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Abstract: This article investigates the effects of 
radiation and heat generation on magneto-
hydrodynamic(MHD) natural convection flow 
of an incompressible viscous electrically 
conducting fluid along a vertically placed flat 
plate in presence of viscous dissipation and 
heat conduction. Appropriate transformations 
were employed to transform governing 
equations of this flow into dimensionless form 
and then solved using the implicit finite 
difference method with Keller box scheme. The 
resulting numerical solutions of transformed 
governing equations are presented graphically 
in terms of velocity profile, temperature 
distribution, skin friction coefficient and 
surface temperature and the effects of magnetic 
parameter (M), radiation parameter (R), 
Prandtl number (Pr) and heat generation  
parameter (Q)  and viscous dissipation 
parameter (N) on the flow have been studied 
with the help of graphs. 
 
Keywords: Radiation, Heat Generation 
Parameter, Viscous Dissipation Parameter, 
MHD, Finite Difference Method, Vertical Flat 
Plate. 
 
Nomenclature 
b          Plate thickness                                      

fxC  Local skin friction coefficient   

pC  Specific heat at constant pressure         

  f         Dimensionless stream function             
 g        Acceleration due to gravity                   

rG  Grashof number                                    

h  Dimensionless temperature 

0H  Strength of magnetic field                    

sf kk , Fluid and solid thermal 
conductivities 

l  Length of the plate                               
 M  Magnetic parameter                             
N  Viscous dissipation parameter 
 p   Conjugate conduction parameter    
Pr Prandtl number    

wq  Heat flux 

Q Heat generation parameter 
R Radiation parameter            

bT  Temperature at outside surface of the 
plate                                         

fT  Temperature of the fluid                       

 wT  Average temperature of porous plate 

∞T  Temperature of the ambient fluid         
u , v  Velocity components                            
u , v  Dimensionless velocity components    
x , y  Cartesian co-ordinates          
x , y   Dimensionless Cartesian co-ordinate 
β  Coefficient of thermal  expansion        
η    Dimensionless similarity variable 
θ  Dimensionless temperature 
µ   Viscosity of the fluid 
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ν  Kinematic viscosity                              
ρ  Density of the fluid         
σ  Electrical conductivity         

wτ  Shearing stress 
ψ  Stream function      

 
1. Introduction 
The natural convection about a heated vertical 
flat plate has received a great deal of attention 
due to its potential applications. In addition, 
MHD natural convection flow has significant 
applications in the field of stellar and planetary 
magnetospheres, aeronautics, chemical 
engineering and electronics. Considering of its 
importance, these flow have been studied 
several research groups [1-3]. As the 
engineering processes closely related to 
temperature, accordingly radiation heat transfer 
has significant influence on engineering. Due 
to its wide applications in space technology 
such as cosmical flight, aerodynamics rocket, 
propulsion systems, plasma physics, spacecraft 
re-entry aerodynamics and at high operators’ 
temperature a lot of researchers studied the 
effect of radiation on MHD free convection 
flow. Takhar and Soundalgekar [4] studied the 
effect of radiation on MHD free convection 
flow of a gas past a sami-infinite vertical plate 
using the Cogley-vincenti-Giles equilibrium 
model. The problem of natural convection-
radiation interaction on boundary layer flow 
with Rosscland diffusion approximation along 
a vertical thin cylinder has been investigated by 
Hossain and Alim [5]. Radiation effect on free 
convection flow of fluid from a porous vertical 
plate was studied by Hossain et al. [6]. 
Thermal radiation and buoyancy effects on 
MHD free convection heat generating flow 
over an accelerating permeable surface with 
temperature- dependent viscosity studied by 
Seddeek [7]. Abdel-naby et al. [8] studied the 
radiation effects on MHD unsteady free 
convection flow over a vertical plate with 
variable surface temperature. Moreover, heat 
generation effects in moving fluids is important 
in problems dealing with the chemical 
reactions and those concerned with dissociating 
fluids such as heat generation are resistance 
heating in wires, exothermic chemical reactions 
in a solid and nuclear reactions in nuclear fuel 

