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Abstract: An edge-ranking of a graph G is a 
labeling of its edges with positive integers such 
that every path between two edges with the same 
label i contains an intermediate edge with label 
j>i. The minimum edge-ranking spanning tree 
problem is to find a spanning tree of a graph G 
whose edge-ranking needs least number of ranks. 
In this paper, we present an algorithm to solve the 
minimum edge-ranking spanning tree problem on 
a partial k-tree G in O(n2∆(k+1)+2 ∆k(k+1)+2 

log2
k(k+1)+2n) time, where n is the number of 

vertices, ∆ is the maximum vertex degree of the 
graph G and k is bounded by a constant value. 
 
Keyword: Algorithm, partial k-trees, edge-
ranking, spanning tree. 
 
1 Introduction 
An edge-ranking of a graph G is a labeling 
(ranking) of the edges of G with positive 
integers such that every path in G with end 
edges of the same label i contain an internal 
edge with label j ≥ i+1 [1, 2]. Clearly an 
edge-labeling is an edge-ranking if and only 
if, for any label i, deletion of all edges with 
labels >i leaves connected components, each 
having at most one edge with label i. The 
integer label of an edge is called the rank of 
the edge. The minimum number of ranks 
needed for an edge-ranking of G is called the 
edge-ranking number and is denoted by 

)(' GX r . The edge-ranking problem is to find 
an edge-ranking of a given graph G using 

)(' GX r ranks. This problem has applications 
in scheduling the parallel assembly of a 
complex multi-part product from its 
components [1]. 
The problem of finding an optimal edge-
ranking was first studied by Iyer et al. in 
1991 as they found that the problem has an 
application in scheduling the parallel 
assembly of multipart products. Lam and Yue 
have proved that the edge-ranking problem is 
NP-hard for general graphs [3] and also they 
have solved the optimal edge-ranking 

problem on trees in linear-time [4]. A 
polynomial-time algorithm of this problem is 
also available on partial k-trees [5]. 
Makino et al. introduced a minimum edge-
ranking spanning tree problem which is 
related to the minimum edge-ranking 
problem but is essentially different. The 
minimum edge-ranking spanning tree 
problem (MERST) is to find a spanning tree 
of G whose edge-ranking is minimum. They 
proved that this problem is NP-hard and 
proposed a polynomial-time approximation 
algorithm for general graphs [6]. Exact 
polynomial-time algorithm of this problem is 
available only for threshold graphs [7]. This 
problem has interesting applications, e.g., to 
scheduling the parallel assembly of a multi-
part product from its components and the 
relational database [6]. 
In this paper, for the first time, we give an 
algorithm for solving the minimum         
edge-ranking spanning tree problem on 
partial k-trees that needs O(n2∆(k+1)+2 ∆k(k+1)+2 
log2

k(k+1)+2n)  time. 
 
2 Definitions and Preliminary Results 
2.1 Partial k-tree  
All the graphs we consider in this paper are 
finite and undirected. Let G=(V,E) be a graph 
with vertex set V and edge set E. The set of 
vertices and the set of edges of G are often 
denoted by V(G) and E(G), respectively. A 
natural generalization of ordinary trees is the 
so-called k-trees. The class of k-trees is 
defined recursively as follows [8]: 
(a) A complete graph with k vertices is a k-

tree. 
(b) if G=(V,E) is a k-tree and k vertices v1,v2, 

. . . ,vk induce a complete subgraph of G, 
then G′= (V ∪ {w}, E∪ {(vi, w) | 1≤ i ≤ 
k}) is a k tree, where w is a new vertex 
not contained in G. 

(c) All k-trees can be formed with rules (a) 
and (b). 



SULTANA: AN ALGORITHM FOR SOLVING MINIMUM EDGE-RANKING SPANNING TREE PROBLEM ON PARTIAL K-TREES 2 

A graph is called a partial k-tree if it is a 
subgraph of a k-tree. Thus a partial k-tree G= 
(V, E) is a simple graph without multiple 
edges or self-loops and |E |< kn. In this paper 
we assume that k is bounded by a fixed 
integer.  
2.2 Tree-Decomposition  
A tree-decomposition of a graph G =(V, E) is 
a pair (T, S), where T=(VT, ET) is a tree and 
S= {Xx | x∈VT} is a collection of subsets of V 
satisfying the following three conditions [9]: 
(a) ∪ x∈ TV  Xx = V ; 
(b) for every edge e = (v, w)∈E, there exists 

a node x∈VT with v, w ∈Xx; and 
(c) for all x, y, z ∈VT , if node y lies on the 

path from node x to node z in T, then  Xx 
∩ Xz ⊆  Xy. 

