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ABSTRACT 

Abstractive text summarization is one of the most interesting problems in the research field of Natural Language 

Processing. Recent advances in sequence to sequence model have made it possible to apply new approaches for 

abstractive text summarization and perform significantly. But most of the existing systems suffer from some 

drawbacks like word repetition, producing inaccurate or irrelevant information etc. In this work we propose a novel 

architecture incorporating advanced word embedding layer and topical feature with a pointer generator network to 

generate more topic oriented summaries in a logically sequenced way. Adding a word embedding layer with the 

model can capture semantic features of words in the input sequence more accurately. Also our proposed system with 

incorporated topical features ensures that the summaries focus on the most important parts of the source document. 

We applied our model to the CNN/Daily Mail dataset and outperformed the baseline model by all the ROUGE 

scores.  
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1. Introduction 

As information is available in abundance for every topic on 

the internet, it is most important to have an improved 

mechanism to extract the information quickly and 

efficiently. Condensing the important information in the 

form of a summary would benefit a number of users. 

Manual summarization by humans would become very 

overwhelming. So the system has to be automatic while 

giving a short summary of a large document, thus creating 

an automatic text summarization technique. Extractive text 

summarization (ETS) systems can generate summaries 

quite successfully by extracting important sections of the 

source. But summaries from ETS systems often lack the 

ability to cover all the semantically relevant aspects of data 

in an effective way. Here comes the challenge of the 

abstractive text summarization system (ATS) that needs to 

generate the summary with novel sentences and represent 

the summarized information in a human readable form. 

Another challenge of the ATS system is to preserve the 

soundness and readability of the created summaries by 

putting more attention to the semantic features of the source 

texts. The logical flow of the generated summaries also 

needs to be maintained. 

Automatic text summarization systems have a wide range 

of applications. When researching documents, summaries 

make the selection process much easier. It can be a great 

help for the researchers to identify the most important ideas 

of any research paper. Also automatic summarizers can 

assist in writing the abstract of a research work. Google’s 

featured snippets are short selections of text that appear at 

the top of search results to answer a searcher’s query in a 

short form. This process is done through an extractive 

approach which sometimes can result in delivering 

insignificant or irrelevant data. An abstractive approach can 

help in solving this problem by representing the overall 

context of the article in a summarized form. In many cases, 

reviews (of movies, books, products etc.) can be long and 

descriptive. Automatic text summarization systems can 

become a great help to bring out the outline of the reviews 

through a summary. 

Some extractive text summarization systems proved to be 

quite successful in extracting the most relevant parts from a 

document. But automatic abstractive text summarization is 

a still developing research area. No system can completely 

justify its accuracy in representing the gist of a large text 

document with generated sentences. So, in the process of 

trying to solve the problem of coping with the ever-growing 

amount of online data we want to build an abstractive 

automatic text summarization system. This system is 

intended to reduce the limitations of existing systems and 

produce a concise and fluent summary while preserving key 

information content and overall meaning. Even with a small 

vocabulary dictionary, this system will be able to handle 

rare or out-of-vocabulary words. We aim to preserve the 

soundness and readability of the created summaries by 

handling semantic features of the source texts. We also 

intend to ensure maximum topic coverage by incorporating 

topical features with the system. 

Automatic text summarization has always been a major 

topic of interest in the field of NLP (Natural language 

Processing). When we humans write a summary, we read 

the entire document to get an overall understanding and 

represent that in a short form only highlighting the 

important points. Computers lack this language capability 

and thus makes it extremely difficult to automatically 

summarize text from a large document. Research interest in 

automatic summarization gained attention in the late 50s 

(Luhn et al. [1]) and there has been great improvement in 

this field ever since. 

Among the two approaches for automatic summarization, 

the great majority of past work has been extractive. This is 

because of the high level of difficulty of abstractive 

summarization. In this case, the computer has to come up 

with novel words to write the summary while preserving 

the meaning of the original input. This requires advanced 
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natural language techniques. Extractive summarization 

depends on the extraction of important parts of the source 

text. So the fundamental task here is to point out the most 

important sentences from the input document. The research 

on extractive text summarization began with the method of 

extracting important sentences using features like word and 

phrase frequency [1]. This paper proposed to extract the 

sentences of a document consisting of high-frequency 

words while ignoring the very high frequency common 

words. Recently, using neural networks for extractive text 

summarization has been showing effective results in 

understanding more context in a source document [2] [3]. 

The neural models work to combine only the important 

sentences while maintaining the semantics. Narayan et al. 

[4] proposed an encoder—decoder architecture based neural 

model consisting of RNNs and CNNs. They applied single-

layer convolutional neural systems over sequences of word 

embeddings to acquire portrayals of sentences. Then to 

make groupings out of sentences they used a recurrent 

neural network.  