rods where electrical, chemical and nuclear 
energies are converted to heat. Furthermore, 
the viscous dissipation of heat in the natural 
convection flow is important when the flow 
field is of extreme size or in high gravitational 
field. Experimental and theoretical works on 
heat generation effects and viscous dissipation 
effects have been done extensively [9-13] but, 
to the best of our knowledge, no one has 
considered combined effect of radiation, heat 
generation and viscous dissipation under the 
process of steady natural convection flow. So, 
the objective of the present work is to study the 
effect of radiation, heat generation and viscous 
dissipation on MHD natural convection flow of 
an incompressible, viscous and electrically 
conducting fluid along a vertical flat plate 
under the influence of transverse magnetic field 
in presence of heat conduction. The governing 
partial differential equations are reduced to 
locally non-similar partial differential forms by 
using appropriate transformations. The 
transformed boundary layer equations are 
solved numerically adopting implicit finite 
difference method together with Keller Box 
Scheme technique [14, 15]. Here, the 
assumption is focused on the evaluation of the 
surface shear stress in terms of local skin 
friction, surface temperature, velocity profiles 
and temperature distribution for selected values 
of parameters consisting magnetic parameter M 
, radiation parameter R,. Prandtl number Pr, 
heat generation parameter Q and viscous 
dissipation parameter N. 
 
2. Mathematical Analysis                      
Let us consider a steady, free convection 
boundary layer flow of an incompressible and 
electrically conducting fluid along a vertical 
flat plate of length l and thickness b. The 
temperature bT  at the outer surface of the plate 
is considered constant and greater than the 
temperature ∞T  of the ambient fluid. The effect 
of radiation, heat generation and viscous 
dissipation in the flow region and conduction 
with in the plate are taken into account in this 
analysis. An uniform magnetic field of strength 
H0 is imposed along the y -axis. The flow 
configuration and the coordinates system are 
shown in Fig.-1.                                                                     
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The governing equations of such flow under 
the Bousinesq approximation can be expressed 
within the boundary layer as [8, 13]: 
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Plank’s function and fT  is the temperature of 
the fluid at the boundary layer. Where 
kinematic viscosity ν , Thermal expression co-
efficient β ,  Electrical conductivityσ , Cp is 
the specific heat due to constant pressure. The 
boundary conditions are: 

( )

( )
⎪
⎪

⎭

⎪
⎪

⎬

⎫

>∞→→→

>=−=
∂

∂

===

∞ 0,,0

0,0

,0,,0

xyatTTu

xyatTT
kb
k

y
T

xTTvu

f

bf
f

sf

f

 

 
 
(4) 

We observe that the equations (1) to (3) 
together with the boundary conditions (4) are 
nonlinear partial differential equations. 
Equations (1) to (3) may now be non-
dimensionalized by using the following 
dimensionless dependent and independent 
variables: 
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Where ( )ρµν =  is the kinematic viscosity, Gr 
is the Grashof number and θ  is the non-
dimensional temperature. Using equation (5) in 
equations (1) to (3), we can obtain the 
governing equation in a dimensionless form as: 
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The corresponding boundary conditions are: 
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Here ( ) 2/122
0

−= GrlHM µσ  is the magnetic 
parameter, ( ) 2/124 −Γ= GrlR ν  is the radiation 
parameter, ( )fp kCµ=Pr is the Prandtl 

number ( )( )∞−= TTlCGrN bp
22ν  is the 

viscous dissipation parameter and 
( ) 2/12

0
−= GrClQQ pµ  is the heat 

 Fig. 1: Physical model and coordinate system
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generation parameter and 
( ) ( ) 4/1Grlbkkp sf=  is a conjugate 

conduction parameter. The value of the 
conjugate conduction parameter p depends 
on ( )lb , ( )sf kk and Gr but each of which 
depends on the types of considered fluid and 
the solid. Therefore in different cases p is 
different but not always a small number. In the 
present analysis we have taken p=1.The steam 
function and similarity variable and the 
dimensionless temperature are considered in 
the following form to solve the equations (7) 
and (8) and for the boundary conditions 
described in (9) 
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Where ψ is the dimensionless stream function 
which is related to the velocity components 
such as yu ∂∂= /ψ  and xv ∂−∂= /ψ , η  is 
the similarity variable and ),( ηxh  is a 
dimensionless temperature.  By substituting 
(10) in equations (7) and (8) and the boundary 
condition then we obtain the transformed 
equations: 
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The boundary condition (9) become 

