

REVIEW ARTICLE

Effectiveness of High-flow Nasal Cannula (HFNC) over Continuous Positive Airway Pressure (CPAP) as A Primary Mode of Respiratory Support in Children : A Review

Mohammad Abdullah Al Mamun¹, Debosree Saha², M Monir Hossain³

Abstract

HFNC provides heated, humidified gas which minimizes metabolic cost and eliminate effects of cooling and drying. It optimizes oxygenation, meets inspiratory demand and decreases inspiratory and expiratory work of breathing also wash out of pharyngeal dead space and helps in CO_2 removal. It's use has been expanded to all causes of acute hypoxic respiratory failure, especially in bronchiolitis, and in post-extubation respiratory failure as well, starting from Emergency Department, Pediatric Ward, Pediatric Intensive Care Unit (PICU), Neonatal Intensive Care Unit (NICU) and during transportation. It is well tolerated than CPAP, BiPAP and NIPPV. Continuous positive airway pressure (CPAP) is frequently used as the recommended treatment option for respiratory distress but it has some adverse events. In this review it is not about comparing HFNC with CPAP, because both comparisons are not of equal modalities, it is to understand what is the right place of HFNC therapy in children.

Keywords: High-flow nasal cannula (HFNC), continuous positive airway pressure (CPAP), respiratory support, children.

Introduction

Respiratory distress is one of the most common presenting problems in pediatric patients and requires immediate attention. Primary respiratory support by using non-invasive methods are becoming popular day by day. Although Continuous positive airway pressure (CPAP) is frequently used as the recommended treatment option there are problems with the use of CPAP like difficulties in maintaining the nasal prongs in the nostrils, granulation, ulceration, necrosis, nasal vestibular stenosis, nasal

deformities, poor tolerance of the infant to the apparatus, difficulties in positioning the neonate and increased nursing time and a need for skilled nursing staff.¹⁻³

Heated humidified high-flow nasal cannula (HFFNC) is a newly emerged non-invasive respiratory support that has been increasingly applied and recently gained popularity. A number of studies suggest that it is superior to CPAP because it protects airway mucosa, increases gas exchange and lowers respiratory work.^{4,5}

1. Professor, Division of Neonatal Cardiology, Department of Paediatric Cardiology, Bangladesh Shishu Hospital & Institute, Sher-E-Bangla Nagar, Dhaka-1207.
2. Registrar, Department of Paediatrics, Kuwait Bangladesh Friendship Govt. Hospital, Dhaka.
3. Professor and Head, Department of Neonatal Medicine, Bangladesh Shishu Hospital & Institute, Sher-E-Bangla Nagar, Dhaka-1207.

Correspondence to: Prof. Mohammad Abdullah Al Mamun, Professor, Division of Neonatal Cardiology, Department of Paediatric Cardiology, Bangladesh Shishu Hospital & Institute. Cell: +8801913475529, E-mail: mamundsh@gmail.com

Received: 11 March 2024; **Accepted:** 14 May 2024

HFNC is widely used in conditions like bronchiolitis, pneumonia and acute hypoxic respiratory failure. Studies have shown that HFNC can significantly improve oxygenation and reduce the need for intubation in children with moderate to severe respiratory distress. It is particularly effective in managing viral bronchiolitis, where it helps in reducing hospital stay and intensive care admissions.⁶

Despite its widespread use, there is still lack of standardized guidelines for HFNC application in pediatric care. The heterogeneity in study designs and settings makes it challenging to establish universally accepted protocols. More randomized controlled trials are needed to further delineate the optimal flow rates and clinical indications for HFNC in various pediatric respiratory conditions.⁶

Rationale of using heated humidified high-flow nasal cannula

The rationale behind HFNC therapy is to provide high flows, at a higher rate than the patient's peak inspiratory flow rate (PIFR), in order to overcome the high needs of a patient in respiratory distress.⁷ Historically, Standard Oxygen Therapy (SOT) is provided on low flow ≤ 2 L/min oxygen, without or with very little cold bubble humidification in the Emergency Department and in Pediatric Wards, which is not capable of delivering the optimum hydration level at the most favorable function of the respiratory system. The exact amount of oxygen administration is rarely known and approximations are made depending on the oxygen flow and the air mixing from the environment, according to the peak inspiratory flow generated by the patient's respiratory effort. O_2 is a dry gas and if we use O_2 long time it can cause dryness and irritation of respiratory mucous membrane which interfere respiratory ciliary function. When the gas is not properly humidified it increases energy expenditure and metabolic demand. Low flow increases inspiratory resistance in nasopharynx and alveoli. A system that could deliver a warm, well-hydrated, precise oxygen level, would have been ideal. By using HFNC heated humidified gas by eliminating the drying & cooling effects of airway: improves lung and airway mechanics and reduce metabolic demand of the body. Though HFNC is generally well-tolerated, there is a need for careful monitoring to avoid complications such as air leak syndrome. Guidelines suggest

starting with a flow rate of 1-2 L/kg/min, with a maximum of 10-12 L/min for infants and up to 50 L/min for older children and adults.⁸

