sequence.

The hidden state and cell state of the last time step

initializes the decoder.

2.2.3 Generating output sequence using unidirectional

LSTM Decoder

The vector from the last timestep of the encoder initializes

the decoder which generates a sequence of its own that

represents the output. In case of training, the decoder reads

42 Nasid Habib Barna and Hasnain Heickal

the entire output sequence each word at a time and predicts

the same sequence offset by one timestep. For the testing

phase the targeted output is unknown to the decoder. Start

and end tokens are added to the targeted output sequence so

that the decoder knows when to start or end predicting the

summary. Once the encoder has read the entire source text,

the start token is fed to the decoder RNN and it begins to

output a sequence of words. This uses a unidirectional

LSTM layer to generate words one by one using the last

word it predicted and the hidden state from the last

timestep. The decoder creates a probability distribution over

the next word and the word with maximum probability is

selected. Each time it updates the decoder's hidden state.

This process ends when the targeted length of the summary

is reached or when the next word with maximum

probability is the end token.

2.2.4 Emphasizing specific parts of a long input sequence

using attention mechanism

The encoder converts the entire input sequence into a fixed

length vector that tries to capture the context from the

source document. The decoder is trained to generate a

summary solely based on the last hidden state from the

encoder. This design might fail in case of long input

sequence as it can become very difficult for the encoder to

represent the entire information from the source document

through a single fixed length vector. To resolve this

problem attention mechanisms are introduced. This

mechanism creates an attention vector so that instead of

using the information of all the words in the input sequence,

the importance of specific parts of the input sequence is

increased to generate the ultimate output sequence. This

attention vector holds the information of how strongly a

word is correlated with other words of the source sequence.

Here is a simple example in figure 1 to show how this

mechanism actually works:

Fig. 1. An example of attention mechanism

The attention distribution or the attention vector is

calculated using the hidden states of the encoder and

decoder, which is a probability distribution over the words

in the source text [14].

 (3.1)

Where weight vector v, weight matrix Wh, weight matrix Ws

and bias term battn are learnable parameters. Here Whhi is the

encoder feature, Wsst + battn is the decoder feature and tanh is

the activation function with range (-1, 1). Then we pass this

probability distribution for each word through a softmax

function to get the attention distribution at
in range 0 to 1.

 (3.2)

The attention distribution at
i represents the score of input at

position i and output at position t on how well they match.

This distribution is used to create the context vector h t -a

dynamic representation of what has been covered from the

original document for this step. h t is a weighted sum of the

encoder hidden states.

(3.3)

The context vector and the decoder hidden state are

combined and passed through two linear layers of a feed

forward neural network to calculate the vocabulary

distribution. The output layer consists of a probability

distribution over all the words in a large fixed vocabulary.

We get the next output using the maximum probability

value.

 (3.4)

Here V’, V, b and b’ are learned by the network while

training.

 (3.5)

From P(w) we get the probability to predict the word w.

While training, this model uses negative log likelihood of

the target word wt

for current time step as the loss function.

 (3.6)

Given T as the length of the targeted sequence, the overall

loss is calculated.

(3.7)

2.2.5 Adopting pointer-generator network

See et al. [9] proposed a hybrid pointer-generator network

which combines the baseline attention based sequence to

sequence model and a pointer network to choose words

between source document and vocabulary set. As the

pointer generator network can copy words from the source

via pointing, this system can reproduce factual details more

accurately. Suppose the targeted output sequence is “Spain

beats Portugal by 3-2.” Here 3-2 is treated as one single

word which is naturally a rare or out-of-vocabulary term. In

this case the pointer generator network is able to copy this

word directly from the source retaining the factual

information correctly.

So after the previous step we adapted this method [9] and

calculated a conditional probability (Pgen) to decide whether

to generate new words or copy words from the original

input document. The calculated value here is a probability

scalar between 0 and 1. Based on its value and a given

threshold, a novel word is selected from the vocabulary or a

word is copied from the source. To calculate Pgen for time

step t the context vector ht, the decoder hidden state st and

the decoder input xt pass through a linear layer and a

sigmoid activation function (range 0 to 1) [9]:

 (3.8)

An Automatic Abstractive Text Summarization System 43

where wh , ws, wx and bptr are learned by the neural network

during training. A word can be generated from the

vocabulary by sampling from Pvocab or a word can be copied

from the source document through sampling from at
. An

extended vocabulary is created by joining the vocabulary

set and the words from the source document. Then using

Pgen for each document, a probability distribution P(w) is

calculated over the extended vocabulary. So P(w) is now

updated from 3.5 to 3.9

(3.9)

P(w) is the weighted sum of Pvocab and at
. So if w is not in

the vocabulary set then Pvocab(w) is zero and if w is not

present in the source document then is zero.