So every partial k-tree G has a tree-
decomposition (T, S) with ≤k and nT≤n, 
where nT is the number of nodes in T  and 
every node of the tree-decomposition can 
contain at most k+1 vertices. 
The construction of a partial k-tree can be 
represented by a “binary decomposition tree” 
Tb. Let (T, S) be a tree-decomposition of a 
graph G with width ≤ k then it can be 
transformed into a binary tree-decomposition 
as follows[8]: Regard T as rooted tree by 
choosing an arbitrary node as the root and 
replace every node x of d children, say y1, y2, 
. . ., yd, with d+1 new nodes x1, x2, . . . , xd+1 
such that Xx= 1xX =

2xX = . . . =
1+dxX , where 

xi, 1 ≤ i ≤ d, is the father of xi+1 and the i-th 
child yi of x, and xd+1 is a leaf of the tree. This 
transformation can be done in O(n) time. 
Let (Tb, S) be the binary tree-decomposition 
of a partial k-tree G= (V, E), where 
Tb=(

bTV ,
bTE ). Let x be a node in Tb and T(x) 

be the subtree of Tb rooted at x. We associate 
a subgraph Gx = (Vx, Ex) of G with each node 
x of tree Tb, where 
(a) Vx  =∪ {Xy | y=x or y is a descendant of x 

in Tb}; and 
(b) Ex  = {(v,w) ∈  E | v, w ∈  Vx}. 
The graph associated with the root of Tb is 
the given graph G itself. Gx may have m 
spanning subgraphs 1

xH , 2
xH ,..., m

xH . Let 
p
xH =(Vx, p

xE ), be a spanning subgraph of Gx, 
where p

xE ⊆Ex. 
Let x be a node in Tb and let ϕ  be an edge-
labeling of the spanning subgraph 

p
xH =(Vx, p

xE ) of Gx. The label (rank) of an 
edge e∈ p

xE  is denoted by ϕ (e). The number 
of ranks used by an edge-labeling ϕ  is 
denoted by #ϕ . One may assume without 
loss of generality that ϕ  uses consecutive 
integers 1, 2, 3, . . ., #ϕ  as the ranks. 
   For a rank i, 1≤ i ≤ #ϕ , denote by 
E( p

xH ,ϕ ,i) the set of edges e in p
xH with 

ϕ (e) = i, and let n ( p
xH ,ϕ , i) =|E( p

xH ,ϕ ,i)|. 
Then ϕ  is the edge-ranking of p

xH  if and 
only if n (D,ϕ , i) ≤ 1 for any i, 1≤ i ≤ #ϕ , 
and any connected component D of the graph 
obtained from p

xH  by deleting all edges with 
ranks >i. 
2.3 Upper Bound and Lower Bound of 
Edge-ranking Number for Trees 
Makino et al. presented a top-down algorithm 
for tree-ranking and analyzed the lower and 
upper bound of the ranking. We next cite the 
two lemmas [6]. 
Lemma 1 For any tree T=(VT, ET), we have 

)(' TX r ≥ max{∆T, ⎡log2n⎤}, where ∆T is the 
maximum vertex degree in T and n=|VT|.                        
Lemma 2 Let T=(VT, ET) be a tree with 
|VT|=n. Then 

=)(' TX r ⎡log2n⎤               if ∆T=0, 1, 2 

1log
log)2()('

2

2

−∆
−∆

≤
T

T
r

nTX   if ∆T ≥ 3.              