Effectiveness of HFNC over CPAP as a primary mode of respiratory support

Liu et al⁹ conducted a prospective randomized controlled study, where 84 patients with pneumonia having mild to moderate respiratory failure admitted to the Children's Hospital Affiliated to Chongqing Medical University from January 2018 to December 2019 were randomly divided into the HFNC group and the CPAP group. Treatment failure necessitating intubation and transfer to the PICU was noted in 6(14%) of 43 infants in the HFNC group, as compared with 4(10%) of 41 infants in the CPAP group ($p>0.05$). There were no significant differences between the two groups in the duration of hospital stay, the duration of non-invasive respiratory support and mortality. HFNC resulted in lower rate of air leaks, nasal trauma, abdominal distension and later time of mechanical ventilation initiating, less duration of oxygen therapy and earlier enteral feeding.

In Bangladesh Chisti et al¹⁰ conducted an open RCT where 225 eligible children were recruited with severe pneumonia and hypoxemia showed that, there was no difference in treatment failure between patients in the CPAP group and the HFNC group.

A systemic review by Zayed et al¹¹ included 16 studies involving 2,180 subjects found that, non-invasive ventilation (NIV) was associated with a significant reduction in intubation rates compared with conventional oxygen therapy, but there was no significant difference in the efficacy with HFNC. But the results were different from those of the meta-analysis of 8 studies included 2259 subjects below 5 years of age on HFNC vs. CPAP in children with respiratory distress by Luo et al.¹² They found that, CPAP may be superior to HFNC in the treatment of moderate to severe respiratory distress and severe hypoxemia in infants aged 1-6 months, but no significant difference was observed between the two groups in infants aged 6-12 months.

In a randomized controlled trial, Vahlkvist et al¹³ examined the improvement of respiratory rate, PCO_2 and Modified Wood's Clinical Asthma Score (MWCAS) in over fifty children with bronchiolitis and discovered no differences. NIPS (Neonatal Infant Pain Score) was higher in the CPAP group. Treatment

failure was scarce in both groups. No significant differences in treatment duration or length of hospitalization were observed.

Milési et al¹⁴ conducted a randomized controlled trial where 142 infants were allocated to the 2-L/kg/min (2L) flow rate and 144 infants to the 3-L/kg/min (3L) flow rate. Failure rate was comparable between groups: 38.7% (2L) vs. 38.9% (3L; $p=0.98$). Worsening respiratory distress was the most common cause of failure in both groups: 49% (2L) vs. 39% (3L; $p=0.45$). In the 3L group, discomfort was more frequent (43% vs. 16%, $p=0.002$) and PICU stays were longer (6.4 vs. 5.3 days, $p=0.048$). The intubation rates [2.8% (2L) vs. 6.9% (3L), $p=0.17$] and durations of invasive [0.2 (2L) vs. 0.5 (3L) days, $p=0.10$] and noninvasive [1.4 (2L) vs. 1.6 (3L) days, $p=0.97$] ventilation were comparable. They concluded that, young infants with acute bronchiolitis supported with HFNC, 3 L/kg/min did not reduce the risk of failure compared with 2 L/kg/min.

An observational cohort study was conducted by Hegde et al¹⁵ in a tertiary care level III neonatal intensive care unit included 88 preterm infants between 28 to 34 weeks of gestation with mild to moderate respiratory distress within 6 hours of birth. They found that, there was no difference in the requirement of mechanical ventilation between HFNC (19.5%) and CPAP (26.2%) groups ($p=0.46$). Moderate or severe nasal trauma occurred less frequently with HFNC (10.9%) in comparison to CPAP (40.5%) ($p=0.004$).

