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ABSTRACT 

Magnetic Resonance Imaging (MRI) is a principal diagnostic approach used in radiology to create images of a 

patient’s anatomical and physiological structures. MRI is the prevalent medical imaging practice to find 

abnormalities in soft tissues. Traditionally they are analyzed by a radiologist to detect abnormalities in soft tissues, 

especially the brain. However, the process of interpreting a massive volume of a patient's MRI is laborious. Hence, 

Machine Learning methodologies can aid in detecting abnormalities in soft tissues with considerable accuracy. This 

research has curated a novel dataset and developed a framework that uses Deep Transfer Learning to perform a 

multi-classification of tumors in the brain MRI images. This paper adapted the Deep Residual Convolutional Neural 

Network (ResNet-50) architecture for the experiments and discriminative learning techniques to train the model. 

Using the novel dataset and two publicly available MRI brain datasets, this proposed approach attained a 

classification accuracy of 86.40% on the curated dataset, 93.80% on the Harvard Whole Brain Atlas 97.05% 

accuracy on the School of Biomedical Engineering dataset. Our experimental results demonstrate the proposed 

framework for transfer learning is a potential and effective method for brain tumor multi-classification tasks.  

Keywords: Brain Tumor; CAD; Convolutional Neural Network (CNN); Computer Vision; Deep Transfer Learning; Magnetic Resonance 

Imaging (MRI). 

 

1. Introduction 

Recent advances in Artificial Intelligence (AI) and Machine 

Learning (ML) techniques are massively revolutionizing 

healthcare as new capabilities of automation are being 

applied in electronic patient record analysis, radical 

personalization, medical image analysis, drug discovery, etc. 

[1]. The application of AI and ML in different sectors of 

healthcare is impacting its outcomes in new and profound 

ways. One of these outcomes is observed in Magnetic 

Resonance Imaging analysis [2]. Magnetic Resonance 

Imaging is a leading modality used in radiology to study the 

anatomical and physiological processes of patients. It is the 

prevalent medical imaging method to identify tumors in brain 

scans of patients. MRI is frequently used to provide soft 

tissue contrast because of its non-invasive approach towards 

medical imaging [3]. MRI images are traditionally analyzed 

by a radiologist to detect abnormalities of the brain. This 

process of interpreting huge volumes of patient MRI scans is 

painstakingly difficult and time-consuming [4]. In 

applications where distinguishing between abnormal and 

healthy tissue is delicate, precise interpretations become 

imperative [5]. Machine learning has shown considerable 

ability to classify, detect correctly, and segment images with 

precise accuracy and processing speed [2]. In this research, 

we pro-pose a framework that uses Deep Transfer Learning 

to perform fine-grain classification of brain MRI images. 

This process entails the specific categorization of brain 

tumors from MRI scans of patients. Our proposed framework 

uses a Convolutional Neural Network (CNN) based on 

ResNet-50 architecture [6]. 

Brain MRI image classification is an area of extensive 

research at the intersection of Computer Vision (CV), 

Machine Learning, and Biomedical Imaging. Researchers 

have proposed novel methods that are geared toward 

tackling this research problem [5], [7], [8]. These methods 

range from learning the statistical characteristics of images 

to dimension reduction techniques to present-day Machine 

Learning approaches. However, these approaches thus far 

present inherent limitations of dataset size requirements and 

computational cost. Current Machine Learning approaches 

require massive training datasets and extended training time 

to generalize unseen samples better. Deep learning 

methodologies have been proposed in [9–12]; where they 

found that a better performance is achieved, though the 

method required substantial data sets that require massive 

computational requirements and training procedures. We 

propose a Deep Transfer Learning framework in this paper 

to further improve the classification performance of brain 

tumors using MRI images. 

Our proposed approach attained a classification accuracy of 

86.40% on the National Institute of Neuroscience & 

Hospitals, Bangladesh dataset, 93.80% on the Harvard 

Whole Brain Atlas dataset, and 97.05% accuracy on the 

Southern Medical University School of Biomedical 

Engineering dataset. Our experimental results demonstrate 

that the proposed framework for transfer learning is robust 

in terms of out of distribution generalization, feasible, and 

efficient for brain tumor classification using MRI images. 

The remaining portions of the paper are organized as 

follows: Section 2 presents the problem statement of MRI 

brain tumor classification and the contribution of this 

research. Section 3 explains the preliminaries of Deep 

Transfer Learning. In Section 4, the proposed methods are 
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explained while section 5 presents the experimental results, 

and section 6 discusses and concludes the paper.  

1.1 Related Work 

The task of classifying brain MRI is an area that is actively 

undergoing research. There has been an extensive corpus of 

the literature of proposed approaches amongst researchers 

studying brain MRI classification. These approaches are at 

the intersection of Computer Vision, Image Processing and 

Artificial Intelligence, and Machine Learning, which have 

been evolving over the years. The maturation of big data, 

compute power, and robust Machine Learning approaches 

have led to predominant use cases. Supervised learning 

algorithms [13] like Support Vector Machine, Artificial 

Neural Network, Decision Tree and Random Forest, and 

unsupervised learning approaches like Fuzzy C-Means, 

Self-Organizing Map, K- Mean Clustering, etc., have been 

pivotal to these range of use cases [5]. 

In their paper, Zacharaki et al. [7] reported a multi-stage 

framework with a Support Vector Machine and K- Nearest 

Neighbor classification algorithms to first predict three 

glioma grades with an accuracy of 85% and to further 

predict the glioma case into either high or low grade with 

an accuracy of 88%. Many pieces of literature exist on 

frameworks for solving brain tumor classification using 

MRI images [9–12]. Paul et al., in their 2017 work, 

presented two deep learning methods to predict brain 

tumors using axial MRI data. They proposed a fully 

connected neural network as their first method and a deep 

convolutional neural network as their second approach with 

a 91.43% overall accuracy [14]. 