                                               
3 Main Idea of Algorithm 
As like many other algorithms on partial k-
trees, dynamic programming and bottom-up 
tree computation technique is used in this 
algorithm to solve the problem. On each node 
of the binary tree-decomposition of the input 
graph, a table of all possible partial solutions 
of the problem is computed from leaves to 
root, where each entry in the table represents 
an equivalence class. The time complexity of 
such an algorithm mainly depends on the 
number of partial solutions generated at each 
node. 
We now characterizes minimum edge-
ranking spanning tree problem of a partial k-
tree in terms of visible vertices, and also 
describes types of spanning subgraphs of a 
partial k-tree.  
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3.1 Visible Vertices 
The rank of an edge e∈ p

xE  is said to be 
visible from a vertex v∈Vx under ϕ  in p

xH  if 
p
xH  has a path P from v to e every edge of 

which has a rank ≤ϕ (e).  
   For a subgraph ),( EVG ′′=′  of G, we 
denote by ϕ | G′ a restriction of ϕ  to G′ . Let 

'ϕ =ϕ | G′ , then 'ϕ (e)=ϕ (e) for e∈Ex. We 
can have the following lemma which 
characterizes the edge-ranking of a spanning 
subgraph of a partial k-tree by the number of 
visible vertices. 
Lemma 3 Let Tb be a binary decomposition 
tree of a partial k-tree G and let x be an 
internal node in Tb with two children y and z. 
Then an edge-labeling ϕ  of a spanning 
subgraph p

xH of Gx is an edge-ranking of 
p
xH if and only if 

(a) ϕ | q
yH  and ϕ | r

zH  are edge-rankings of 
q
yH  and r

zH , respectively, where q
yH  

and r
zH are spanning sub-graphs of Gy 

and Gz, respectively; and 
(b) at most one edge of any rank is visible 

from any vertex v∈Xx under ϕ  in p
xH . 

Proof. :⇒  Suppose that ϕ  is an edge-ranking 
of a spanning subgraph p

xH of Gx. Then for 
any label i, deletion of all edges from 

p
xH with labels >i leaves connected 

components, each having at most one edge 
with label i. 
(a) Let x be an internal node of Tb with two 
children y and z. Let ϕ | q

yH  and ϕ | r
zH  be 

the restrictions of ϕ  to q
yH  and r

zH , where 
q
yH and r

zH  are spanning subgraphs of Gy 
and Gz respectively. Since ϕ  is an edge-

ranking of spanning subgraph p
xH  of Gx and 

q
yH  is a subgraph of p

xH , for any label i, 

deletion of all the edges from q
yH  with label 

>i leaves connected components, each having 
at most one edge with label i. Therefore 
ϕ | q

yH is an edge-ranking of q
yH . Similarly 

ϕ  to r
zH  is an edge-ranking of r

zH . 

(b) Let i be any rank. Delete all edges with 
rank >i from p

xH . Among the connected 
components of the resulting graph, let D be 
the one containing a vertex v ∈Xx. Let n (D, 
ϕ , i) be the number of edges in D with rank 
i. Then exactly n (D, ϕ , i) edges with rank i 
are visible from v under ϕ  in p

xH . Since ϕ  is 

an edge-ranking of p
xH , we have n(D,ϕ ,i)≤1. 

Therefore, at most one edge of rank i is 
visible from v under ϕ  in p

xH . 
   :⇐  Suppose for a contradiction that an 
edge-labeling ϕ  satisfies (a) and (b), but ϕ  
is not an edge-ranking of p

xH . Then there 
exists a rank i such that the deletion of all 
edges with labels >i from p

xH leaves a 
connected component D containing more 
than one edges containing i. Since (a) and (b) 
hold, D is neither a subgraph of q

yH  nor r
zH . 

Furthermore q
yH  and r

zH  have common 
vertices only in  Xx. Therefore D has a vertex 
v∈Xx. Then all edges with label i in D are 
visible from v in p

xH . Therefore, more than 

one edges of rank i are visible from v in p
xH , 

contrary to (b).                                              
3.2 Types of Spanning Subgraphs  
Consider x be a node in Tb. To compute a 
table of all possible partial solutions for each 
node x of Tb, all possible spanning subgraphs 
of xG  are generated and for each spanning 
subgraph, all possible edge-labelings are 
generated. From all these edge-labelings of 
spanning subgraphs of Gx, feasible edge-
labelings are calculated which form a table of 
partial solutions at node x. While generating 
spanning subgraphs of Gx, both spanning 
trees and spanning forests of Gx are 
considered. Therefore, for each node x of Tb, 
1 to | xX |-tree type spanning subgraphs are 
considered. A one-tree type spanning 
subgraph of Gx is a spanning tree of Gx and i-
tree type, 2≤ i ≤ (k + 1), spanning subgraph is 
a spanning forest of Gx, having exactly i 
components (trees). 
 