Now the loss function is calculated using the modified

P(w):

 (3.10)

(3.11)

2.2.6 Pointer-generator with coverage

Sequence to sequence models often generate repeated

words especially when it has to generate multiple sentences.

For example, without the knowledge of what has been

covered so far the output sequence “Spain beats Portugal by

3-2.” can become “Spain beats Spain by 3-2.” as both the

word ‘Spain’ and ‘Portugal’ represent country names.

To solve the problem of repetition, another vector is

calculated to keep track of what has been covered in the

summary until now. A coverage vector ct is obtained by

adding the attention distributions. Thus it gives us the

degree of coverage of the words from the source document.

This coverage vector is incorporated with the attention

mechanism affecting the attention distribution for current

time step [9].

 (3.12)

So et
i is now updated to

) (3.13)

Here Wc is learned by the model during the training process.

Calculating loss:

(3.14)

(3.15)

(3.16)

Here λ is a hyperparameter to reweight coverage loss.

2.2.7 Integrating pre-trained word embedding layer

The simplest form of word embedding could be one where

the value of the only dimension of the vector representation

of each word is a unique integer, possibly the position of

the word in the dictionary. The baseline pointer generator

model includes a simple embedding matrix with shape

(embedding dimension size × total number of words) for

the vocabulary. Here the only information about the words

is their indices from the vocabulary set. This simple word

embedding makes sure that each word has a unique one

dimensional vector representation. But no syntactic,

semantic or other contextual information can be extracted

using this simple embedding representation. This might

result in losing important information. Using a pre-trained

word embedding system with the baseline pointer generator

network can help to represent the semantic meaning of

words more precisely.

We used a pre-trained GloVe embedding model to represent

each word as an embedded vector before feeding them to the

encoder or decoder. The tensorflow embedding lookup is

performed to extract corresponding GloVe representations

for every word. GloVe captures both global statistics and

local statistics of a corpus in order to come up with word

vectors. So incorporating this embedding system on top of

Pointer Generator Network helps to maintain the contextual

meaning of words in a detailed manner.

2.2.8 Integrating topical words for better topic coverage

The attention mechanism only considers the relationship

between original input document and the targeted word.

This might fail to get the overall summary of the source

document due to less information of the important topics.

Here we are introducing some topical vocabulary to get

better coverage of the topics that the original document is

based on. For example: “Country music, also known as

country and western (or simply country), and hillbilly

music, is a genre of popular music that originated in the

Southern United States in the early 1920s. It takes its roots

from genres such as American folk music (especially

Appalachian folk and Western music) and blues. Country

music often consists of ballads and dance tunes with

generally simple forms, folk lyrics, and harmonies mostly

accompanied by string instruments such as banjos, electric

and acoustic guitars, steel guitars (such as pedal steels and

dobros), and fiddles as well as harmonicas. Blues modes

have been used extensively throughout its recorded

history.”

–Source: https://en.wikipedia.org/wiki/Country music

From these texts we can already infer that the main topic

here is country music. There could be multiple documents

on music but not on country music. So the words ‘country

music’ here gives some additional unique information about

the document. So these words here are the topical words.

We incorporated the information of topical vocabulary with

the attention mechanism and used the updated one to

generate our targeted summary.

44 Nasid Habib Barna and Hasnain Heickal

Fig. 2. The pointer-generator model with additional information of topical keywords

2.2.9 Extracting topical vocabulary

There are many text analysis techniques to extract the most

important words from a text sequence. Here we are using a

statistical approach, TFIDF (term frequency–inverse

document frequency) scoring, to extract important words in

a document. This approach is fast in measuring how

important a word is to a document in a collection of

documents as it does not require training data in order to

obtain topical words.

The main idea behind this is- if a word occurs in a frequent

manner in a document it must be important, so it should get

a higher term frequency score. But, if the word occurs too

frequently in many other documents, it is not a distinctive

identifier for the current document. In that case it should get

a lower inverse document frequency score.

Here,

(3.17)

(3.18)

Now the TF-IDF score is calculated by multiplying these

two scores to ultimately assign values to words to identify

their importance for a given document.