Chaplot et al., in their 2006 paper [11], proposed methods 

using Self-Organizing Map, Artificial Neural Network, and 

a Support Vector Machine for brain MRI classification. El- 

Dahshan et al. [12], in their work, presented a novel 

technique consisting of Discrete Wavelet Transform, 

Principal Component Analysis to reduce feature space of 

the dataset, and a Feed-Forward Neural Network for a 

binary classification task of 101 normal and abnormal brain 

MRI images. Prior research in this direction strongly 

underscores the relevance of automating brain MRI 

classification to aid neuroscientists improve healthcare 

outcomes. Contrary to conventional classification methods 

that extensively depend on feature engineering as a 

precursor to the classification task, Convolutional Neural 

Networks learns feature representations hierarchically and 

directly using the data [5]. This approach is crucial to 

enabling the classifier to learn complex, rich representations 

of factors of variation from phenomena. Ertosun and Robin 

utilized a Convolutional Neural Network pipeline 

comprising two modules to detect Lower Grade Glioma 

(LGG) vs. Glioblastoma Multiforme (GBM) and 

determination of tumor grade using pathological data from 

the Cancer Genome Atlas [15]. Their experimental results 

achieved 96% accuracy of GBM v LGG classification, and 

71% for the identification of the tumor grades. Paul et al., 

proposed two approaches using Fully Connected Neural 

Networks and Convolutional Neural Networks for the 

classification of three tumor variants: meningioma, glioma, 

and pituitary [14]. Their results show that using axial brain 

images increases the classification accuracy of the neural 

network. Afshar et al., in [16] have proposed a Capsule 

Network that combines brain MRI images with coarse 

tumor boundaries to learn spatial relations to enable better 

classification performance. Their study obtained an 

accuracy of 90.89%. Anaraki et al., in their 2019 paper 

[17], presented an approach that combines a Convolutional 

Neural Network with a Genetic Algorithm for Optimization 

used to classify three Glioma sub-types achieving 90.0% 

accuracy and in another experiment Glioma, Meningioma, 

and Pituitary tumor variants obtaining a 94.2% accuracy. 

Zang et al. [18] have presented a hybrid approach that 

utilized Digital Wavelet Transform as feature extractor and 

Principal Component Analysis for dimensionality 

reduction, and a Kernel Support Vector Machine with 

Particle Swarm Optimization algorithm for the estimation 

of C and σ parameters. Saritha et al. [19] demonstrated 

Wavelet Entropy-based Spider Web Plots as features 

coupled with a Probabilistic Neural Network to classify 

brain tumor images achieving 100% accuracy. Wang et al., 

in [20] used a pipeline of Stationary Wavelet Transform 

(SWT) for feature extraction, Principal Component 

Analysis fordimensionality reduction combined with 

Particle Swarm Optimization, and Artificial Bee Colony for 

MRI brain images. Zhang et al. [21] in their 2015 paper, 

proposed a novel Computer-Aided Diagnostic system that 

comprises Discrete Wavelet Packet Transform (DWPT), 

which serves as a wavelet packet coefficient extractor, 

Shannon and Tsallis entropies which obtained entropy 

features from DWPT. Finally, they used a generalized 

Eigenvalue Proximate Support Vector Machine with a 

Radial Basis Function to classify MRI brain images into 

normal and abnormal classes. 

Nayak et al., in their 2016 work, proposed a novel 

classification framework the utilized 2-D discrete Wavelet 

Transform to extract feature vectors, Probabilistic Principal 

Component Analysis for feature space reduction, and 

AdaBoost with Random Forests classifiers. Nayak et al. 

[22] further proposed a Computer-Aided Diagnosis 

framework the employed contrast limited adaptive 

histogram equalization as a mechanism to enhance tumor 

regions in brain MRI images, 2- D stationary wavelet 

transform for feature extraction, AdaBoost, and Support 

Vector Machine algorithms for normal and abnormal brain 

MRI classification achieving 99.45% ac-curacy [23]. 

Gudigar et al., in a comparative study, assessed three multi-

resolution analysis methods – Discrete Wavelet Transform, 

Curvelet Transform and Shearlet Transform, and Particle 

Swarm Optimization for textual feature extraction from 

transformed images using Support Vector Machine for 

classification [24]. [25] have proposed a Deep Neural 

Network model using a Convolutional Neural Network to 

classify three tumor variants (glioma, meningioma, and 

pituitary tumor) and three glioma sub-types (Grade II, 

Grade III, and Grade IV) achieving an overall performance 

accuracy of 96.13% and 98.7% respectively. 
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Deep learning (DL) is becoming a cornerstone to a great 

many applications across a broad spectrum of disciplines 

[26–29]. The back-propagation algorithm has enabled DL 

models to construct hierarchies of concepts and 

representations through layered non-linear transforms with 

minimal feature engineering and domain knowledge [30]. 

Various DL architectures are applied increasingly to 

problems across disciplines, from the reconstruction of 

satellite imagery to drug discovery and protein 

structure/function prediction. The ability to learn complex 

hierarchies of factors of variability in signals is a focal 

reason for the surge in Deep Learning research and practice 

[31]. Deep Learning models are applied to a range of use 

cases across domains and disciplines [32–38].  