4 Equivalence class  
Many algorithms on partial k-trees use 
dynamic programming. On each node of the 
tree-decomposition of the input graph, a table 
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of all possible partial solutions of the 
problem is computed, where each entry in the 
table represents an equivalence class. The 
complexity of the algorithm largely depends 
on the size of the table. So we need to find 
appropriate equivalence class to reduce the 
table size. Before defining the equivalence 
class, we need to define a few terms. 
Let R = {1,2, . . . ,m} be the set of ranks. 
Let x be node in Tb and let ϕ : p

xE → R be an 
edge-labeling of the spanning subgraph p

xH = 

(Vx, p
xE ) of Gx. For an integer i, we denote 

by count(ϕ , v, i) the number of edges ranked 

by i and visible from v∈Xx under ϕ  in p
xH . 

If ϕ  be an edge-ranking of p
xH , then by 

Lemma 3, count(ϕ , v, i)≤1 for any vertex 
v∈Xx and any integer i∈R. Let D be the 
connected component containing a vertex 
v∈Xx in the graph obtained from p

xH , by 
deleting all edges w with ϕ (w)>i. Then count 
(ϕ , v, i) = n (D, ϕ , i). 
Iyer et al introduced the idea of  “critical list” 
to solve the ordinary vertex-ranking problem 
for trees [10]. Later similar idea was used to 
define visible-list L(ϕ , v). We use the similar 
concept for edge-ranking and define visible-
list L(ϕ , v) as: 

L(ϕ , v) = {ϕ (e)| e ∈ p
xE is visible from a        

           vertex v under ϕ  in p
xH }. 

The ranks in the visible-list L(ϕ ,v) are stored 
in non-increasing order. 
For an edge-labeling ϕ  of p

xH , we now 
define a function obstacle ϕλ : Xx×Xx→R 
∪ {0, ∞}as follows: 

ϕλ (v, w) = min{ λ | p
xH has a path P from   

                 v ∈Xx to w∈Xx such that ϕ (e) ≤ λ    
                 for each internal edge e of P }. 
Let ϕλ (v, w) = 0 if (v, w)∈ p

xE or v=w, and 

let ϕλ (v, w) = ∞ if p
xH  has no path from v to 

w. Clearly ϕλ (v, w) = ϕλ (w, v). 

ϕλ  also indicates the type of spanning 

subgraph of p
xH . If ϕλ (v, w) ≠∞ for each (v, 

w)∈Xx× Xx, then there is a path between any 
two vertices in p

xH , that is, p
xH is a one-tree 

type spanning subgraph (spanning tree). But 
if ϕλ (v, w) =∞ for any (v, w) ∈  Xx × Xx then 

p
xH is a spanning forest with more than one 

connected components (trees). 
Finally we define a visible list-set L(ϕ ) and 

vector R(ϕ ) for p
xH as follows: 

L(ϕ ) = {L(ϕ , v)| v ∈  Xx}. 
R(ϕ ) = (L(ϕ ), ϕλ ). 

We call such a vector R(ϕ ) the vector of ϕ  
on node x. R(ϕ )  is called a feasible vector if 
the edge-labeling ϕ  is an edge-ranking of 

p
xH . 

An edge-ranking ϕ  of  p
xH is defined to be 

extensible if it can be extended to an edge-
ranking 'ϕ  of a spanning tree T of G without 
changing the labeling of edges in p

xH . We 
then have the following lemma.  
Lemma 4 Let ϕ  and η be two edge-rankings 
of the same spanning subgraphs or two 
different spanning subgraphs of Gx such that 
R(ϕ )= R(η). Then ϕ  is extensible if and only 
if η is extensible. 
Proof.  Let ϕ  and η are two edge-rankings 
of two different spanning subgraphs p

xH = 
(Vx, p

xE ) and q
xH = (Vx, q

xE ) of Gx. It suffices 
to prove that if ϕ  is extensible then η is 

extensible. Let *V =V−Vx and let *G  be the 
subgraph of G induced by *V and let *H = 
( *V , *E ) be the spanning subgraph of *G . 
Assume that ϕ  is extensible. Then ϕ  can be 
extended to an edge-ranking 'ϕ  of a spanning 

tree pH =( *HH p
x ∪ ) of G=(V, E) such that 

'ϕ (e)=ϕ (e) for any edge e∈ p
xE . Let n(G,ϕ , 

i) be the number of edges in E having rank i 
for the edge-ranking ϕ . Extend the edge-
ranking η of q

xH to an edge-labeling 'η  of a 
spanning tree Hq= ( *HH q

x ∪ ) as follows:  