On the other hand, abstractive summarization methods can 

be divided into three different approaches. In a structure 

based approach, important information of the text is 

assigned to some predefined structure to create abstractive 

summaries. There are different methods performed to 

approach this problem that are based on tree, rule, ontology 

or graphs. For semantic based approach semantic 

representation of the input texts is created before feeding it 

to a natural language generation system. The representation 

is attained by creating semantic graphs or by finding the 

informative part, argument-predicate structure. This system 

outputs the ultimate summary by using the noun and verb 

phrases [5]. In deep learning and neural network based 

approach, it requires training and learning data in order to 

extract features from the text. Abstractive summarization 

has become one of the most important topics for current 

researchers with the development of deep learning 

technologies in recent years. 

Recent success in sequence to sequence encoder-decoder 

model [6] has mostly paved the way of abstractive text 

summarization. Rush et al. [7] first introduced a neural 

attention sequence to sequence model with an attention 

based encoder and a neural network language model 

decoder for text summarization. Chopra et al. [8] further 

proposed an improvement to this model by replacing the 

feed-forward neural network language model with a RNN. 

Systems using these methods still could not reproduce 

factual details due to uncommon words. To solve this 

problem, different copy-mechanism approaches have been 

proposed by researchers [9][10][11].  

Song et al. [11] proposed an LSTM-CNN based abstractive 

text summarization frame-work (ATSDL) that can construct 

new sentences by exploring semantic phrases. First they 

performed phrase extraction on the source document and 

then used deep learning methods for generating summaries. 

To improve the performance of the text summarizer they 

combined LSTM and CNN together. They considered both 

semantics and syntactic structure for summary generation. 

After extracting phrases the model learns the collocation of 

them using LSTM. The summary is formed by a sequence 

of phrases that the model generated after training. To 

handle out of vocabulary words they used phrase location 

information.  

See et al. [9] proposes an approach to solve these two 

issues: (i) avoid reproducing factual details inaccurately and 

(ii) avoid summaries repeating themselves. This model 

creates a pointer mechanism that allows it to switch 

between generating text and copying text from source. The 

model uses a hybrid pointer-generator network that can 

copy words from the source text via pointing. This method 

helps to deal with out-of-vocabulary words which also 

retains the ability to generate new words. The overall 

mechanism helps to reproduce factual details accurately. 

They also proposed a coverage to keep track of what has 

been summarized to discourage repetition. Their model 

consists of three major parts- (i) baseline sequence to 

sequence model (ii) pointer generator model to handle rare 

words and (iii) coverage mechanism to avoid word 

repetition problems. In the context of multi sentence 

summaries, their model shows great effective results. 

Though their pointer module gives considerable accuracy 

advantage, the overall model cannot attain a higher level of 

abstraction -- which means it has a tendency to often copy 

words from the original sentence which is mostly seen in 

case of extractive text summarization. 

We built the model with a sequence to sequence encoder-

decoder architecture using recurrent neural networks. 

Topical feature learning is done by extracting topical words 

from the source text and integrating this information with 

the neural network. 

Preliminary Concepts 

For abstractive summarization, generating new sentences 

from the original texts while preserving the overall meaning 

requires advanced NLP techniques to form an entirely new 

summary. Some terminologies and concepts that are 

integral part of our proposed system are discussed here for 

better explanation. 

1.1 Sequence to Sequence Modeling 

A sequence to sequence model works with sequential 

information. In the case of text summarization, the input in 

this model is a long sequence of words and the output is a 

short sequence of words which is the summary. The 

architecture of a sequence to sequence model consists of 

two major components--encoder and decoder. 

Both of them are basically two neural network models 

where different kinds of Recurrent Neural Networks 

(RNNs) can be used. In the case of text summarization, 

Gated Recurrent Neural Network (GRU) or Long Short 

Term Memory (LSTM) have shown better performance. 

1) Encoder: The encoder is fed the entire input sequence, 

one word at a time. Each time it first transforms the 

input sequence into a vector representation and then it 
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updates its hidden states based on the current word and 

the previous words that it has already read, using a 

multi layer neural network. The encoder extracts 

information from the given input sequence which is 

forwarded to the decoder in order to help it to create 

the probability distribution over the next word. 

2) Decoder: The decoder generates the summary one 

word at a time. It predicts the next word in the output 

sequence given the previous word. It creates a 

probability distribution over the next word and the 

word with maximum probability is selected. So the 

encoder here converts overall information from the 

input texts into a fixed length vector which is used by 

the decoder to predict the next word. This can only 

work for short sequences of input texts as memorizing 

a long sequence into a fixed length vector can be quite 

hard. The attention mechanism can solve this problem. 