1.2 Problem Statement and Contribution 

1.2.1 Problem Statement 

The field of neuroscience is traditionally tasked with 

analyzing MRI data for the detection of tumors. The 

procedure, however, grapples with a considerable challenge 

and requires a substantial level of domain expertise through 

extensive formal skills acquisition. Researchers have 

proposed various methods to address this classification task 

using feature selection and reduction techniques as a 

precursor to classification [10–12]. In our research, we 

propose a framework using Deep Transfer Learning as a 

mechanism to solve the multi-class classification task of 

brain MRI images. Our research uses a Deep Residual CNN 

based on the ResNet-50 architecture.  

1.2.2 Contributions 

Our main contribution in research is a novel end-to-end 

Deep Transfer Learning framework using a ResNet-50 

CNN architecture that performs multi-classification of brain 

MRI images to aid clinicians in improving healthcare 

outcomes. We investigated the transferability of source 

domain invariant knowledge to the target domain to reduce 

the algorithmic training time in conjunction with improving 

the generalization performance of the trained model using a 

minimal target domain dataset. Thus, we obtained 

promising results on the target domain with high 

classification accuracy across the three datasets in the 

study. The second contribution is a publication of a novel 

brain MRI dataset of 130 patients consisting of 5285 

images belonging to 37 categories in collaboration with the 

National Institute of Neuroscience & Hospitals (NINS) in 

Bangladesh [39]. In the present study, we conducted 

experiments with our proposed NINS dataset and two 

public benchmark datasets: the Biomedical School of 

Engineering brain tumor dataset [40] that consists of 3064 

T1-weighted MRI images, and the Whole Brain Atlas that 

contains 1133 T2-weighted Harvard Medical School 

benchmark dataset [8].  

1.3 Preliminaries 

Transfer Learning formal definitions and notations 

The framework for transfer learning comprises domain, 

task, and marginal probabilities [41], [42] defined as 

follows: A domain, , is a two-element tuple that consists 

of input space indicated by , and a marginal probability, 

, is a sample data point. Thus, we can represent the 

domain formally as  

 

A Domain consist of two elements:  

where:  

• Input Speace :  

• Marginal distribution:  

 

Hence  represents a specific vector that is shown in the 

above depiction. A task, , on the other hand, is a two-

element tuple of the label space, , and target function, 

. From a probabilistic standpoint, the target function 

can be stated thus:  as a conditional probability. 

Given a domain , the definition of a Task  is thus stated 

by two elements:  

 

 

• A Label Space:  

• A predictive function , learned from the feature 

vectors/label pairs  

• For each feature vector in the domain,  predicts its 

corresponding label:  

The formulation of a Transfer Learning setting where DS is 

the source domain, TS is the source task, DT is the target 

domain, and TT is the target task is thus:  

 

 

 

 

Considering a classification task , with  as the input 

space and as the set of labels. Given two sets of samples 

drawn from both the source and target domains:  

 

 

The goal of Transfer Learning is to build a functional 

mapping  with a low target classification error 

on the target domain assuming the  and  are i.i.d. 

 Therefore, Transfer Learning as 

follows is defined as given a source domain  with a source 

task , and a target domain  with its target task , the 

objective of Transfer Learning is to allow the transferability of 

target conditional probability distribution  in  

using latent domain invariant knowledge from and  given 



Deep Transfer Learning for Brain Magnetic Resonance Image Multi-class Classification 17 

 or . Transfer Learning is well suited to 

cases where the number of target labels is disproportionately 

smaller than the number of source labels [43]. 

 

Fig. 1: High-level formal representation of Transfer Learning. 

2. Proposed Method 

2.1 System Architecture 

In this paper, we used ImageNet [44] as the source domain, 

a dataset with over one million images in one thousand 

categories of concepts from which the model learned and 

transferred invariant factors of variation to the target 

domain Brain MRI. Fig. 2 shows the architectural 

framework for this Representational Transfer Learning task. 

Transfer learning is a well-suited framework for healthcare 

computer vision tasks where target domain datasets for 

learning are significantly small, and model generalization is 

a key consideration [41].  

 

Fig. 2: Proposed system architecture. 

2.2 System Model and Assumptions 

We have shown a high-level overview of our proposed 

Transfer Learning framework in Fig. 3. The initial stage 

entails the setup of the dataset which includes loading both 

the brain MRI image data and associated class labels 

followed by batch normalization and cross-validation split 

into train and validation sets. We have used various data 

augmentation approaches to overcome overfitting by 

creating virtual copies of brain MRI images. This includes 

methods such as zooming, flipping, rotation, mirroring, etc. 

to up-sample the datasets. Afterward, we used ResNet-50 

CNN architecture, Optimal Learning Rate Finder, Gradient 

Descent with Restart (SGDR), and Adaptive Moment 

Estimation (ADAM). We trained the model through the 

three stages presented in Fig. 4 accordingly.  

2.2.1 Mechanism of Deep Transfer Learning 

This work proposes a Transfer Learning approach to the 

finegrain brain MRI classification problem using state-of-

the-art pre-trained ResNet-50 as the CNN architecture due 

to its robustness to the exploding gradient problem [6]. We 

have used a pre-trained network on the ImagetNet, a dataset 

that comprises over a million images in a thousand classes 

of concepts. ResNet architecture has applications in a 

variety of Computer Vision tasks due to its faster 

convergence speed relative to Inception and Visual 

Geometric Group, AlexNet. The architecture is very robust, 

simple, and useful.  

 

Fig. 3: A flow diagram of our proposed transfer learning 

framework. 

2.2.2 Proposed Stages of  Deep Transfer Learning 

The framework of Deep Transfer Learning overcomes the 

problem of lack of labeled data, for example, in medical 

imaging applications by utilizing domain-invariant tacit 

knowledge to solve related problems. This approach 

towards learning can lead to better generalization of models 

with minimal target domain data. Fig.4 illustrates the three 

stages of our proposed transfer learning framework.  