⎪⎩

⎪
⎨
⎧

∈

∈
=

. if   )('

and ; if    )(
'

*Eee

Eee p
x

ϕ

η
η  

Then it suffices to prove that 'η  is a valid 
edge-ranking of Hq, that is, n( 'ηF , 'η , i) ≤1 
for any rank i ∈R and for any connected 
component 'ηF =( 'ηV , 'ηE ) of the graph 
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obtained from Hq by deleting all the edges 
e∈E with 'η (e)>i. Then there are the 
following two cases to consider: 
   Case 1: 'ηF  has no vertex in Xx. 
In this case, 'ηF  is a subgraph of either 

*H or q
xH , since *H is connected to q

xH only 
through vertices in Xx. Moreover 

'η | *H = 'η | *H and 'η | q
xH =η  are edge-

rankings of *H and q
xH  respectively. 

Therefore n( 'ηF , 'η , i) ≤ 1. 
   Case 2: 'ηF  has a vertex w in Xx. 
Let e∈ 'ηE  is an edge adjacent to w and e has 
the smallest rank of all edges adjacent to w 
under 'η . In this case, obviously 'η (e) ≤ i. If 
e∈ *E then 'η (e)= 'ϕ (e) ≤ i. On the other 
hand if e∈ q

xE  then smallest rank in L(η , 
w) is η (e)≤ i. Since R(ϕ ) = R(η ) we have 
L(η , w) = L(ϕ , w). So smallest rank in L(ϕ , 
w) equal to η (e). Hence, there must be an 
edge having rank equal to η (e)≤ i adjacent to 
w under ϕ . In both cases there is an edge 
adjacent to w having rank ≤ i under 'ϕ . So 
deletion of all edges e∈E with 'ϕ (e)> i from 
Hp leaves a connected component 'ϕF = 

( '' , ϕϕ EV ) containing the vertex w. Since 'ϕ  is 
valid ranking of Hp, n( 'ϕF , 'ϕ ,i)≤1. 
Therefore, it suffices to prove that  n( 'ηF , 'η , 
i) = n( 'ϕF , 'ϕ , i). 

Since 'η | *H = 'ϕ | *H one can observe that 

'ηV ∩ Xx= 'ϕV ∩Xx and 'ηE ∩ *E = 'ϕE ∩ *E . Let 

ηF be the subgraph of 'ηF  induced by 'ηE ∩ 

Ex and *
'ηF  be the subgraph of 'ηF  induced 

by 'ηE ∩ *E . Similarly, let ϕF  be the 

subgraph of 'ϕF  induced by 'ϕE ∩ Ex and 
*
'ϕF be the subgraph of 'ϕF  induced by 

'ϕE ∩ *E . Then n( 'ηF , 'η , i) = n( ηF ,η , i) + 

n( *
'ηF , 'η , i) and n( 'ϕF , 'ϕ , i) = n( ϕF ,ϕ , i) + 

n( *
'ϕF , 'ϕ , i). Since 'ηE ∩ *E = 'ϕE ∩ *E  and 

'η | *H = 'ϕ | *H we have n( *
'ηF , 'η , i) = 

n( 'ϕF , 'ϕ , i). Therefore it suffices to prove 
that n( ηF ,η , i) = n( ϕF ,ϕ , i). 