 (3.19)

3.2.10 Obtaining topical feature

We have extracted N important words and their word

embedding from the original document based on higher TF-

IDF score. Let Ei be the word embedding for the i-th topical

word. First we calculate the sum of each word embedding

of n topical words:

(3.20)

After calculating their sum we incorporated this

information as an input for the traditional attention

mechanism. Now the updated formula for the attention

distribution becomes-

 (3.21)

Here Wk is a new learnable parameter. This weight matrix is

applied to the sum of word embedding of N topical words

(K) to get the topic feature WkK which is added with the

traditional attention mechanism.

Figure 2 illustrates the overall process of the pointer

generator model with additional topical features to generate

summary. Here E1, E2 ... EN are the word embedding of N

important keywords of the source document. Their sum K is

weighted and added with the attention mechanism as the

additional feature. This updated formula for attention

distribution results in generating a summary with better

insight regarding the source document.

3. Experimental Result and Discussion

To test the proposed text summarization method described

in section III we performed extensive experiments. We

created four different models based on the additional

features of the source texts:

1. Retrained baseline pointer generator model (BPG)

An Automatic Abstractive Text Summarization System 45

2. Pointer generator model with pre-trained word

embedding layer (PGWE)

3. Pointer generator model with integrated topical feature

(PGTF)

4. Pointer generator model integrated with both the

pretrained word embedding layer and the topical

feature (PGWT)

Here the first model (BPG) is a baseline pointer generator

model with attention and coverage mechanism. Model 2, 3

and 4 are based on the first model with additional modules.

We trained and tested all of these models on the CNN/Daily

Mail dataset. This section focuses on the performance

analysis of the system which can be divided into several

parts.

3.1 Data Collection

To evaluate the performance of the proposed model, we used

the CNN/Daily Mail dataset which is a large collection of

news articles and modified for summarization. We ran the

experiment on 1,00,000 training pairs and 11000 test pairs.

These are publicly shared data and are used by many

researchers for text summarizer evaluation. We trained all the

four of our models on the CNN/Daily Mail dataset. After

conducting extensive experiments, we analyzed the output

result to understand the efficiency of each of the models.

Also we analyzed the data to compare our work with other

state-of-the-art text summarization systems. One example of

the CNN/Daily Mail dataset is shown in figure 3.

Fig. 3. One example of the CNN/Daily Mail dataset

3.2 Experimental Setup

The training and testing of the models were conducted in a

computer with intel core i7-7700k processor which has 4.2

GHz speed and 32 GB RAM. The operating system was

Ubuntu 18.04 LTS. For all the experiments, our model had

150 dimensional hidden states, 400 maximum encoding

step size, 100 maximum decoding step size, Batch size of 8,

word embedding size 300 and a vocabulary of 50 thousand

words. The training was done using Adagrad optimizer with

an initial accumulator value of 0.1 and learning rate 0.15.

To evaluate our model we installed the pyrouge package to

obtain our rouge score.

3.3 Implementation

The major parts of implementation of the experiment are

described below:

3.3.1 Training module

During the training and testing phase we limited the length

of the input article to 400 tokens and the length of the

summary to 100 tokens. These limits were set to exactly

match the parameters of the experimental environment in

[9], to better evaluate the results. We trained all of our

models for about 25000 iterations. Training took almost 26

hours for the 50k vocabulary model.

3.3.2 Summary generation module

In the testing phase the models go through the entire dataset

in order and write the generated summaries to specified

files. The dataset consists of articles along with their

reference summaries. For each article, this module writes

these extracted reference summaries and the generated

summaries to files in different subfolders in order to run

evaluation by the next module.

3.3.3 Performance evaluation module

This module is designed to test and verify the performance

and accuracy of the proposed abstractive summarization

system. To evaluate the quality of an abstractive

summarization system, ROUGE metrics are used as the

standard. Because it evaluates how much key information is

being preserved between the reference summary and the

generated summary. In our paper, we used the Python

package pyrouge to run ROUGE evaluation [15]. We

evaluated our models with the standard ROUGE metric,

reporting the F1 scores for ROUGE-1, ROUGE-2 and

ROUGE-L.

ROUGE-1 measures the word-overlap between the

reference summary and the generated summary.

For example, if

System Summary: I went to the nearby shop

Reference Summary: I went to the shop

ROUGE-2 measures the bi-gram overlap.