1.2 Attention Mechanism 

Attention mechanism decides how much attention should 

be paid to each word while generating the next word at a 

given time. The decoder increases the importance of 

specific parts of the input by accessing the intermediate 

hidden states in the encoder and predicts the next word 

using all that information. 

1.3 Word Embedding 

Word embedding is a technique in Natural Language 

Processing (NLP) which allows words with similar 

meaning to have a similar but unique representation. Here 

every word in the dictionary of a language is represented as 

real-valued vectors in a predefined vector space. Firth et al. 

[12] first proposed the idea of capturing information from a 

source based on the relationships among the words. Global 

Vectors for Word Representation (GloVe) [13] is one of the 

most significant word embedding systems. It consists of 

300 dimensional pretrained vectors that have been trained 

on Wikipedia and Gigaword. This embedding system is 

based on matrix factorization of word co-occurrence 

statistics. It considers the relationships between word pair 

and word pair rather than word and word. By giving lower 

weight for highly frequent word pairs, this embedding 

system prevents the meaningless stop words (eg: “the”, 

“an” etc.) dominating the training progress. It creates a 

global co-occurrence matrix by estimating the probability 

of a given word co-occurring with other words. In order to 

come up with word vectors, GloVe captures both global 

statistics and local statistics of a corpus. 

2. Proposed System 

We are proposing an abstractive text summarization system, 

a method to generate summary with new sentences from the 

original texts while preserving the overall meaning. Our 

method for generating text summary is performed through 

some major steps: 

1. Building a sequence to sequence model 

2. Choosing words between vocabulary set and the source 

document using pointer 

3. Ensuring coverage to solve word repetition problem 

4. Using a pre-trained word embedding system to 

preserve semantic similarity.  

5. Integrating topical features to generate context aware 

summary.  

2.1 Data Preprocessing 

The sequence to sequence model takes the source document 

by splitting the input texts into words. So as the first 

preprocessing step, the sentences are tokenized into words 

based on space. Punctuation marks are also considered as 

words. Then the tokens are converted to lowercase to get 

uniformed data. A vocab file is created with all the words 

with their frequency from the dataset. To point out the start 

and end of a sentence, unique symbols are added with each 

sentence. IDs are given to all the words as well as to the 

unknown tokens, ‘start decoding’ token and ‘stop decoding’ 

token. This data preprocessing step is very important as 

using jumbled or confusing words to train the model can 

create catastrophic results. 

2.2 Building Model 

Now we have to build our model by training them on the 

preprocessed data. 

2.2.1 Attention based sequence to sequence model 

We are aiming to read a document and compress its 

information to generate a meaningful summary. So to 

generate an output sequence from a given input sequence. It 

means we need a sequence to sequence model. This model 

aims to generate a fixed-length output vector from a fixed-

length input vector where their lengths can differ. Here our 

basic sequence to sequence model has an encoder-decoder 

architecture with a bidirectional LSTM encoder, a 

unidirectional LSTM decoder and an attention mechanism 

to produce a probability distribution of each word in the 

source document. 

2.2.2 Feeding the input sequence through a bidirectional 

LSTM Encoder 

An encoder processes the input sequence to get concise 

information and create a context vector of a fixed length. 

This vector represents a conceptual summary of the 

meaning of the input document. We are using a 

bidirectional LSTM encoder which consists of a forward 

LSTM and a backward LSTM and thus becomes very 

effective in capturing semantic information of previous and 

following words. First the encoder RNN will read the 

source document each word at a time. This will produce a 

sequence of encoder hidden states. The hidden states 

capture contextual information from the input sequence. 

The hidden state and cell state of the last time step 

initializes the decoder. 

2.2.3 Generating output sequence using unidirectional 

LSTM Decoder 

The vector from the last timestep of the encoder initializes 

the decoder which generates a sequence of its own that 

represents the output. In case of training, the decoder reads 
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the entire output sequence each word at a time and predicts 

the same sequence offset by one timestep. For the testing 

phase the targeted output is unknown to the decoder. Start 

and end tokens are added to the targeted output sequence so 

that the decoder knows when to start or end predicting the 

summary. Once the encoder has read the entire source text, 

the start token is fed to the decoder RNN and it begins to 

output a sequence of words. This uses a unidirectional 

LSTM layer to generate words one by one using the last 

word it predicted and the hidden state from the last 

timestep. The decoder creates a probability distribution over 

the next word and the word with maximum probability is 

selected. Each time it updates the decoder's hidden state. 