Yoder et al¹⁶ conducted a randomized controlled unblinded non crossover trial, that included 432 infants ranging from 28 to 42 weeks' gestational age. They found that, there was no difference in early failure for HFNC (23/212 [10.8%]) versus CPAP (18/220 [8.2%]; $p=0.344$), subsequent need for any intubation (32/212 [15.1%] vs 25/220 [11.4%]; $p=0.252$) or in any of several adverse outcomes, including air leak. HFNC infants remained on the study mode significantly longer than CPAP infants (median: 4 vs 2 days, respectively; $p<0.01$), but there were no differences between study groups for days on supplemental oxygen (median: 10 vs 8 days), bronchopulmonary dysplasia (20% vs 16%) or discharge from the hospital on oxygen (19% vs 18%).

In 2020 a study was conducted by Charki et al¹⁷ in a neonatal intensive care unit in North Karnataka, India. In this study, all preterm neonates less than

37 weeks of gestation were placed on one of the respiratory supports (HFNC or CPAP), immediately following extubation from mechanical ventilation. There were no significant differences in major clinical outcomes including death, BPD, ventilator days, necrotizing enterocolitis, severe intraventricular hemorrhage, retinopathy of prematurity or time to full feeds. Failure of assigned mode of respiratory support was seen in 12% of infants on HFNC compared to 16% on CPAP ($p = 0.48$). No significant difference in other outcome measures was seen between the groups. No nasal injury was observed in the HFNC group against 10% in the CPAP group ($p=0.55$).

Manley et al¹⁸ conducted a multicenter, randomized, noninferiority trial and assigned 303 very preterm infants to receive treatment with either HFNC (5 to 6 liters per minute) or nasal CPAP (7 cm of water) after extubation. They found that, the use of HFNC was noninferior to the use of CPAP, with treatment failure occurring in 52 of 152 infants (34.2%) in the HFNC group and in 39 of 151 infants (25.8%) in the CPAP group (risk difference, 8.4 percentage points; 95% confidence interval, -1.9 to 18.7). Almost half the infants in whom treatment with HFNC failed were successfully treated with CPAP without reintubation. The incidence of nasal trauma was significantly lower in the HFNC group than in the CPAP group ($p = 0.01$), but there were no significant differences in rates of serious adverse events or other complications.

A meta-analysis by Wilkinson et al¹⁹ observed six studies, including 934 neonates who were randomized to either HFNC or CPAP as post extubation means of respiratory support. They demonstrated that, no additional risk of treatment failure in the HFNC group. It also suggested that in neonates from 28 to 32 weeks of gestation, HFNC (with the availability of rescue CPAP) may be an appropriate modality of respiratory support.

Iskandar et al²⁰ conducted a randomized, non-inferiority, clinical trial using HFNC vs. CPAP as a treatment for moderate respiratory distress within 72 hours after birth over 169 babies. They observed that, no differences were in terms of incidence of endotracheal intubation within <72 hours of HFNC (20%) compared to CPAP (18%) ($p = 0.799$). However, there was a significant difference in moderate nasal trauma in CPAP (14%) compared to HHHFNC (0%)

($p=0.006$). There were no significant differences of blood gas analysis results, full enteral feeding time, length of KMC, length of device uses and rate of complications (bronchopulmonary dysplasia/BPD, intraventricular hemorrhage/ IVH, patent ductus arteriosus/PDA, necrotizing enterocolitis/NEC and late onset neonatal sepsis/LONS) between the CPAP and HFNC groups.

Conclusion

HFNC is a valuable tool in pediatric respiratory care, offering several benefits over traditional methods. HFNC appears to have similar efficacy and safety to CPAP when applied as a primary mode of respiratory support in infant and children even in preterm infants with respiratory distress as well as post extubation means of respiratory support with low complication rate. However, careful patient selection and monitoring are essential to maximize its efficacy and safety. Continued research and development of standardized guidelines will help optimize its use in clinical practice.