Each of the connected components of ηF  and 

ϕF  contains at least one vertex of Xx. 
Suppose for a contradiction that a connected 
component D of ηF  or ϕF , say ηF , contains 
no vertex in Xx. Since 'ηF is a connected 
graph containing w∈Xx, w is connected to a 
vertex of D by a path in 'ηF . However, it is 
impossible because D has no vertex in Xx and 

ηF is connected with *
'ηF  only through the 

vertices in Xx. 
Let u ∈V( ηF )∩ Xx=V ( ϕF ) ∩ Xx. Let ηD be 

the connected component of ηF that contains 
u, and let ϕD  be the connected component of 

ϕF  that contains u. Let v∈V( ϕD )∩ Xx, then 
obviously ϕλ (v, u) ≤i. As R(η )=R(ϕ ), ϕλ (v, 

u) = ηλ (v, u)≤i. Therefore v∈V( ηD )∩Xx. 
Similarly, we can show that v∈V( ϕD )∩Xx 
for any vertex v∈V( ηD )∩Xx. Hence we have 
proved that V( ηD )∩Xx=V( ϕD ) ∩Xx. Clearly 

n( ηD  ,η , i) = count(η , u, i) and n( ϕD ,ϕ , i) 
= count(ϕ , u, i). Since L(η , u)=L(ϕ , u), we 
have count(η ,u, i) = count(ϕ , u, i) and hence 
n( ηD ,η , i) = n( ϕD ,ϕ , i). 
Thus we have proved that ηF and ϕF  have 
same number of connected components   

1η
D ,

2ηD ,...,
p

Dη and
1ϕ

D ,
2ϕD ,...,

p
Dϕ ,respec

tively. Since n( ηF ,η ,i)=∑
=

p

j 1

n(
j

Dη ,η ,i) and 

n( ϕF ,ϕ ,i)=∑
=

p

j 1

n(
j

Dϕ ,ϕ ,i). We have 

n(
j

Dη , η, i) = n(
j

Dϕ ,ϕ , i).  

We have proved that whenever ϕ  and η are 
edge-rankings of two different spanning 
subgraphs of Gx, and thenϕ  is extensible if 
and only if η  is extensible. Similarly we can 
prove thatϕ  is extensible if and only ifη is 
extensible, when ϕ  and η  are two edge- 
ranking of the same spanning subgraph of Gx. 
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5 The Algorithm 
We first give an algorithm to decide, for a 
positive integer m, whether a spanning tree T 
of G has an edge-ranking using m ranks 
exists with #ϕ ≤m. We use dynamic 
programming and bottom-up tree 
computation on the binary tree Tb: for each 
node x of Tb from leaves to the root, all 
(equivalence classes of) edge-rankings of all 
spanning subgraphs of Gx are constructed 
from those of two subgraphs Gy and Gz 
associated with the children y and z of x. If 
the root of Tb has at least one feasible 
spanning tree solution, then the partial k-tree 
G has a spanning tree T with edge-ranking ϕ  
such that #ϕ ≤m. Then, by using a linear 
search over the range of m, 1≤m≤∆ log2n, the 
minimum value of m is determined such that 
a spanning tree T of G has an edge-ranking 
ϕ  with m=#ϕ  and find an optimal vertex 
ranking spanning tree T of G. 
We first presented the algorithm edge-
ranking to determine whether a spanning tree 
T of G has an edge-ranking ϕ  with #ϕ ≤m 
for a positive integer m where #ϕ  is the 
largest rank assigned byϕ .  
Algorithm edge-ranking 
begin 

1. obtain a binary decomposition tree Tb of 
the partial k-tree G; 

2. for each leaf x of Tb do 
compute a table of all feasible 
vectors; 

3. for each internal node x of Tb do 
compute a table of all feasible-vectors 
from those on the two children of x, 
and keep an edge-ranking ϕ  of a 
spanning subgraph of Gx arbitrarily 
chosen from the edge-rankings having 
the same feasible-vector; 

4. repeat step 3 up to the root of the tree Tb; 
5. check whether there exists a feasible-

vector for one-tree type spanning 
subgraph of G in the table at the root; 

end; 
 
Now we describe the procedure of the above 
algorithm. We first calculate the total number 
of different equivalence class on any node x 
of Tb. A feasible vector R(ϕ ) of ϕ  on x can 
be seen as an equivalence class of extensible 
edge-rankings of spanning subgraphs of Gx 

by Lemma 4. Since |R| = m and 0 ≤count(ϕ , 
v, i) ≤1 for an edge-ranking ϕ  and a rank 
i∈R, the number of distinct visible-lists 
L(ϕ ,v) is at most 2m for each vertex v∈Vx. 
Furthermore |Xx|≤(k+1). Therefore, the 
number of distinct list-sets L(ϕ ) is at most 
2m(k+1). On the other hand, the number of 
distinct functions ϕλ : Xx×Xx→R ∪ {0, ∞} is 
at most (m+2)k(k+1)/2, since ϕλ (v, v)=0 and 