This process ends when the targeted length of the summary 

is reached or when the next word with maximum 

probability is the end token. 

2.2.4 Emphasizing specific parts of a long input sequence 

using attention mechanism 

The encoder converts the entire input sequence into a fixed 

length vector that tries to capture the context from the 

source document. The decoder is trained to generate a 

summary solely based on the last hidden state from the 

encoder. This design might fail in case of long input 

sequence as it can become very difficult for the encoder to 

represent the entire information from the source document 

through a single fixed length vector. To resolve this 

problem attention mechanisms are introduced. This 

mechanism creates an attention vector so that instead of 

using the information of all the words in the input sequence, 

the importance of specific parts of the input sequence is 

increased to generate the ultimate output sequence. This 

attention vector holds the information of how strongly a 

word is correlated with other words of the source sequence. 

Here is a simple example in figure 1 to show how this 

mechanism actually works: 

 

Fig. 1. An example of attention mechanism 

The attention distribution or the attention vector is 

calculated using the hidden states of the encoder and 

decoder, which is a probability distribution over the words 

in the source text [14]. 

  (3.1) 

Where weight vector v, weight matrix Wh, weight matrix Ws 

and bias term battn are learnable parameters. Here Whhi is the 

encoder feature, Wsst + battn is the decoder feature and tanh is 

the activation function with range (-1, 1). Then we pass this 

probability distribution for each word through a softmax 

function to get the attention distribution at 
in range 0 to 1. 

  (3.2) 

The attention distribution at
i represents the score of input at 

position i and output at position t on how well they match. 

This distribution is used to create the context vector h t -a 

dynamic representation of what has been covered from the 

original document for this step. h t is a weighted sum of the 

encoder hidden states. 

 
 

(3.3) 

The context vector and the decoder hidden state are 

combined and passed through two linear layers of a feed 

forward neural network to calculate the vocabulary 

distribution. The output layer consists of a probability 

distribution over all the words in a large fixed vocabulary. 

We get the next output using the maximum probability 

value. 

  (3.4) 

Here V’, V, b and b’ are learned by the network while 

training. 

  (3.5) 

From P(w) we get the probability to predict the word w. 

While training, this model uses negative log likelihood of 

the target word wt
 
for current time step as the loss function. 

  (3.6) 

Given T as the length of the targeted sequence, the overall 

loss is calculated. 

 

 

(3.7) 

2.2.5 Adopting pointer-generator network 

See et al. [9] proposed a hybrid pointer-generator network 

which combines the baseline attention based sequence to 

sequence model and a pointer network to choose words 

between source document and vocabulary set. As the 

pointer generator network can copy words from the source 

via pointing, this system can reproduce factual details more 

accurately. Suppose the targeted output sequence is “Spain 

beats Portugal by 3-2.” Here 3-2 is treated as one single 

word which is naturally a rare or out-of-vocabulary term. In 

this case the pointer generator network is able to copy this 

word directly from the source retaining the factual 

information correctly. 

So after the previous step we adapted this method [9] and 

calculated a conditional probability (Pgen) to decide whether 

to generate new words or copy words from the original 

input document. The calculated value here is a probability 

scalar between 0 and 1. Based on its value and a given 

threshold, a novel word is selected from the vocabulary or a 

word is copied from the source. To calculate Pgen for time 

step t the context vector ht, the decoder hidden state st and 

the decoder input xt pass through a linear layer and a 

sigmoid activation function (range 0 to 1) [9]: 

  (3.8) 
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where wh , ws, wx and bptr are learned by the neural network 

during training. A word can be generated from the 

vocabulary by sampling from Pvocab or a word can be copied 

from the source document through sampling from at
. An 

extended vocabulary is created by joining the vocabulary 

set and the words from the source document. Then using 

Pgen for each document, a probability distribution P(w) is 

calculated over the extended vocabulary. So P(w) is now 

updated from 3.5 to 3.9 

 
(3.9) 

P(w) is the weighted sum of Pvocab and at
. So if w is not in 

the vocabulary set then Pvocab(w) is zero and if w is not 

present in the source document then  is zero. 

Now the loss function is calculated using the modified 

P(w): 

  (3.10) 

 

 

(3.11) 

2.2.6 Pointer-generator with coverage 

Sequence to sequence models often generate repeated 

words especially when it has to generate multiple sentences. 

For example, without the knowledge of what has been 

covered so far the output sequence “Spain beats Portugal by 

3-2.” can become “Spain beats Spain by 3-2.” as both the 

word ‘Spain’ and ‘Portugal’ represent country names. 

To solve the problem of repetition, another vector is 

calculated to keep track of what has been covered in the 

summary until now. A coverage vector ct is obtained by 

adding the attention distributions. Thus it gives us the 

degree of coverage of the words from the source document. 