References

1. Bonner KM, Mainous RO. The nursing care of the infant receiving bubble CPAP therapy. *Adv Neonatal Care* 2008;8:78-95.
2. Gupta N, Saini SS, Murki S, Kumar P, Deorari A. Continuous positive airway pressure in preterm neonates: an update of current evidence and implications for developing countries. *Indian Pediatr* 2015;52:319-28.
3. Iskandar ATP, Kaban RK, Djer MM. Heated, humidified high-flow nasal cannula vs. nasal CPAP in infants with moderate respiratory distress. *Paediatrica Indonesiana* 2019;59:331-39.
4. Chao KY, Chen YL, Tsai LY, Chien YH, Mu SC. The role of heated humidified high-flow nasal cannula as noninvasive respiratory support in neonates. *Pediatrics & Neonatology* 2017;58:295-302.
5. Hodgson KA, Davis PG, Owen LS. Nasal high flow therapy for neonates: current evidence and future directions. *Journal of Paediatrics and Child Health* 2019;55:285-90.
6. Venanzi A, Di Filippo P, Santagata C, Di Pillo S, Chiarelli F, Attanasi M. Heated Humidified High-Flow Nasal Cannula in Children: State of the Art. *Biomedicines* 2022;10:2353.
7. Ritchie JE, Williams AB, Gerard C, Hockey H. Evaluation of a humidified nasal high-flow oxygen system, using oxygraphy, capnography and measurement of upper airway pressures. *Anaesthesia and Intensive Care* 2011;39:1103-10.
8. Volakli E, Svirkos M, Violaki A, Chochliourou E, Kalamitsou S, Avramidou V, et al. High flow nasal cannula therapy in children: working principles and treatment failure predictors. *Signa Vitae* 2022;18(6).
9. Liu C, Cheng WY, Li JS, Tang T, Tan PL, Yang L. High-flow nasal cannula vs. continuous positive airway pressure therapy for the treatment of children <2 years with mild to moderate respiratory failure due to pneumonia. *Frontiers in Pediatrics* 2020;8:1-8.
10. Chisti MJ, Salam MA, Smith JH, Ahmed T, Pietroni MA, Shahunja KM, et al. Bubble continuous positive airway pressure for children with severe pneumonia and hypoxaemia in Bangladesh: an open, randomised controlled trial. *The Lancet* 2015;386:1057-65.
11. Zayed Y, Barbarawi M, Kheiri B, Haykal T, Chahine A, Rashdan L, et al. Initial noninvasive oxygenation strategies in subjects with de novo acute hypoxic respiratory failure. *Respiratory Care* 2019;64:1433-44.
12. Luo J, Duke T, Chisti MJ, Kepreotes E, Kalinowski V, Li J. Efficacy of high-flow nasal cannula vs standard oxygen therapy or nasal continuous positive airway pressure in children with respiratory distress: a meta-analysis. *The Journal of pediatrics* 2019;215:199-208.
13. Vahlkvist S, Jürgensen L, La Cour A, Markoew S, Petersen TH, Kofoed PE. High flow nasal cannula and continuous positive airway pressure therapy in treatment of viral bronchiolitis: a randomized clinical trial. *European Journal of Pediatrics* 2020;179:513-18.
14. Milési C, Essouri S, Pouyau R, Liet JM, Afanetti M, Portefaix A, et al. High flow nasal cannula (HFNC) versus nasal continuous positive airway pressure (nCPAP) for the initial respiratory management of acute viral bronchiolitis in young infants: a multicenter randomized controlled trial (TRAMONTANE study). *Intensive Care Medicine* 2017;43:209-16.
15. Hegde D, Mondkar J, Panchal H, Manerkar S, Jasani B, Kabra N. Heated humidified high flow nasal cannula versus nasal continuous positive airway pressure as primary mode of respiratory support for respiratory distress in preterm infants. *Indian Pediatrics* 2016;53:129-33.
16. Yoder BA, Stoddard RA, Li M, King J, Dirnberger DR, Abbasi S. Heated, humidified high-flow nasal cannula versus nasal CPAP for respiratory support in neonates. *Pediatrics* 2013;131:1482-90.

17. Charki S, Patil PK, Hadalgi L, Kulkarni T, Loni R, Karva MM, et al. Heated humidified high-flow nasal cannula versus nasal continuous positive airways pressure for respiratory support in preterm neonates - A noninferiority trial at a tertiary care center. *Journal of Clinical Neonatology* 2020;9:168-74.
18. Manley BJ, Owen LS, Doyle LW, Andersen CC, Cartwright DW, Pritchard MA, et al. High-flow nasal cannulae in very preterm infants after extubation. *New England Journal of Medicine* 2013;369:1425-33.
19. Wilkinson D, Andersen C, O'Donnell CP, De Paoli AG, Manley BJ. High flow nasal cannula for respiratory support in preterm infants. *Cochrane Database of Systematic Reviews* 2016;(2):1-76.
20. Iskandar ATP, Kaban RK, Djer MM. Heated, humidified high-flow nasal cannula vs. nasal CPAP in infants with moderate respiratory distress. *Paediatrica Indonesiana* 2019;59:331-39.