ϕλ (v,w)= ϕλ (w,v) for any v, w∈Xx. 
Therefore, the total number of different 
feasible vectors on x is at most 2m(k+1). 
(m+2)k(k+1)/2. One may assume that m≤∆ log2n 
=O(∆ log2n) by Lemma 1. Therefore the total 
number of different feasible vectors on x is 
O(n∆ (k+1)∆k(k+1)/2log2

 k(k+1)/2n) for any fixed 
integer k.  
Next we show how to find the table of all 
feasible vectors R(ϕ )=(L(ϕ ),λ (ϕ )) on a 
leaf x of Tb. This can be done as follows: 
1. enumerate all edge-labelings ϕ : p

xE →R of 
a spanning subgraph p

xH of Gx; 
2. compute all feasible vectors R(ϕ ) from 

the edge-labelings ϕ  of p
xH ; and repeat 

step (1) and (2) for all spanning subgraphs 
of Gx on x. 

3.  repeat step (1) and (2) for all spanning 
subgraphs of Gx on x. 

Since |Vx|=|Xx|≤k +1 and |R|=m, the number of 
edge-labelings ϕ : p

xE →R is at most mk. For 
each edge-labelingϕ , ϕλ can be computed in 
time O(1). Furthermore, the visible-lists L(ϕ , 
v), v∈Xx= Vx, can be done by Lemma 3 in 
time O(1), and if so, computing L(ϕ ) can be 
done in time O(1). Therefore step (1) and (2) 
can be executed in time O(mk) =O(∆ klogk

2n). 
Since the number of spanning subgraphs of 
Gx is a function of k, so step (3) can be 
executed for a leaf x in time O(∆ klogk

2n) and 
thus the table on x can be found in time 
O(∆ klogk

2n). 
We next show how to compute all feasible 
vectors on an internal node x of Tb from those 
on two children y and z of x. One may 
assume that Xx= Xy. By the definition of Gx= 
(Vx, Ex), we have Vx= Vy ∪ Vz and Ex= Ey ∪ Ez 

and Ex=Ey ∩ Ez=φ . Let η and ψ respectively 
be the edge-rankings of the spanning 
subgraphs q

yH  and r
zH of Gy and Gz 



DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 4, ISSUE 1, JANUARY 2009 7

respectively. p
xH  be the resultant graph such 

that p
xH = q

yH ∪ r
zH  so obviously it is a 

subgraph of Gx.  
First we have to check whether p

xH be a 
spanning subgraph of Gx or not. If for any 
pair of vertices (v, w)∈(Xy∩Xz)× (Xy∩ Xz), 
there is two different paths in p

xH  then p
xH  

is not a spanning subgraph of Gx, so discard 
the vector. But if this condition is false for all 
pairs (v, w)∈(Xy∩Xz)× (Xy∩ Xz) then p

xH  is 
spanning subgraph of Gx. This spanning 
subgraph checking can be done in time O(1). 
Now let  ϕ  be the edge-labeling of p

xH  
extended from η  and ψ , then we have 
ϕ | q

yH  =η and ϕ | r
zH =ψ . 

Now we show how to compute ϕλ  from 
vectors R(η ) and R(ψ ). Let G(η ) be an 
edge-λ -graph defined for η as follows: let 

yXK  be a complete graph of the vertices in 

Xy; assign a weight of ηλ (v,w) to each edge 
(v,w) in 

yXK .Then the total number of 

vertices in G(η ) is at most k + 1 and the total 
number of edges is at most k(k+1)/2. 
Similarly define an edge-λ -graph G(ψ ) for 
ψ . Identify each pair of the same vertices in 
(Xy∩ Xz), one in G(η ) and the other in 
G(ψ ). Let )(' ϕG  be the resulting weighted 
graph. Then the total number of vertices in 

)(' ϕG is at most 2(k +1) and the total number 
of edges is at most k(k+1). Then, by the 
construction of )(' ϕG , the function 