This coverage vector is incorporated with the attention 

mechanism affecting the attention distribution for current 

time step [9]. 

 

 

  (3.12) 

So et
i is now updated to  

 ) (3.13) 

Here Wc is learned by the model during the training process. 

Calculating loss: 

 

 

(3.14) 

 
 

(3.15) 

 

 

(3.16) 

Here λ is a hyperparameter to reweight coverage loss. 

2.2.7 Integrating pre-trained word embedding layer 

The simplest form of word embedding could be one where 

the value of the only dimension of the vector representation 

of each word is a unique integer, possibly the position of 

the word in the dictionary. The baseline pointer generator 

model includes a simple embedding matrix with shape 

(embedding dimension size × total number of words) for 

the vocabulary. Here the only information about the words 

is their indices from the vocabulary set. This simple word 

embedding makes sure that each word has a unique one 

dimensional vector representation. But no syntactic, 

semantic or other contextual information can be extracted 

using this simple embedding representation. This might 

result in losing important information. Using a pre-trained 

word embedding system with the baseline pointer generator 

network can help to represent the semantic meaning of 

words more precisely. 

We used a pre-trained GloVe embedding model to represent 

each word as an embedded vector before feeding them to the 

encoder or decoder. The tensorflow embedding lookup is 

performed to extract corresponding GloVe representations 

for every word. GloVe captures both global statistics and 

local statistics of a corpus in order to come up with word 

vectors. So incorporating this embedding system on top of 

Pointer Generator Network helps to maintain the contextual 

meaning of words in a detailed manner. 

2.2.8 Integrating topical words for better topic coverage 

The attention mechanism only considers the relationship 

between original input document and the targeted word. 

This might fail to get the overall summary of the source 

document due to less information of the important topics. 

Here we are introducing some topical vocabulary to get 

better coverage of the topics that the original document is 

based on. For example: “Country music, also known as 

country and western (or simply country), and hillbilly 

music, is a genre of popular music that originated in the 

Southern United States in the early 1920s. It takes its roots 

from genres such as American folk music (especially 

Appalachian folk and Western music) and blues. Country 

music often consists of ballads and dance tunes with 

generally simple forms, folk lyrics, and harmonies mostly 

accompanied by string instruments such as banjos, electric 

and acoustic guitars, steel guitars (such as pedal steels and 

dobros), and fiddles as well as harmonicas. Blues modes 

have been used extensively throughout its recorded 

history.” 

–Source: https://en.wikipedia.org/wiki/Country music  

From these texts we can already infer that the main topic 

here is country music. There could be multiple documents 

on music but not on country music. So the words ‘country 

music’ here gives some additional unique information about 

the document. So these words here are the topical words. 

We incorporated the information of topical vocabulary with 

the attention mechanism and used the updated one to 

generate our targeted summary. 
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Fig. 2. The pointer-generator model with additional information of topical keywords 

2.2.9 Extracting topical vocabulary 

There are many text analysis techniques to extract the most 

important words from a text sequence. Here we are using a 

statistical approach, TFIDF (term frequency–inverse 

document frequency) scoring, to extract important words in 

a document. This approach is fast in measuring how 

important a word is to a document in a collection of 

documents as it does not require training data in order to 

obtain topical words. 

The main idea behind this is- if a word occurs in a frequent 

manner in a document it must be important, so it should get 

a higher term frequency score. But, if the word occurs too 

frequently in many other documents, it is not a distinctive 

identifier for the current document. In that case it should get 

a lower inverse document frequency score.  

Here,  

 

(3.17) 

 

 

(3.18) 

Now the TF-IDF score is calculated by multiplying these 

two scores to ultimately assign values to words to identify 

their importance for a given document. 

  (3.19) 

3.2.10 Obtaining topical feature 

We have extracted N important words and their word 

embedding from the original document based on higher TF-

IDF score. Let Ei be the word embedding for the i-th topical 

word. First we calculate the sum of each word embedding 

of n topical words: 

 
 

(3.20) 

After calculating their sum we incorporated this 

information as an input for the traditional attention 

mechanism. Now the updated formula for the attention 

distribution becomes- 

 
 (3.21) 

Here Wk is a new learnable parameter. This weight matrix is 

applied to the sum of word embedding of N topical words 

(K) to get the topic feature WkK which is added with the 

traditional attention mechanism. 

Figure 2 illustrates the overall process of the pointer 

generator model with additional topical features to generate 

summary. Here E1, E2 ... EN are the word embedding of N 

important keywords of the source document. Their sum K is 

weighted and added with the attention mechanism as the 

additional feature. This updated formula for attention 

distribution results in generating a summary with better 

insight regarding the source document. 