 

Fig. 4: Deep Transfer Learning Stages 1: Retraining ResNet 50; 2: 

Retraining the frozen layers of the network with augmented data; 

3:Unfreezing andretraining the network with augmented data. 

2.2.3 Datasets 

In this paper, we have published a dataset consisting of 

5285 T1-weighted MRI images belonging to 37 categories 

in collaboration with the National Institute of Neuroscience 
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& Hospitals (NINS) of Bangladesh [39]. Besides that, we 

have used two other public datasets, the School of 

Biomedical Engineering brain MRI dataset that comprises 

3064 T1-weighted contrast-enhanced images of 233 study 

patients indicated in Table II [40]. The second dataset is the 

Harvard Medical School Whole Brain Atlas brain MRI 

benchmark [8] that consists of 1133 T2-weighted brain 

MRI images of 38 patients shown in Table III. The size of 

all images is 256x256 pixels in the axial plane. 

 

Fig. 5: Sample Harvard Whole Brain MRI Dataset.  

The School of Biomedical Engineering, Southern Medical 

University brain MRI dataset comprises of three classes of 

brain tumors, Meningioma, Glioma, and Pituitary tumor, as 

depicted in Table II [40]. The Harvard Medical School 

dataset entails five classes, Cerebrovascular class (stroke), 

Neoplastic, Degenerative, and Inflammatory disease, as 

shown in Table III. We have used a 5-fold cross-validation 

technique to perform the network re-training, which ensures 

that we overcome the size limit of our dataset without over-

fitting. 

Table 1: National Institute of Neuroscience & Hospitals brain 

MRI dataset that contains 5285 T1-weighted contrast-enhanced 

images. 

Category  Total 

Patients 

Total 

Slices 

Brain Atrophy  8 264 

Brain Infection  2 38 

Brain Infection with abscess  2 76 

Brain Tumor  3 76 

Brain Tumor (Ependymoma)  1 36 

Brain Tumor (Hemangioblastoma  

Pleomorphic 

xanthroastrocytomametastasis)  

2 74 

Brain tumor (Astrocytoma 

Ganglioglioma)  

1 38 

Brain tumor (Dermoid cyst 

craniopharyngioma)  

1 38 

Brain tumor - Recurrenceremnant 

ofprevious lesion  

3 114 

Brain tumor operated with 

ventricular hemorrhage  

1 76 

Cerebral Hemorrhage  1 36 

Cerebral venous sinus thrombosis  1 76 

Cerebral abscess  1 36 

demyelinating lesions  1 38 

Encephalomalacia with gliotic 

change  

2 76 

focal pachymeningitis  1 36 

Glioma  2 76 

Hemorrhagic collection  1 38 

Ischemic change demyelinating 

plaque  

1 38 

Left Retro-orbital Haemangioma 2 112 

Leukoencephalopathy with 

subcortical cysts  

1 38 

Malformation (Chiari I)  1 38 

Microvascular ischemic change  2 72 

Mid triventricular hydrocephalus  1 38 

NMOSD ADEM  1 36 

Normal  44 1749 

Obstructive Hydrocephalus  2 76 

Post-operative Status with Small 

Hemorrhage  

1 38 

Postoperative encephalomalacia  1 38 

Small Vessel Disease 

Demyelination  

1 38 

Stroke (Demyelination)  1 38 

Stroke (Haemorrhage)  13 564 

Stroke(infarct)  19 906 

White Matter Disease  1 36 

meningioma  2 76 

pituitary tumor  1 76 

small meningioma  1 36 
 

Table 2: Southern Medical University, School of Biomedical 

Engineering brain MRI dataset that contains 3064 T1-weighted 

contrast-enhanced images. 

Category  Total Patients  Total Slices 

Meningioma  -  708 

Glioma  -  1426 

Pituitary Tumor  -  930 
 

Table 3: Harvard Whole Brain Atlas dataset contains 1133 T2-

weighted contrast-enhanced images.  

Category  
Total Patients 

Total 

Slices 

Normal  2 65 

Degenerative Disease  8 223 

Neoplastic Disease  8 277 

Inflammatory Infectious 

Disease  
5 

189 

Cerebrovascular Disease  15 376 

2.2.4 Essential Deep Learning Techniques 

In this research, we have applied state-of-the-art techniques 

in Deep Learning, like, data augmentation, Adam 

optimizer, Optimal Learning Rate Finder algorithm, and 

neural network hyper-parameter fine-tuning for the 

proposed framework.  
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a. Data Augmentation  

To avoid overfitting the model, which happens because of 

the small training set size, we have used data augmentation 

techniques such as flipping (vertical and horizontal), 

rotation, mirroring, and zooming to create virtual copies of 

the brain MRI images to improve model generalization 

performance. 

b. Optimal Learning Rate Finder (OLRF) 

Hyper-parameter tuning is vital towards model performance 

improvement, but this process is often cumbersome [45]. 

Therefore, we used the Optimal Learning Rate Finder 

algorithm to identify a stable set of learning rates to boost 

model generalization performance. The learning rate 

indicates the step size used to update the model weights 

during training. This affects the rate of convergence; if it is 

too small, convergence to the optimum on the error surface 

takes much time, and tiny updates on the model weights are 

performed. Conversely, when the learning rate is too high, 

the optimization algorithm shoots over the minimum, 

leading to divergence, thereby affecting model 

performance. The strategy used to set the step size has a 

critical role in out-of-sample generalization performance. 

c. Stochastic Gradient Descent with Restart (SGDR) 

SGDR is a form of learning rate annealing which uses 

cosine annealing to incrementally reduce the step size 

during the process of training a neural network. This 

approach tends to make minimal changes when the 

optimizer tends towards desired weight parameter updates 

of the model [46]. 

d. Classification Cost Function: Softmax Classifier 

(Multinomial Logistic Cost) 

The goal in a classification task is to maximize log-

likelihood or associate higher probability mass for correct 

class and lower probability mass for incorrect classes. 