For example, if

System Summary: I went to the nearby shop

Reference Summary: I went to the shop

System Summary Bi-grams: I went, went to, to the, the

nearby, nearby shop

Reference Summary Bi-grams: I went, went to, to the, the

shop

46 Nasid Habib Barna and Hasnain Heickal

ROUGE-L measures the longest common sequence.

For example, if

System Summary: I went to the nearby shop

Reference Summary: I went to the shop

Now to calculate the F measure of these rouge values,

3.4 Experimental Result

In this section we will present experimental results for all

the four different models.

3.4.1 Baseline pointer generator model

We retrained the pointer generator model [9] and after the

testing phase we got the Rouge scores shown in table I.

Table 1: Rouge score table for baseline pointer generator model

Rogue Measure Rouge-1 Rouge-2 Rouge-L

Baseline Pointer Generator

Model [9] (retrained)

36.79 13.05 31.22

3.4.2 Pointer generator model with pre-trained word

embedding layer

From the pointer generator model with a pre-trained word

embedding layer (GloVe) we got the Rouge scores shown

in table II.

Table 2: Rouge score table for pointer generator model integrated

with pre-trained word embedding layer

Rogue Measure Rouge-1 Rouge-2 Rouge-L

Pointer Generator Model

with GloVe

37.21 15.6 33.29

3.4.3 Pointer Generator Model with Integrated Topical

Feature

From the pointer generator model integrated with topical

feature we got the Rouge scores shown in table III.

Table 3: Rouge score table for pointer generator model with

integrated topical feature

Rogue Measure Rouge-1 Rouge-2 Rouge-L

Pointer Generator Model with

integrated topical feature

37.3 15.86 33.5

3.4.1 Pointer generator model integrated with pre-trained

word embedding layer and topical feature

From the pointer generator model integrated with both the

pre-trained word embedding layer and the topical feature

we got the Rouge scores shown in table IV.

Table 4: Rouge score table for pointer generator model integrated

with pre-trained word embedding layer and topical feature.

Rogue Measure Rouge-1 Rouge-2 Rouge-L

Pointer Generator Model

integrated with pre-trained

word embedding layer and

topical feature

39.01 17.25 35.94

3.5 Performance Analysis

Here is an example of generated summaries by the four

different models:

Source Text:

maverick tottenham forward emmanuel adebayor has

insisted that he is happy to stay and fight for his place at

white hart lane and rejected reports linking him with a

move away. taking to twitter on tuesday night, the 31- year-

old togo international expressed his gratitude at being able

to play in the premier league and labeled the division ’the

best in the world.’ adebayor joined spurs in 2011 from

manchester city, initially on loan before an impressive first

season tally of 18 goals, convinced the club to make the

switch permanent for 5million the following summer.

tottenham striker emmanuel adebayor rides the challenge of

liverpool defender dejan lovren. adebayor takes to twitter to

pledge his future to tottenham and insists he will fight for

his place in the team . adebayor gives an underwhelming

performance against league one side sheffield united in the

league cup . the striker ’s significantly more modest form

since then , however , coupled with the meteoric rise of

homegrown star harry kane , have left adebayor little more

than a bit-part in the spurs machine . this season , he has

made just 16 appearances in all competitions , scoring only

twice and has been criticised for several underwhelming

performances , in particular his showing against league one

’s sheffield united in the capital one cup semi-final . yet, the

former arsenal , real madrid and manchester city hitman

remains adamant that he will see out the remainder of his

contract in north london . adebayor ’s last premier league

goal for spurs came during a 1-2 defeat by newcastle back

in october last year. adebayor has made just 10 appearances

in all competitions this season and scored only twice.

adebayor might be deemed surplus to requirements due to

the breakthrough of homegrown star harry kane .

- Source: MailOnline [16]

Reference Summary:

tottenham forward emmanuel adebayor has taken to twitter

to insist his immediate future remains at white hart lane . he

has one year left to run on his current contract at spurs .

adebayor joined spurs in 2011 from manchester city ,

initially on loan before an impressive first season convinced

them to make the move permanent .

unfortunately , adebayor has not managed to rediscover his

early form and has been reduced to a bit-part player in

mauricio pochettino ’s plans .

he has not scored a league goal for spurs since october .