3. Experimental Result and Discussion 

To test the proposed text summarization method described 

in section III we performed extensive experiments. We 

created four different models based on the additional 

features of the source texts: 

1. Retrained baseline pointer generator model (BPG) 
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2. Pointer generator model with pre-trained word 

embedding layer (PGWE) 

3. Pointer generator model with integrated topical feature 

(PGTF) 

4. Pointer generator model integrated with both the 

pretrained word embedding layer and the topical 

feature (PGWT) 

Here the first model (BPG) is a baseline pointer generator 

model with attention and coverage mechanism. Model 2, 3 

and 4 are based on the first model with additional modules. 

We trained and tested all of these models on the CNN/Daily 

Mail dataset. This section focuses on the performance 

analysis of the system which can be divided into several 

parts. 

3.1 Data Collection 

To evaluate the performance of the proposed model, we used 

the CNN/Daily Mail dataset which is a large collection of 

news articles and modified for summarization. We ran the 

experiment on 1,00,000 training pairs and 11000 test pairs. 

These are publicly shared data and are used by many 

researchers for text summarizer evaluation. We trained all the 

four of our models on the CNN/Daily Mail dataset. After 

conducting extensive experiments, we analyzed the output 

result to understand the efficiency of each of the models. 

Also we analyzed the data to compare our work with other 

state-of-the-art text summarization systems. One example of 

the CNN/Daily Mail dataset is shown in figure 3. 

 

Fig. 3. One example of the CNN/Daily Mail dataset 

3.2 Experimental Setup 

The training and testing of the models were conducted in a 

computer with intel core i7-7700k processor which has 4.2 

GHz speed and 32 GB RAM. The operating system was 

Ubuntu 18.04 LTS. For all the experiments, our model had 

150 dimensional hidden states, 400 maximum encoding 

step size, 100 maximum decoding step size, Batch size of 8, 

word embedding size 300 and a vocabulary of 50 thousand 

words. The training was done using Adagrad optimizer with 

an initial accumulator value of 0.1 and learning rate 0.15. 

To evaluate our model we installed the pyrouge package to 

obtain our rouge score. 

3.3 Implementation 

The major parts of implementation of the experiment are 

described below: 

3.3.1 Training module 

During the training and testing phase we limited the length 

of the input article to 400 tokens and the length of the 

summary to 100 tokens. These limits were set to exactly 

match the parameters of the experimental environment in 

[9], to better evaluate the results. We trained all of our 

models for about 25000 iterations. Training took almost 26 

hours for the 50k vocabulary model. 

3.3.2 Summary generation module 

In the testing phase the models go through the entire dataset 

in order and write the generated summaries to specified 

files. The dataset consists of articles along with their 

reference summaries. For each article, this module writes 

these extracted reference summaries and the generated 

summaries to files in different subfolders in order to run 

evaluation by the next module. 

3.3.3 Performance evaluation module 

This module is designed to test and verify the performance 

and accuracy of the proposed abstractive summarization 

system. To evaluate the quality of an abstractive 

summarization system, ROUGE metrics are used as the 

standard. Because it evaluates how much key information is 

being preserved between the reference summary and the 

generated summary. In our paper, we used the Python 

package pyrouge to run ROUGE evaluation [15]. We 

evaluated our models with the standard ROUGE metric, 

reporting the F1 scores for ROUGE-1, ROUGE-2 and 

ROUGE-L. 

ROUGE-1 measures the word-overlap between the 

reference summary and the generated summary.  

For example, if 

System Summary: I went to the nearby shop  

Reference Summary: I went to the shop 

  

   

ROUGE-2 measures the bi-gram overlap.  

For example, if 

System Summary: I went to the nearby shop 

Reference Summary: I went to the shop  

System Summary Bi-grams: I went, went to, to the, the 

nearby, nearby shop 

Reference Summary Bi-grams: I went, went to, to the, the 

shop  
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ROUGE-L measures the longest common sequence.  

For example, if 

System Summary: I went to the nearby shop 

Reference Summary: I went to the shop 

  

  

Now to calculate the F measure of these rouge values, 

 

3.4 Experimental Result 

In this section we will present experimental results for all 

the four different models. 

3.4.1 Baseline pointer generator model 

We retrained the pointer generator model [9] and after the 

testing phase we got the Rouge scores shown in table I. 

Table 1: Rouge score table for baseline pointer generator model 

Rogue Measure Rouge-1 Rouge-2 Rouge-L 

Baseline Pointer Generator 

Model [9] (retrained) 

36.79 13.05 31.22 

3.4.2 Pointer generator model with pre-trained word 

embedding layer 

From the pointer generator model with a pre-trained word 

embedding layer (GloVe) we got the Rouge scores shown 

in table II. 