Therefore we define the loss and cost functions are defined 

as thus:  

scores is the unnormalized log 

probabilities of the classes  

 

 

Loss Function  

Cost Function 

 

2.2.5 Performance Evaluation 

This subsection presents the metrics we have applied to 

evaluate the performance of the proposed learning 

framework. We have used the standard classification 

performance metric to evaluate the model. 

Performance metrics: 

Precision
TP

TP FP
 

Recall
TP

TP FN
 

F  Score
Precision Recall

Precision Recall
 

Accuracy
TP TN

 

where, 

False Negatives (FN) are class labels that are predicted 

negative which in the ground truth are positive. The is also 

known as a type two error.  

False Positives (FP) are class examples that are predicted 

to be positive which in the ground truth are negative. The is 

also known as a type one error.  

True Positive (TP) are class labels that are predicted to be 

positive which in the ground truth are positive.  

True Negative (TN) are class labels that are predicted to be 

negative which in the ground truth are negative. 

2.2.6 Simulation Environment 

In this research, we carried out all experiments in Python 

using fast.ai [47], a wrapper framework built on top of the 

PyTorch library. PyTorch is used for Graphic Processing 

Unit-based accelerated computing [48]. We carried out all 

experiments on a Linux Server (Ubuntu 10.04.4 LTS) Tesla 

V100. To evaluate the learning performance, we applied 

five-fold cross-validation using an 80% - 20% dataset split 

3. Experimental Results 

Experimental results of our work throughout the three 

progressive stages of transfer learning are presented. We 

present the model performance for the three stages of 

learning using ResNet-50, ResNet-34, AlexNet, and VGG-

19 deep learning CNN architectures. Training the neural 

network comprises three consecutive steps: 

1) Training the network with base layers frozen 

2) Retraining the network with augmented data 

3) Unfreezing the network and fine-tuning with the 

augmented data 

3.1 The National Institute of Neuroscience and Hospitals 

dataset 

3.1.1 Retraining the Network  

In the first stage, we re-trained the model as a benchmark 

by freezing the convolution base layers of the network and 

did not update its weights during this stage. The weight 

updates only occurred in the fully connected layers of the 
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network. We utilized the multinomial logistic cost function 

to measure the loss and a step size of 0.01096. We set the 

number of epochs to 8 to ensure the model does not overfit 

on the training set because small, and highly imbalanced 

dataset tends towards model overfitting, which affects out-

of-sample performance. On completing the first stage of the 

training, the model showed an overall accuracy of 87.43% 

using a fivefold cross-validation strategy. Fig 6 shows the 

top miss-classified images during this phase of training. 

 

Fig. 6: Illustration of top miss-classified images after stage I of 

training. 

We applied OLRF combined with SGDR algorithm to learn 

a step size in the weight space. This was achieved by 

boosting the learning rate with respect to the validation loss 

to discover an optimal learning rate to train the model. 

SDGR uses cosine annealing to reset the learning rate to 

traverse regions of the error surface to find the optimal 

minimum. 

3.1.2 Retraining the Network with Augmented Data 

In this second stage, we retrained the model with the 

augmented data and set the learning rate hyper-parameter 

by utilizing OLRF and SGDR algorithms between 2e
−4

to 

2e
−2

. After this stage of retraining, we did not notice a 

decrease in the train and validation losses as well as the 

accuracy as shown in Fig 10. 

3.1.3 Unfreezing the Network and Fine-tuning it with the 

Augmented Data: 

At this third and final stage, we unfroze all the base 

convolution layers, fine-tuned the network, and jointly 

trained them using the augmented data. This is Stage-3 in 

Fig 9 graph of the error rate across the model architectures. 

We trained the network for four epochs at this stage to 

adjust the trained weights to preserve the learned 

representation. To attain this goal, we set the step size of 

the last layers higher than the preceding ones during this 

fine-tuning process. We set the step size in the range of 3e
−6

 

to 4e
−3

 across the network. After fine-tuning, we achieved a 

validation accuracy of 84.40% due to the imbalanced nature 

of the dataset and the degree of noise in it as well. 

 

Fig. 7: Illustration of top miss-classified images after stage II of 

training with augmented training data. 

 

Fig. 8: Illustration of top miss-classified images after stage III of 

fine-tuning. 

We have plotted the error rates of the models, as shown in 

Fig.9. ResNet-50 converges faster during the last four 

epochs of the third training stage compared to VGG-19, 

Alexnet, and ResNet-34. This convergence property of 

ResNet-50 is demonstrated through the nearly smooth 

learning curve, which indicates the model was able to find a 

stable set of weights though the data is highly noisy, and 

classes are imbalanced. The VGG-19 model is second to 

ResNet-50 regarding convergence to the local minimum 

during the training phases consistently across the three 

stages of training, which indicates superior performance to 

Alexnet and ResNet-34. 
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Fig. 9: Error rates across the four model architectures. 

In Table IV, we have presented a comparison of metrics 

across the three stages of Transfer Learning in this 

experiment. The graph in Fig10 gives information on the 

training and validation accuracy for all training stages for 

the four CNN model architectures. We observed the 

network under-fitted since the validation error was lower 

than the training error. This was solved by extending the 

number of epochs. At stage two, we used techniques such 

as vertical flipping, max zooming, and max lighting to 

augment the MRI images. 