⎪
⎭

⎪
⎬

⎫

∞→→∞→∞′
=++

+−=′=′=

yatxhxf
yatxhxx

xxhxfxf

0),(,0),(
0)0,()1(

)1()0,(,0)0,()0,(
20/15/1

4/1

 

 
 
(13)

 

The set of equation (11) and (12) together with 
the boundary condition (13) are solved 
numerically by applying Implicit finite 
difference method with Keller-Box [14] 
Scheme. Detailed numerical method is given in 
the book “Physical and computational aspects 
of convective heat transfer” written by Cebeci 
and Bradshaw [15]. In practical point of view, 
it is important to calculate the values of the 
skin friction co-efficient. This can be written in 
the dimensionless form as 
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Thus the local skin friction co-efficient is 
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and the numerical value of the surface 
temperature distribution are obtained from 
the relation 

)0,()1()0,( 5/15/1 xhxxx −+=θ  (16) 
We have discussed the velocity profiles and 
temperature distributions for various values of 
Prandtl number, magnetic parameter, radiation 
parameter heat generation parameter and 
viscous dissipation for the present 
investigation. 
 
3.  Results and Discussion 
The numerical results for the velocity and the 
temperature are illustrated in Figs. 2-6 and the 
skin friction and surface temperature are 
depicted in Figs. 7-11. The values of prandtl 
number are taken to be 0.733, 0.900, 1.000 and 
1.446 which correspond to air, ammonia, steam 
and water respectively. The detailed numerical 
solutions have been obtained for a wide range 
of values of the parameters as M=0.10-1.00,  
R=0.001-0.05, Q=0.01-0.10 and N=0.01-1.00. 
The numerical values of velocity and 
temperature against η  are obtained from the 
solution of the equations (11) and (12) with the 
boundary condition (13) for different values of 
magnetic parameter M when Pr=0.733 
R=0.001 Q=0.01 and N=0.01 and are illustrated 
in Fig. 2(a) and Fig. 2(b), respectively. The 
magnetic field acting along the horizontal 
direction and exert a pull on flowing fluid 
particle as well as create retard forces which 
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oppose the motion of the fluid. As a result, the 
velocity of the fluid decreases with the 
increasing value of magnetic parameter is 
shown in figure 2(a). 
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Fig. 2: (a) Variation of velocity and (b) Variation 
of temperature against η  for varying of M with Pr 
= 0.733, R = 0.001, Q =0.01 and N = 0.01 

 
For each value of M, the velocity is zero at the 
boundary wall and then increase to maximum 
value as η increases and finally approach to 
zero. Moreover, we have seen that the velocity 
profiles meet together after certain value of 
η and cross the side. This is because, the 
gradient of decreasing of velocity increases 
with the increasing of magnetic parameter. In 
Fig. 2 (b), it can be seen that the temperature 
increases within the boundary layer for the 
increasing values of magnetic parameter M due 
to interaction of applied magnetic field and 
fluid particles. Moreover, the temperature 
decreases monotonically with increasing of η 
for a particular value of M. The maximum 
values of the temperature are 0.8613, 0.8819, 

0.8955 and 0.9038 for M =0.10, 0.50, 0.80 and 
1.00, respectively. Each of which occurs at the 
surface of the plate. Here the magnetic field 
works to retard the fluid motion as well as 
increase the temperature and the thickness of 
the boundary layer. 
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                                (b) 
Fig. 3: (a) Variation of velocity and (b) variation of 
temperature against η for varying of R with 
Pr=0.733, M=0.50, Q=0.01 and N=0.01. 
 
The variation of the velocity and the 
temperature distributions with η , respectively 
for some selected values of the radiation 
parameter R together with a certain value of 
Prandtl number Pr, magnetic parameter M , 
heat generation parameter Q and viscous 
dissipation parameter N presented in Fig. 3 (a) 
and Fig. 3 (b), respectively. Fluid absorbed 
heat while radiation imitates from the heated 
plate, as a result the motion and the 
temperature of the fluid increases with in the 
flow region. That’s why the velocity and the 
temperature increase with the increasing of R. 
It can be noted that, near the surface of the flat 
plate, velocity increases by a long way and 
becomes maximum. It then decreases along 
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horizontal direction. The maximum values of 
the velocity are 0.3920, 0.4079, 0.4387 and 
0.4655 for R = 0.001, 0.010, 0.030 and 0.050 at 
η = 1.3827, 1.4279, 1.4741 and 1.5214. From 
Fig. 3 (a) and also numerical values we seen 
that the velocity profiles shift upward and the 
position of the peak velocity moves toward the 
boundary layer for the increasing R. As the 
temperature of the fluid increases with the 
increasing of radiation as shown in Fig. 3(b), 
accordingly the thickness of the boundary layer 
increases observed in Fig. 3(b).  
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                                     (b) 
Fig. 4: (a) Variation of velocity and (b) varia- 
tion of temperature against η for varying of 
Pr with M=0.50, R=0.001, Q=0.01 and N=0.01.