Table 2: Rouge score table for pointer generator model integrated 

with pre-trained word embedding layer 

Rogue Measure Rouge-1 Rouge-2 Rouge-L 

Pointer Generator Model 

with GloVe 

37.21 15.6 33.29 

3.4.3 Pointer Generator Model with Integrated Topical 

Feature 

From the pointer generator model integrated with topical 

feature we got the Rouge scores shown in table III. 

Table 3: Rouge score table for pointer generator model with 

integrated topical feature 

Rogue Measure Rouge-1 Rouge-2 Rouge-L 

Pointer Generator Model with 

integrated topical feature 

37.3 15.86 33.5 

3.4.1 Pointer generator model integrated with pre-trained 

word embedding layer and topical feature 

From the pointer generator model integrated with both the 

pre-trained word embedding layer and the topical feature 

we got the Rouge scores shown in table IV. 

Table 4: Rouge score table for pointer generator model integrated 

with pre-trained word embedding layer and topical feature. 

Rogue Measure Rouge-1 Rouge-2 Rouge-L 

Pointer Generator Model 

integrated with pre-trained 

word embedding layer and 

topical feature 

39.01 17.25 35.94 

3.5 Performance Analysis 

Here is an example of generated summaries by the four 

different models:  

Source Text: 

maverick tottenham forward emmanuel adebayor has 

insisted that he is happy to stay and fight for his place at 

white hart lane and rejected reports linking him with a 

move away. taking to twitter on tuesday night, the 31- year-

old togo international expressed his gratitude at being able 

to play in the premier league and labeled the division ’the 

best in the world.’ adebayor joined spurs in 2011 from 

manchester city, initially on loan before an impressive first 

season tally of 18 goals, convinced the club to make the 

switch permanent for 5million the following summer. 

tottenham striker emmanuel adebayor rides the challenge of 

liverpool defender dejan lovren. adebayor takes to twitter to 

pledge his future to tottenham and insists he will fight for 

his place in the team . adebayor gives an underwhelming 

performance against league one side sheffield united in the 

league cup . the striker ’s significantly more modest form 

since then , however , coupled with the meteoric rise of 

homegrown star harry kane , have left adebayor little more 

than a bit-part in the spurs machine . this season , he has 

made just 16 appearances in all competitions , scoring only 

twice and has been criticised for several underwhelming 

performances , in particular his showing against league one 

’s sheffield united in the capital one cup semi-final . yet, the 

former arsenal , real madrid and manchester city hitman 

remains adamant that he will see out the remainder of his 

contract in north london . adebayor ’s last premier league 

goal for spurs came during a 1-2 defeat by newcastle back 

in october last year. adebayor has made just 10 appearances 

in all competitions this season and scored only twice. 

adebayor might be deemed surplus to requirements due to 

the breakthrough of homegrown star harry kane .  

- Source: MailOnline [16] 

Reference Summary: 

tottenham forward emmanuel adebayor has taken to twitter 

to insist his immediate future remains at white hart lane . he 

has one year left to run on his current contract at spurs . 

adebayor joined spurs in 2011 from manchester city , 

initially on loan before an impressive first season convinced 

them to make the move permanent . 

unfortunately , adebayor has not managed to rediscover his 

early form and has been reduced to a bit-part player in 

mauricio pochettino ’s plans . 

he has not scored a league goal for spurs since october .  
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Generated Summaries: 

Baseline PGN (retrained): 

emmanuel adebayor has insisted that he is happy to stay and 

fight for his place at white hart lane and rejected reports 

linking him with a move away . 

taking to twitter on tuesday night , the 31-year-old togo 

international expressed his gratitude at being able to play in 

the premier league and labeled the division ‘the best in the 

world’  

PGN with Glove word embedding layer (PGWE):  

emmanuel adebayor says he is happy to stay and fight for 

his place at white hart lane . tottenham striker emmanuel 

adebayor rides the challenge of liverpool defender dejan 

lovren adebayor might be deemed surplus to requirements 

due to the breakthrough of homegrown star harry kane . 

PGN with topical feature (PGTF): 

emmanuel adebayor rides the challenge of liverpool 

defender dejan lovren . 

adebayor gives an underwhelming performance against 

league one side sheffield united in the league cup . 

adebayor ’s last premier league goal for spurs came during 

a 1-2 defeat by newcastle back in october last year . 