 
Fig. 10: Training vs. Validation Loss for all stages with ResNet-50. 

We assess the classification performance on the validation 

data for the three stages. During the five-fold cross-

validation training, we obtained the confusion matrices, 

which are shown in Fig.12 through Fig. 14. 

The matrices give a summary of the classification 

performance of the model, where the leading diagonals 

indicate correctly predicted classes and while miss- classified 

samples are outside the diagonals. At the end of stage I, the 

model reached an accuracy of 87.43% as shown in Fig.11. 

 

Fig. 11: Accuracy across four different model architectures. 

However, the average five-fold cross-validation accuracy 

value did not improve at the end of stage 2, which is mostly 

due to the class-imbalance problem with most classes in the 

dataset having a smaller number of examples. 

 

Fig. 12: Stage I confusion matrix after training the network with 

base layers frozen. 

 

Fig. 13: Stage II confusion matrix after retraining the network 

with augmented data. 

Table 4: Comparison of metrics across the 3 stages of training with the NINS dataset. 

Stage Training Loss Validation Loss Error Rate Accuracy Precision Recall F1-Score 

I 0.169824 0.401473 0.125662 0.874338 0.874338 0.874338 0.874338 

II 0.565008 0.541435 0.189251 0.810749 0.810749 0.810749 0.810749 

III 0.434329 0.460459 0.155942 0.844058 0.844058 0.844058 0.844058 
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Fig. 14: Stage III confusion matrix after unfreezing the Network 

and fine-tuning with the augmented data. 

3.2 Harvard Whole Brain Atlas Dataset 

3.2.1 Retraining the Network  

Following the same methodology used in experiment A 

stage 1, we froze the convolution layers of the network and 

did not update it during this stage. The learning rate hyper-

parameter was assigned 1e−3 and the number of epochs 

was set to 6. The epoch set to 6 to avoid overfitting the 

model on the training set. At this first stage, the training 

model achieved an overall accuracy of 92.47% in a fivefold 

cross-validation strategy. Fig 15 shows the top miss-

classified images during this phase of training. 

 

Fig. 15: Illustration of top miss-classified images after stage I of 

training. 

3.2.2 Retraining the Network with Augmented Data 

Having completed stage I, we used the OLRF algorithm 

combined with SDGR to find a stable step size in the 

weight space. SDGR uses cosine annealing to reset the 

learning rate to traverse regions of the error surface to find 

the minimum. We retrained the model with the augmented 

data and a learning rate set between the intervals 3e
−3

to 

2e
−2

. After this stage of retraining, we saw a decrease in the 

train and validation losses while the accuracy, however, did 

not increase. 

 

Fig. 16: Illustration of top miss-classified images after stage II of 

training with augmented training data. 

3.2.3 Unfreezing the Network and Fine-tuning it with the 

Augmented Data: 

Similar to the experiment I stage 3, we unfroze all the 

convolution base layers of the network, fine-tuned it, and 

trained them all using the augmented data. This is Stage-3 

in Fig.18 graph of the error rate across the four model 

architectures. We have set the step size in the range of 1e
−6 

to 4e
−3 

across the network. After fine-tuning, we re-trained 

the model and achieved a validation accuracy of 93.80%. 

 

Fig. 17: Illustration of top miss-classified images after stage III of 

fine-tuning. 

We have plotted the error rates of the models as shown in 

Fig.18. ResNet-50 converges faster during the last two 

epochs of the third training stage compared to VGG-19, 

Alexnet, and ResNet-34. This convergence property of 

ResNet-50 is demonstrated through the nearly smooth 

learning curve, which indicates the model was able to find a 

stable set of weights. The VGG-19 model is second to 

ResNet-50 regarding convergence to the local minimum 

during the training phases consistently across the three 

stages of training, which indicates superior performance to 

Alexnet and ResNet-34. 

We assessed the classification performance on the 

validation data for the three stages. During the five-fold 

cross-validation training, we obtained the confusion 

matrices, which are presented in Fig. 21 through Fig. 23. 

The matrices give a summary of the classification 

performance of the model were the leading diagonals 
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indicate correctly predicted classes and while miss- 

classified samples are outside the diagonals. At the end of 

stage I, the model reached an accuracy of 92.47% with 17 

incorrectly classified images, as shown in Fig. 21. This 

model correctly classified all normal cases in stage II, as 

shown in Fig. 19. 

 

Fig. 19: Training vs. Validation Loss for all stages with ResNet-50. 

 

Fig. 20: Accuracy across four different model architectures. 

However, the average five-fold cross-validation accuracy 

value improved from 92.24% to 94.42% at the end of stage 

2. Finally, Fig. 23 depicts stage III results. 14 images were 

incorrectly classified, and the model reached 93.80% 

average five-fold cross-validation accuracy. The whole 

training procedure takes 310 seconds. 

 
Fig. 21: Stage I confusion matrix after training the network with 

base layers frozen. 

Table 5: Comparison of metrics across the 3 stages of training 

with Harvard dataset. 

Stage Training 

Loss 

Validation 

Loss 

Error Rate Accuracy Precision Recall F1-Score 

I 0.2252 0.2464 0.0752 0.9247 0.9247 0.9247 0.9247 

II 0.3993 0.1894 0.0575 0.9424 0.9424 0.9424 0.9424 

III 0.3183 0.184569 0.0619 0.9380 0.9380 0.9380 0.9380 

 
Fig. 22: Stage II confusion matrix after retraining the network 

with augmented data. 

 

 

Fig. 23: Stage III confusion matrix after unfreezing the Network 

and fine-tuning with the augmented data. 