ϕλ :Xx×Xx→R∪ {0, ∞} can be computed as 
follows: 
ϕλ (v, w) = min{ λ | )(' ϕG has a path P from   

              v ∈Xx to w∈Xx every internal edges     
              of which has a eight  ≤ λ }. 
Since )(' ϕG  has a constant number of 
vertices and edges, ϕλ  can be computed in 
time O(1). It is also easy to construct a λ -
graph )(ϕG  from )(' ϕG . 
We next show how to compute L(ϕ ) from 
η and ψ . Let i∈R be any rank. Delete all the 

vertices with rank > i from p
xH . Among the 

connected components of the resulting   

graph, let ϕH   be the one containing a vertex 
v∈Xx. Then count(ϕ ,v,i)= n( ϕH ,ϕ , i). Since 
|Ex|=O(n) and |R|=m=O(∆ log2n), the count-
lists L(ϕ ,v), v∈Xx, can be computed in time 
O(n.m)=O(n∆ log2n). Then checking whether 
an edge-labeling ϕ  is an edge-ranking of p

xH  
can be done by Lemma 3 in time O(∆ log2n), 
and if so, computing L(ϕ ) can be done in 
time O(∆ nlog2n). The table of all feasible 
vectors on an internal node x can be obtained 
from the pairs of tables of all vectors on the 
to children of x, and the number of these pairs 
is    O(n2∆ (k+1) ∆k(k+1)log2

 k(k+1)n). Therefore 
the table on x can be computed in time 
O(n2∆ (k+1)+1∆k(k+1)+1 log2

 k(k+1)+1n). 
Finally, we have to check all feasible-vectors 
at root to find out whether there exists a 
feasible-vector for one-tree type spanning 
subgraph (spanning tree) of G. At root, 
computing all feasible-vectors needs 
O(n∆ (k+1)+1∆ k(k+1)/2+1log2

k(k+1)/2+1n) time. And 
then checking whether an edge-ranking ϕ  is 
a valid solution for one-tree type spanning 
subgraph p

xH of G can be done by examining 
each w∈ ϕλ  of R(ϕ ). If w ∞≠ for all w∈ ϕλ , 

then all vertices of p
xH is connected, which 

implies that p
xH is a one tree-type spanning 

subgraph of G. Consequently, we can say G 
has a vertex-ranking spanning treeϕ . This 
checking can be done in O(1) time. 
 
6 Time complexity of the Algorithm 
The main result of this paper is this following 
theorem. 
Theorem 1 A minimum edge-ranking 
spanning tree of a partial k-tree with n 
vertices can be found in time 
O(n2∆ (k+1)+2∆ k(k+1)+2log2

k(k+1)+2n) where n is 
the number of vertices and ∆ is the maximum 
vertex degree of the graph. 
Line 1 of the algorithm can be done in O(n) 
time [9]. Line 2 can be done for each leaf in 
O(∆ klogk

2n) time. Since there are O(n) 
leaves, line 2 can be done in O(n∆ klogk

2n) 
time in total for all leaves. Since line 3 is 
executed for O(n) nodes in total in line 4, line 
4 can be done in O(n2∆ (k+1)+2∆k(k+1)+1          
log2

 k(k+1)+1n) time in total. At last Line 5 can 
be done in O(n∆ (k+1)+1∆ k(k+1)/2+1log2

k(k+1)/2+1n) 
time in total. Thus checking whether a 
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spanning tree of a partial k-tree G has an 
edge-ranking ϕ  such that #ϕ ≤m can be done 
in O(n2∆ (k+1)+2 ∆k(k+1)+1 log2

 k(k+1)+1n) time. 
Using the linear search technique over the 
range of m, 1≤ m ≤∆log2n, one can find the 
smallest integer )(' TX r  such that T has an 
edge-ranking ϕ  with #ϕ = )(' TX r  by calling 
the algorithm edge ranking O(∆ log2n) times. 
Therefore, a minimum edge-ranking 
spanning tree T of a partial k-tree G with n 
vertices can be found in time for any bounded 
integer k. This completes the proof of 
Theorem 1. 
 
7 Conclusion  
In this paper, we present an algorithm for 
solving the minimum edge-ranking spanning 
tree problem on partial k-trees. It is the first 
polynomial-time algorithm for solving the 
problem on partial k-trees for small values of 
k. With some trivial modifications, our 
algorithm can be used to solve the c-edge-
ranking spanning tree problem on partial k-
trees. 
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