Proposed PGN with GloVe word embedding layer and 

topical feature (PGWT): 

adebayor has insisted that he is happy to stay and fight for 

his place at white hart lane and rejected reports linking him 

with a move away. 

adebayor ’s last premier league goal for spurs came during 

a 1-2 defeat by newcastle back in october last year . 

adebayor might be deemed surplus to requirements due to 

the breakthrough of homegrown star harry kane . 

The rouge scores are calculated by comparing the generated 

summaries with the reference summaries. 

After analyzing the output of the baseline PGN model in the 

given example it can be seen that it generated some 

irrelevant or unimportant data. The last sentence in the 

example for the baseline model is observed to be deviated 

from the original topic. 

The generated summary from the PGWE model captures 

important parts of the input by handling semantic measures. 

The GloVe word embedding system tries to find correlation 

between word pairs and word pairs. So naturally the 

sentences with ‘adebayor’ mostly remain in the generated 

summary. 

For the PGTF model, the generated summary seems to be 

very context aware. The source text is about a sportsman 

possibly losing his good reputation due to unsatisfactory 

performance. The model could actually capture the context 

and generate a precise topic oriented summary. 

The proposed PGWT model consists of both the Glove 

word embedding layer and the integrated topical feature 

with network. So the summary generated by this model 

captures both the context and semantic features. As said 

before, the source text is about a sportsman possibly losing 

his good reputation due to unsatisfactory performance and 

the debut of another sports star. The summary generated by 

this model is observed to give almost all the important 

information from the source text without creating irrelevant 

details. 

Table V shows our experimental result for all the models 

with standard ROUGE metric reporting the F measure for 

Rouge-1, Rouge-2 and Rouge-L. 

Table 5: Rouge score table 

ROUGE 

Measure 

Baseline 

PGN 

PGWE PGTF proposed 

PGWT 

Rouge-1 36.79 37.21 37.3 39.01 

Rouge-2 13.05 15.6 15.86 17.25 

Rouge-L 31.22 33.29 33.5 35.94 

Chart 4 shows that integrating GloVe word embedding 

representation and topical features has clearly improved the 

performance of the summarization model. After analyzing 

the data in table V and chart 4 we can see that our proposed 

model achieves significantly better ROUGE scores than the 

baseline. So we can definitely conclude that our model 

ensures better performance in preserving key information 

while maintaining a moderate level of abstraction. 

 

Fig. 4. Comparing Rouge score to evaluate model performance 

4. Conclusion 

The enlarging growth of the Internet has made enormous 

amounts of data available. Day by day this is becoming 

more difficult for humans to extract valuable information 

from this huge amount of text data due to this abundance of 

information. Thus the need for an automatic text 

summarization system cannot be denied. In this book we 

proposed an automatic abstractive text summarization 

system using RNN. We feed a sequence of text data into the 

system and it generates a sequence of text as output in the 

form of a summary of the source text. 

Our system adopted a pointer generator network that helps 

the system to choose between copying words from the source 

text and generating novel words using the vocabulary 
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dictionary. So even if there is a small vocabulary dictionary 

or too many rare words in the input text, this system can 

handle the out-of-vocabulary words that ensures accurate 

reproduction of information. This system can also handle 

word repetition problems by using a coverage vector to keep 

track of what has been summarized at each timestep. This 

method helps to control the flow of the summary and 

eliminates repetition. We proposed to incorporate a word 

embedding layer with the model to handle semantic features 

of the source text. We used Global Vectors for Word 

Representation systems as the word embedding layer to 

represent the semantic meaning of words more precisely. Our 

model successfully incorporated topical features along with 

the attention mechanism in the pointer generator network. 

This approach focuses on the most important parts of the 

source document that ensures improvement in summary’s 

informativeness with better topic coverage. 

Our system is trained and tested on the CNN/Daily Mail 

dataset and after conducting extensive experiments we got a 

39.01 F1 score for Rouge-1, 17.25 F1 score for Rouge-2 and 

35.94 F1 score for Rouge-L. We retrained the baseline 

model and got 36.79, 13.05 and 31.22 F1 scores for Rogue-

1, Rouge-2 and Rouge-L respectively. We also analyzed the 

quality of the summaries by human evaluation. Our system 

outperforms the baseline model in both Rouge measure and 

qualitative result. 

In the future, we want to improve our model to reach a 

higher level of abstraction while maintaining the accuracy 

advantage. We also want to work on more advanced 

methods for extracting topical features from the source. 

There has been some very recent work on abstractive text 

summarization using BERT that is showing very promising 

results. So in future that direction of research might produce 

better outcomes.  

Despite some limitations, our model is already showing 

encouraging results compared to the state-of-the-art 

summarization systems and we believe it adds a significant 

value in the area of text summarization. 
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