3.3 Biomedical School Brain MRI dataset 

3.3.1 Retraining the Network  

In this third and final experiment, we used the brain MRI 

dataset from the School of Biomedical Engineering, which 

consists of T-1 weighted images. We re-trained the model 

as a benchmark. We froze the convolution layers of the 
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network and did not update them during this stage. We only 

trained the weights of the fully connected layers of the 

model. We used the multinomial logistic cost function to 

measure the loss and error rate with a step size of 1e−3 and 

trained the model for 4 epochs. We set the number of 

epochs to 4 to ensure the model does not overfit  the 

training set. The model memorizes the given small dataset 

which affects out-of-sample performance. On completing 

the first stage of the training, the model showed an overall 

accuracy of 96.73% using a fivefold cross-validation 

strategy. Fig 24 shows the top miss-classified images 

during this phase of training. 

 
Fig. 24: Illustration of top miss-classified images after stage I of 

training. 

3.3.2 Retraining the Network with Augmented Data 

Similar to the preceding experiments, we utilized the OLRF 

with SGDR algorithms to learn an optimal step size in the 

weight space. This is achieved by boosting the learning rate 

with respect to the validation loss to discover an optimal 

learning rate to train the model. We used an initial learning 

rate set between the intervals 3e
−3 

to 2e
−2

in this stage of the 

experiment. SDGR uses cosine annealing to reset the 

learning rate to traverse regions of the error surface to find 

the minimum. After this stage of retraining, we saw a 

decrease in the train and validation losses, as shown in 

Fig.28. We used techniques such as vertical flipping, max 

zooming, and max lighting to augment the MRI images. 

The performance metrics are presented in Table. VI. 

 
Fig. 25: Illustration of top miss-classified images after stage II of 

training with augmented training data. 

3.3.3 Unfreezing the Network and Fine-tuning it with the 

Augmented Data: 

We unfroze all the convolution layers of the network, fine-

tuned it, and jointly trained them using theaugmented data. 

This is Stage-3 in Fig.27 graph of the error rate across the 

model architectures. At this stage, we trained the fully 

connected layers for 4 epochs, and we want the trained 

weights to adjust in line with training steps. To attain this 

goal, we set the step size of the last layers higher than the 

preceding layers during this process of fine-tuning. For this 

reason, we varied the learning rate across the layers of the 

network. At this stage, we set the learning rate to 1e
−6

 

through 4e
−3

 across the network. After fine-tuning, we re-

trained the model and achieved a validation accuracy of 

97.05%. 

 

Fig. 26: Illustration of top miss-classified images after stage III of 

fine-tuning. 

We have plotted the error rates of the models, as presented 

in Fig.27. ResNet-50 converges faster during the last two 

epochs of the third training stage compared to VGG-19, 

Alexnet, and ResNet-34. This convergence property of 

ResNet-50 is demonstrated through the nearly smooth 

learning curve, which indicates the model was able to find a 

stable set of weights. The VGG-19 model is second to 

ResNet-50 regarding convergence to the local minimum 

during the training phases consistently across the three 

stages of training, which indicates superior performance to 

Alexnet and ResNet-34. 

 

Fig. 27: Error Rates across four different model architectures. 

In Table. VI, we have presented the training and validation 

accuracy values for the experiment. Thegraph in Fig.28 

gives information on the training and validation accuracy 

for all stages of training. We observed the network under-
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fitted since the validation error was lower than the training 

error. This was solved by extending the number of epochs. 

At stage two, we used techniques such as vertical flipping, 

max zooming, and max lighting to augment the MRI 

images.  

Table 6: Comparison of metrics across the 3 stages of training 

with School of Biomedical Engineering dataset. 

Stage Training 

Loss 

Validatio

n Loss 

Error 

Rate 

Accurac

y 

Precision Recall F1-Score 

I 0.136737 0.121995 0.032680 0.967320 0.967320 0.967320 0.967320 

II 0.114440 0.104330 0.035948 0.964052 0.964052 0.964052 0.964052 

III 0.084613 0.067653 0.029412 0.970588 0.970588 0.970588 0.970588 

 

Fig. 28: Training vs. Validation Loss for all stages with ResNet-50. 

We assess the classification performance on the validation 

data for the three stages. During the five-fold cross-

validation training, we obtained the confusion matrices, 

which are shown in Fig.30 through Fig. 32. The matrices 

give a summary of the classification performance of the 

model where the leading diagonals indicate correctly 

predicted classes and while miss- classified samples are 

outside the diagonals. At the end of stage I, the model 

reached an accuracy of 96.73% with 20 incorrectly 

classified images across the three classes, as shown in 

Fig.30. The model in stage II, as shown in Fig. 19 had a 

steady number of incorrectly classified images.  

 

Fig. 29: Accuracy across four different model architectures. 

However, the average five-fold cross-validation accuracy 

value improved from 96.73% to 97.05% at the end of stage 

III. Finally, Fig. 32 depicts stage III results. 17 images were 

incorrectly classified and the model reached 97.05% 

average five-fold cross-validation accuracy. The whole 

training procedure takes 430 seconds. 

 

Fig. 30: Stage I confusion matrix after training the networkwith 

base layers frozen. 

 

Fig. 31: Stage II confusion matrix after retraining the network 

with augmented data. 

 

Fig. 32: Stage III confusion matrix after unfreezing the Network 

and fine-tuning with the augmented data. 
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Table 7: A comparative survey of brain MRI image classification methodologies. 