 
Numerical values of the velocity and 
temperature with respect to η  are depicted 
graphically in Fig.4(a) and Fig. 4 (b), 
respectively for different values of Prandtl 
number Pr with magnetic parameter M = 0.50, 
radiation parameter R = 0.001, heat generation 
parameter Q= 0.01 and  viscous dissipation 
N=0.01. The increasing value of Pr increase 
viscosity of the fluid. Viscosity increase means 
that the density of the fluid increase which 
results fluid does not move freely. It can be  

seen that the velocity decreases gradually and 
the peak velocity moves towards the interface 
for the increasing Pr. Moreover, the velocity is 
zero at the wall and increases to the peak as η 
increases and finally approaches to zero. These 
are expected behavior because it supports the 
no-slip condition at the wall and the fluid 
motion outside the boundary layer. Fig. 4 (b) 
shows that the temperature distribution over the 
whole the boundary layer decreases due to the 
increase of Pr. It agree the physical fact that 
the temperature at the solid fluid interface is 
reduced because, temperature at the plate 
considered constant and   thermal boundary 
layer thickness as well as velocity decrease 
with the increasing of Pr.     
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Fig.5: (a) Variation of velocity and (b) varia- 
tion of temperature against η for varying of  
N with Pr=0.733, M =0.50,R=0.001 and Q=0.01.
 
Fig. 5 (a) and Fig. 5(b), respectively illustrates 
the effects of N on velocity and temperature 
while Pr = 0.733, M = 0.50, R =0.001 and 
Q=0.01. From Fig. 5(a) conclude that the 
velocity profiles increases slightly due to the 
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increase of viscous dissipation parameter N 
along the η direction and also we have seen 
that near the surface of the plate the velocity is 
increases to maximum with increase of viscous 
dissipation parameter N then after the peak 
position start to decrease and finally 
approaches to zero. The maximum values of 
the velocities are0.3920, 0.3964, 0.4037 and 
0.4163 which occurs for N = 0.01, 0.20, 0.50 
and 1.00 respectively. On the other hand from 
Fig. 5(b), we have seen that the same result is 
holds for temperature distributions within the 
boundary layer due to increasing of viscous 
dissipation parameter N.  
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Fig.6: (a) Variation of velocity and (b) varia- 
tion of temperature against η for varying of  
Q with Pr=0.733, M=0.50, R=0.001 and N=0.01. 
 
The maximum value of temperature are 0.8819, 
0.8961, 0.9199 and 0.9639 for viscous 
dissipation parameter N =0.01, 0.20, 0.50 and 
1.00, respectively. Each of which occurs at the 
surface of the plate. This is because; the 
increased value of dissipation parameter N 

produces heat and also dissipates viscosity of 
fluid. 
The effects of heat generation on velocity and 
temperature with respect to η  are shown in 
Fig.6 (a) and 6(b), respectively. It is observed 
from figures, the increased value of heat 
generation parameter Q leads to increase the 
velocity and temperature profiles within the 
boundary. Moreover, the velocity profile shifts 
upward for the increasing Q and temperature 
profile also moves up with a rise in heat 
generation parameter Q while the values of 
controlling parameter are kept fixed.  
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                                (b) 
Fig.7: (a) variation of skin friction and (b) variation 
of surface temperature against x for varying of Pr 
with M=0.50,R=0.001, Q=0.01 and N=0.01. 
 
