
 44

SYSTEM LEVEL MODELING METHODOLOGY OF
APPLICATION SPECIFIC INSTRUCTION SET PROCESSOR

(ASIP) USING SYSTEMC

Rana Mukherji1 and Manishita Das2
1Faculty of Science and Technology, The ICFAI University, Dehradun – 248197, Uttarakhand, India

and 2 Institute of Science and Technology for Advanced Studies and Research (ISTAR), Vallabh
Vidyanagar, Anand – 388120, Gujarat, India

1E-mail: rana.mukherji@gmail.com

Abstract: In recent years, the development of
application specific instruction set processors (ASIP)
is the exclusive domain of the semiconductor houses
and core vendors. This is due to the fact that
constructing such architecture is a difficult
assignment that needs skilled knowledge in distinct
domains: application software development tools,
processor hardware implementation, and system
integration and verification. To specify the design and
implementation of such systems and incorporate the
functionality implemented in both hardware and
software forms, we are compelled to move on from
traditional Hardware Description Languages
(HDLs). Since C and C++ are dominant languages
used by chip architects, system engineers and
software engineers today, we believe that a C++
based approach to hardware modeling is necessary.
This will enable codesign, providing a more natural
solution to partitioning fuctionality between hardware
and software. In this paper, we discuss a design
approach of SystemC (a C++ class library) for ASIP
at the system-level which provides necessary features
for modeling design hierarchy, concurrency and
reactivity in hardware. To exemplify and validate the
method we employed it to the design of a 32-bit ASIP
for Hindi Text-to-Speech Synthesis developed by
CEERI, Pilani (INDIA).

Keywords : ASIP , System and, System Level Design

1. Introduction
Due to the ever-decreasing feature size of
today’s semiconductor processes, the cost of a
mask set has already crossed the one-million-
dollar line. To pay off this investment, a design
must be applicable for multiple purposes. The
flexibility needed to achieve this is commonly
provided by programmable elements. A unique
opportunity to trade off the flexibility of general-
purpose processor cores against the performance
of hard-wired logic is offered by application-

specific instruction-set processors (ASIPs). The
instruction set of an ASIP is dedicated towards a
particular class of applications by compound
instructions that speed up critical parts of the
applications without compromising the
flexibility of the processor in its application
domain [1, 12, 13,19].
Due to the diversity of the application domains
that ASIPs are specialized in, it demands greater
attention during synthesis tool development [2,
3, 11, 14]. It is the function of the synthesis tool
to offer abstraction from the low level details of
the hardware, in order to make the
implementation of algorithms a tractable
problem for the human programmer. It merely
shifts the burden from the application developer
to the synthesis tool designer. Generally, there
are two types of approaches by the commercially

Standard Channels
for Various MOC's
Kahn Process
Networks
Static Dataflow, etc.

Methodology-Specific
Channels
Master/Slave Library, etc.

Elementary Channels
Signal, Timer, Mutex, Semaphore, Fifo, etc.

Core Language
Modules
Ports
Processes
Interfaces
Channels
Events

Data Types
Logic Type (01XZ)
Logic Vectors
Bits and Bit Vectors
Arbitrary Precision Integers
Fixed Point Integers
Integers

C++ Language Standard

Fig. 1: SystemC Language Architecture [16]

Date of submission : 13. 11. 2010 Date of acceptance : 20. 08. 2011

DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 7, ISSUE 1, JANUARY 2012

 45

supported flows: the tool oriented design flow or
a language oriented design flow. Here we are
only discussing the language oriented design
flow.
The goal of the language-oriented approach is to
create an environment where implementations
can be realized in a ‘stress-free’ programming
language; it makes some sense to assume such a
language from the outset, and to implement it in
a top-down fashion. it is summarized as follows:
1. Design or choose a programming language

which provides behavioral semantics for the
constraints of the algorithms

2. Generate transformation schemes for each of
the language’s behavioral constructs[15].

SystemC one of the languages which is capable
of providing all the requirements for the ASIP
architecture exploration. It is an emerging
standard modeling platform based on C++ which
it allows describing a fully functional model that
incorporates design constraints and has a
simulation environment for an integrated
validation against a set of test vectors. More of
its feature is discussed in section 2. The work
presented in this paper refers to an optimized
system level framework for implementation of
an ASIP using SystemC platform. In Section 3,
we describe the architecture design overview of
ASIP of Hindi text-to-speech conversion
(developed by IC Design Group, CEERI, Pilani,
INDIA). In section 4, we illustrate the SystemC
implementation methodology of the said
processor. In Section 5, we show the testing
environments and results. Finally, Section 6
draws the conclusion.

2. SystemC LANGUAGE
SystemC has been initiated by the Open
SystemC Initiative (OSCI). OSCI is a non-profit
association that has been found by several
industrial, academical and individual partners.
The aim of OSCI is the standardization of
SystemC as an open source standard for system
level design. Since the SystemC library is open
source, various kinds of modifications and
extension libraries are publicly available, too
[15,6,5,8,20]. Fig. 1 summarizes the SystemC
language architecture and Fig. 2 describes the
design environment of SystemC .