Study Accuracy Study I  Accuracy Study II Accuracy Study III Accuracy Study IV Task Method 

Cheng et al  - - - 91.28\% Multi SVM and KNN 

Paul et al - - - 91.43% Multi CNN 

Afshar et al  - - - 90.89\% Multi CNN 

Anaraki et al - - 90.9\% 94.2\% Multi GA-CNN 

Zacharaki et al - - 85\% - Multi SVM and KNN 

Zacharaki et al - - 88\% - Binary SVM and KNN 

El-Dahshan et al - - 98\% - Binary ANN and KNN 

Ertosum et al - - 71\% - Multi CNN 

Ertosum et al - - 96\% - Binary CNN 

Sultan et al - - 98.7\% 96.13\% Multi CNN 

Gudigar et al - 97.38\% - - Binary PSO and SVM 

Zhang et al - 99.33\% - - Binary GEPSVM 

Talo et al - 100\% - - Binary Deep Transfer 

Learning 

Proposed Study 85.23% 93.80% - 97.05% Multi Deep Transfer 

Learning 

 

4. Discussion and Conclusion 

4.1 Discussion 

Many researchers have proposed methods and techniques in 

Machine Learning using standard publicly available 

datasets for brain MRI classification tasks. These methods 

vary in their approaches from feature engineering, 

dimensionality reduction to deep learning-based. Table VII 

presents a comparison of research on the classification of 

MRI brain images. The table presents our proposed dataset 

Study I and three publicly available datasets: Study II 

(Harvard Whole Brain Atlas) [8], Study III (The Cancer 

Imaging Archive) [49], Study IV (School of Biomedical 

Engineering, Guangzhou University) [50]. In their paper, 

Chaplot et al. [11] proposed a 3-level Wavelet Transform 

method for feature extraction and a Support Vector 

Machine binary brain MRI classifier using 52 MRI data 

points obtaining an accuracy of 98%. Gudigar et al. [24] in 

a comparative study assessed three multi-resolution analysis 

methods - Discrete Wavelet, Curvelet, and Shearlet 

Transform, and Particle Swarm Optimization for textual 

feature extraction from transformed images using SVM 

classifier reported accuracy of 97.38% with a dataset of 612 

brain MRI scans based on Shearlet Transform. In their 2015 

paper, Zhang et al. [21], proposed a novel Computer-Aided 

Diagnostic system that comprises Discrete Wavelet Packet 

Transform (DWPT), which serves as a Wavelet Packet 

Coefficient Extractor, Shannon and Tsallis entropies which 

obtained entropy features from DWPT. Finally, they used a 

Generalized Eigenvalue Proximate Support Vector Machine 

with Radial Basis Function for brain MRI binary 

classification achieved 99.33% accuracy using a dataset of 

255 brain MRI images. Saritha et al. [19] have used 

Wavelet Entropy-based Spider Web Plots’ for 

dimensionality reduction combined with a Probabilistic 

Neural Network (PNN) for the classification reported 

accuracy of 100%. El-Dahshan et al. [12] in their work 

presented a novel technique consisting of Discrete Wavelet 

Transform, PCA to reduce the feature vectors dimensions, 

and a Feed-Forward Artificial Neural Network to classify 

101 brain MRI images achieved 98.6% accuracy. Wang et 

al. [20] used a pipeline of Stationary Wavelet Transform for 

feature extraction, Principal Component Analysis to reduce 

the feature space combined with Particle Swarm 

Optimization and Artificial Vee Colony to classify MRI 

brain images reported accuracy of 99.45%. Nayak et al. 

[23] proposed a Computer-Aided Diagnosis framework the 

employed contrast limited adaptive histogram equalization 

as a mechanism to enhance tumor regions in brain MRI 

images, 2-D Stationary Wavelet Transform to extract 

features, AdaBoost with a Support Vector Machine 

algorithms for normal and abnormal brain MRI 

classification achieving 99.45% accuracy with 255 MRI 

images. In this paper, we have found in the existing 

literature that feature engineering, dimensionality reduction, 

and other hybrid approaches have been predominantly used 

to solve the brain MRI image classification problem. 

Various dimensionality reduction methods like Principal 

Component Analysis are employed to reduce the feature 

space of training datasets. Most recently, Talo et al. [4] 

used Transfer Learning to perform binary classification of 

the brain, but our study proposes an expressive, fine-grain 

classifier that was trained on three distinct datasets. We 

have obtained an accuracy of 84.40% on the National 

Institute of Neuroscience and Hospitals dataset which 

comprises 5,285 T1-weighted, 93.80% on the Harvard 

Whole Brain Atlas comprising 1,133 T2-weighted images, 

and 97.05% on the Biomedical School of Engineering 

which comprise 3,064 T1-weighted brain images using 5-

fold cross-validation with ResNet-50 CNN model. 

In Fig. 33, we have presented a proposed system 

deployment diagram depicting the infrastructural setup and 

configuration of our proposed framework. 
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Fig. 33: Proposed system deployment diagram. 

4.2 Conclusion and Future Direction 

In this research, we have demonstrated that a pre-trained 

deep learning CNN architecture can be fine-tuned to 

perform fine-grain classification of brain MRI images for 

Computer-Aided Diagnosis of neurological disorders with 

very high accuracy under limited and highly in-balanced 

target domain data distribution. Deep Transfer Learning 

demonstrates the potential of quickly adapting a model to 

solve a problem rather than building one from scratch and 

has shown to be suitable in terms of evaluation 

performance. Transfer Learning, as an active area of 

Machine Learning Research, highlights the potential of 

accelerated adaptation of models across varied problem 

domains where underlying knowledge is invariant and 

transferable. We conducted three case studies using our 

novel dataset and two other publicly available datasets with 

separate contrast-enhancement techniques. Our research 

utilized data augmentation to address the limitations of the 

small dataset set size for the multi-class classification 

problem. We have shown the potential impact of Deep 

Transfer Learning as a potential research direction in 

solving the brain MRI multi-class classification problem.  
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