Fig. 7(a) and Fig. 7(b), reveals that the skin 
friction coefficient and the surface temperature 
for some selected values of M with Pr = 0.733, 
R = 0.001, Q=0.01 and N=0.01. The increased 
value of M leads to a decrease of the skin 
friction coefficient and increase surface 
temperature on the plate. This is because, due 
to the interaction between applied magnetic 
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field and fluid field. The magnetic field retards 
the fluid motion and reduces the skin friction 
coefficient and produce temperature at the solid 
fluid interface. 
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Fig.8: (a) variation of skin friction and (b) variation 
of surface temperature against x for varying of R 
with Pr=0.733, M=0.50, Q=0.01and N=0.01. 
 
The variation of the local skin friction 
coefficient Cfx and local surface temperature 
( )0,xθ  for different values of R associated 

with Pr = 0.733, M = 0.50, Q=0.01 and N 
=0.01 are illustrated in Fig. 8(a) and Fig. 8(b), 
respectively. Radiation increases the fluid 
motion as mentioned in Fig. 3(a) and increases 
the shear stress at the wall, for which local skin 
friction increase with the increasing of R. This 
phenomenon demonstrated in Fig. 8(a).The 
increased value of the radiation parameter 
increases the temperature (Fig. 3(b)) which 
after increase the surface temperature along the 
x-direction. Moreover, surface temperatures 
depend on temperature variation. As the 
temperature of fluid increase with in the 

boundary layer, the surface temperature also 
increases.   
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Fig.9: (a) variation of skin friction and (b) variation 
of surface temperature against x for varying of Pr 
with M=0.50, R=0.001, Q=0.01and N=0.01. 

 
The effects of Prandtl number on the skin 
friction Cfx  and surface temperature θ(x,0 ) with 
the increasing of axial distance x for the 
selected values of magnetic parameter, 
radiation parameter, heat generation parameter 
and viscous dissipation parameter is shown in 
Fig. 9(a) and Fig. 9(b), respectively. The values 
of Pr are proportional to the viscosity of the 
fluid. So the increased values of Pr decrease 
the velocity and temperature of the fluid within 
the boundary layer, as a result corresponding 
skin friction coefficient and surface 
temperature also decreases as shown in Fig.9(a) 
and Fig. 9(b). Moreover, for a particular value 
of Pr the local skin friction coefficient and 
surface temperature increases monotonically 
due to the increasing of x.  
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Fig. 10(a) and Fig. 10(b) illustrates the local 
skin friction coefficients and surface 
temperature for different values of N with 
increasing of x and controlling parameters Pr = 
0.733, R = 0.001, M = 0.50 and Q=0.01. 
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Fig.10: (a) variation of skin friction and (b)variation 
of surface temperature against x for varying of N 
with Pr=0.733, M=0.50, R=0.001and Q=0.01. 
 
The velocity and the temperature of the fluid 
increase with the increasing of N that has been 
shows in Fig.5 (a) and 5(b), respectively 
accordingly corresponding skin friction and 
surface temperature increase associated with 
the increasing of N. It is also observed that the 
skin friction  and surface temperature change 
rapidly with small change of viscous 
dissipation parameter. 
Fig.11 (a) presents the variation of skin friction 
coefficient for varying of heat generation 
parameter. The skin friction coefficient 
increases associated with the increasing of Q 
due to the heat generation effects, which 
accelerates the fluid flow.  Similar situation is 
observed in Fig.11 (b) for the case of surface 

temperature distribution within the boundary 
layer for increasing heat generation parameter. 
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Fig.11: (a) variation of skin friction and (b)variation 
of surface temperature against x for varying of Q 
with Pr=0.733, M=0.50, R=0.001 and N=0.01. 
 
4. Conclusion  
In this analysis the effect of radiation and 
viscous dissipation on magnetohydrodynamic 
(MHD) natural convection flow along a 
vertical flat plate in presence of heat generation 
has been investigated for some selected values 
of pertinent parameters including magnetic 
parameter, radiation parameter, Prandtl 
number, heat generation  parameter and viscous 
dissipation parameter. From the present 
investigation, it may be concluded that the 
velocity of the fluid and the skin friction at the 
interface decrease with the increasing magnetic 
field and Prandtl number while they increase 
with the increasing of radiation parameter, heat 
generation  parameter and viscous dissipation 
parameter. The temperature  of the fluid and 
also the surface temperature increases with the 
increasing magnetic field, radiation parameter, 
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heat generation  parameter and viscous 
dissipation but decrease for Prandtl number. 
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