An Automatic Abstractive Text Summarization System 47

Generated Summaries:

Baseline PGN (retrained):

emmanuel adebayor has insisted that he is happy to stay and

fight for his place at white hart lane and rejected reports

linking him with a move away .

taking to twitter on tuesday night , the 31-year-old togo

international expressed his gratitude at being able to play in

the premier league and labeled the division ‘the best in the

world’

PGN with Glove word embedding layer (PGWE):

emmanuel adebayor says he is happy to stay and fight for

his place at white hart lane . tottenham striker emmanuel

adebayor rides the challenge of liverpool defender dejan

lovren adebayor might be deemed surplus to requirements

due to the breakthrough of homegrown star harry kane .

PGN with topical feature (PGTF):

emmanuel adebayor rides the challenge of liverpool

defender dejan lovren .

adebayor gives an underwhelming performance against

league one side sheffield united in the league cup .

adebayor ’s last premier league goal for spurs came during

a 1-2 defeat by newcastle back in october last year .

Proposed PGN with GloVe word embedding layer and

topical feature (PGWT):

adebayor has insisted that he is happy to stay and fight for

his place at white hart lane and rejected reports linking him

with a move away.

adebayor ’s last premier league goal for spurs came during

a 1-2 defeat by newcastle back in october last year .

adebayor might be deemed surplus to requirements due to

the breakthrough of homegrown star harry kane .

The rouge scores are calculated by comparing the generated

summaries with the reference summaries.

After analyzing the output of the baseline PGN model in the

given example it can be seen that it generated some

irrelevant or unimportant data. The last sentence in the

example for the baseline model is observed to be deviated

from the original topic.

The generated summary from the PGWE model captures

important parts of the input by handling semantic measures.

The GloVe word embedding system tries to find correlation

between word pairs and word pairs. So naturally the

sentences with ‘adebayor’ mostly remain in the generated

summary.

For the PGTF model, the generated summary seems to be

very context aware. The source text is about a sportsman

possibly losing his good reputation due to unsatisfactory

performance. The model could actually capture the context

and generate a precise topic oriented summary.

The proposed PGWT model consists of both the Glove

word embedding layer and the integrated topical feature

with network. So the summary generated by this model

captures both the context and semantic features. As said

before, the source text is about a sportsman possibly losing

his good reputation due to unsatisfactory performance and

the debut of another sports star. The summary generated by

this model is observed to give almost all the important

information from the source text without creating irrelevant

details.

Table V shows our experimental result for all the models

with standard ROUGE metric reporting the F measure for

Rouge-1, Rouge-2 and Rouge-L.

Table 5: Rouge score table

ROUGE

Measure

Baseline

PGN

PGWE PGTF proposed

PGWT

Rouge-1 36.79 37.21 37.3 39.01

Rouge-2 13.05 15.6 15.86 17.25

Rouge-L 31.22 33.29 33.5 35.94

Chart 4 shows that integrating GloVe word embedding

representation and topical features has clearly improved the

performance of the summarization model. After analyzing

the data in table V and chart 4 we can see that our proposed

model achieves significantly better ROUGE scores than the

baseline. So we can definitely conclude that our model

ensures better performance in preserving key information

while maintaining a moderate level of abstraction.

Fig. 4. Comparing Rouge score to evaluate model performance

4. Conclusion

The enlarging growth of the Internet has made enormous

amounts of data available. Day by day this is becoming

more difficult for humans to extract valuable information

from this huge amount of text data due to this abundance of

information. Thus the need for an automatic text

summarization system cannot be denied. In this book we

proposed an automatic abstractive text summarization

system using RNN. We feed a sequence of text data into the

system and it generates a sequence of text as output in the

form of a summary of the source text.

Our system adopted a pointer generator network that helps

the system to choose between copying words from the source

text and generating novel words using the vocabulary

48 Nasid Habib Barna and Hasnain Heickal

dictionary. So even if there is a small vocabulary dictionary

or too many rare words in the input text, this system can

handle the out-of-vocabulary words that ensures accurate

reproduction of information. This system can also handle

word repetition problems by using a coverage vector to keep

track of what has been summarized at each timestep. This

method helps to control the flow of the summary and

eliminates repetition. We proposed to incorporate a word

embedding layer with the model to handle semantic features

of the source text. We used Global Vectors for Word

Representation systems as the word embedding layer to

represent the semantic meaning of words more precisely. Our

model successfully incorporated topical features along with

the attention mechanism in the pointer generator network.

This approach focuses on the most important parts of the

source document that ensures improvement in summary’s

informativeness with better topic coverage.

Our system is trained and tested on the CNN/Daily Mail

dataset and after conducting extensive experiments we got a

39.01 F1 score for Rouge-1, 17.25 F1 score for Rouge-2 and

35.94 F1 score for Rouge-L. We retrained the baseline

model and got 36.79, 13.05 and 31.22 F1 scores for Rogue-

1, Rouge-2 and Rouge-L respectively. We also analyzed the

quality of the summaries by human evaluation. Our system

outperforms the baseline model in both Rouge measure and

qualitative result.

In the future, we want to improve our model to reach a

higher level of abstraction while maintaining the accuracy

advantage. We also want to work on more advanced

methods for extracting topical features from the source.

There has been some very recent work on abstractive text

summarization using BERT that is showing very promising

results. So in future that direction of research might produce

better outcomes.

Despite some limitations, our model is already showing

encouraging results compared to the state-of-the-art

summarization systems and we believe it adds a significant

value in the area of text summarization.

References

1. H. P. Luhn, “The automatic creation of literature abstracts,”

IBM Journal of Research and Development, vol. 2, no. 2, pp.

159–165, Apr 1958.

2. Z. Cao, F. Wei, W. Li, and S. Li, “Faithful to the original:

Fact aware neural abstractive summarization,” in Thirty-

Second AAAI Conference on Artificial Intelligence, 2018.

3. R. Nallapati, F. Zhai, and B. Zhou, “Summarunner: A

recurrent neural network based sequence model for extractive

summarization of documents,” in Thirty-First AAAI

Conference on Artificial Intelligence, 2017.

4. S. Narayan, N. Papasarantopoulos, S. B. Cohen, and M.

Lapata, “Neural extractive summarization with side

information,” arXiv preprint arXiv:1704.04530, 2017.

5. S. Alshaina, A. John, and A. G. Nath, “Multi-document

abstractive summarization based on predicate argument

structure,” in 2017 IEEE International Conference on Signal

Processing, Informatics, Communication and Energy Systems

(SPICES), pp. 1–6, 2017.

6. I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to

sequence learning with neural networks,” CoRR, vol.

abs/1409.3215, 2014. [Online]. Available: http://arxiv.org/

abs/1409.3215

7. A. M. Rush, S. Chopra, and J. Weston, “A neural attention

model for abstractive sentence summarization,” in

Proceedings of the 2015 Conference on Empirical Methods

in Natural Language Processing. Lisbon, Portugal:

Association for Computational Linguistics, Sep. 2015, pp.

379–389. [Online]. Available: https://www.aclweb.org/

anthology/D15-1044

8. S. Chopra, M. Auli, and A. M. Rush, “Abstractive sentence

summarization with attentive recurrent neural networks,” in

Proceedings of the 2016 Conference of the North American

Chapter of the Association for Computational Linguistics:

Human Language Technologies, pp. 93–98, 2016.

9. A. See, P. J. Liu, and C. D. Manning, “Get to the point:

Summarization with pointer-generator networks,” CoRR, vol.

abs/1704.04368, 2017. [Online]. Available: http://arxiv.org/

abs/1704.04368

10. R. Nallapati, B. Zhou, C. Gulcehre, B. Xiang et al.,

“Abstractive text summarization using sequence-to-sequence

rnns and beyond,” arXiv preprint arXiv:1602.06023, 2016.

11. S. Song, H. Huang, and T. Ruan, “Abstractive text

summarization using lstm-cnn based deep learning,”

Multimedia Tools and Applications, vol. 78, no. 1, pp. 857–

875, 2019. [Online]. Available: https://doi.org/10.1007/

s11042-018-5749-3

12. J. R. Firth, “A synopsis of linguistic theory 1930-55.” vol.

1952-59, pp. 1–32, 1957.

13. J. Pennington, R. Socher, and C. D. Manning, “Glove: Global

vectors for word representation,” in Empirical Methods in

Natural Language Processing (EMNLP), pp. 1532–1543,

2014. [Online]. Available: http://www.aclweb.org/

anthology/D14-1162

14. D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine

translation by jointly learning to align and translate,” 2014.

15. C.-Y. Lin, “ROUGE: A package for automatic evaluation of

summaries,” in Text Summarization Branches Out.

Barcelona, Spain: Association for Computational Linguistics,

pp. 74–81, 2004. [Online]. Available:

https://www.aclweb.org/anthology/W04-1013

16. [Online]. Available: https://www.dailymail.co.uk/sport/

football/article3029323/Emmanuel-Adebayor-vows-contract-

Tottenham-striker-rejectsexit-talk.html