 The system description language SystemC
provides hardware constructs, implemented in a
C++ class library. The hardware models
specified using SystemC can be compiled on a
large number of supported architectures using a
standard C++ compiler [16, 9]. The compiled
executables can be cycle accurate simulations as
well as untimed algorithmic descriptions of the
given design. The executable specifications can
be used for evaluation, debugging and
refinement purposes without the usage of a
commercial simulator. Depending on the
abstraction level the simulation speed can be a
multiple of a functional equivalent HDL model.
Because of its unrestricted C++ conformance
each SystemC model can be combined with
other

software libraries. This allows system engineers
to take advantage of HW/SW Co-Design and to
refine their SoC designs with a high level of
flexibility. Another benefit of SystemC, coming
with its C++ conformance, is a wide range of
abstraction levels that can be used to simplify
huge system designs [21]. Complex
communication protocols and control logic can
easily be separated from functional parts of the
specification. For this reason SystemC offers
techniques that can raise or lower the level of
abstraction. The TLM library implements such a
technique to support SystemC’s efficient
refinement methodology [7].

Comp
iler

Linker

Debug
ger

x.ou
t

Class library and
simulation kernel Source files for system and

testbenches

Executable =
simulator

“ma
ke”

System
C

Header
files

libraries

C++ development
environment

Fig. 2: SystemC in a C++ development

DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 7, ISSUE 1, JANUARY 2012

 46

SystemC combines HDL typical features, like
concurrency as it appears in hardware, with
software paradigms, like object orientation.
These features distinguish SystemC from VHDL,
Verilog and SystemVerilog and enable system
description capabilities. SystemC allows real
polymorphism which includes the application of
arbitrary memory access using pointers and
dynamic memory allocation. Even the concept of
virtual functions that binds overloaded class
members to function pointers, is applicable in
system descriptions. Special benefits, like
channels, make SystemC ideal for describing
complex communication protocols and their easy
reuse.

3. Architecture Design of the Asip
In this section, we describe the design of the
ASIP (Fig. 3) developed by the CEERI, Pilani,
INDIA [4, 18]. It can serve as an efficient
platform for embedded systems running the
parametric speech synthesizer in portable/mobile
applications. An application-friendly instruction
set and a supporting micro-architecture have
been created that permit execution of the
parametric speech synthesizer in real-time using
a relatively small gate count and memory size
and potentially low power consumption
following the design philosophy of [4]. It had an
execution unit following with a number of
application specific dedicated functional blocks-
some with combinational architectures and
others with their own optimized sequential
architectures and associated controllers. These
functional units and the integer and floating-
point memory blocks of required size along with
the necessary temporary registers were
connected through a single bus for transfer of
data among them. This approach provided a
mechanism for interpreting an application-
specific, user-friendly instruction set onto
sufficiently high-level functional units by
moving data to them over the bus and triggering
them.
The 32-bit instruction-set of the processor was
designed to provide several application-specific,
user-friendly, ’high-level’ instructions which
implemented frequently-repeating, logically
meaningful, computational patterns specific to

the application-formant-based parametric speech
synthesis. These include instructions like:
1) resonator: which computes the function of as

second-order resonator.
2) setabc: which computes the three resonator

coeffi cients — given the frequency of
resonance and the resonance bandwidth.

3) rand12: which generates a sequence of 12
pseudorandom numbers.

4) exp: which computes the value of the
exponential function for its operand.

5) sin-cos: which computes the values of the
sine and cosine functions for its operand.

Besides these instructions, a number of low-
level, general-purpose instructions are also
included for addition, subtraction, multiplication,
division, data-moves, and type conversion of
operands. The program control instructions
include various conditional branch instructions
(based on results of relational operators on
variables), instructions for supporting loop
constructs, and for subroutine calls and returns.
The processor’s instruction set has a set of 44
instructions

BUS
(32-
bit)

SCOS IEXP IGEN FTOIFDIV

Control path

Data Memory (Integer and Floating-
point Interface)

Program
Memory

FASC

FMPY

ITOF

IASC

Fig. 3: CEERI ASIP [18]

SYSTEM LEVEL MODELING METHODOLOGY OF APPLICATION SPECIFIC INSTRUCTION SET PROCESSOR (ASIP) USING SYSTEMC

 47

4. Model Implementation
Fig. 4 illustrates the basic structure of framework
of the methodology. we start with the traditional
methods used to capture the customer
requirements, a Product Requirements Document
(PRD). From the PRD, a ASIP-SAM (ASIP
System Architecture Model) is developed. The
ASIP-SAM development effort may cause
changes or refinement to the PRD. In an
algorithmic intensive system, the ASIP-SAM
will be used to refine the system algorithms.

Fig. 4 Model Implementation Flow

The ASIP-SAM development consists of
breaking the processor’s functionality into a set
of instructions. A component’s functionality
represents all possible behaviors that the
components can assume, with behavior meaning
the set of actions that the component performs
during the execution of an application. The
objective of ASIP-SAM development is to
capture the specification of the system in terms
of design behavior with the least amount of

design work. This first step hides the complexity
of the processor’s internal implementation
behind the simple interface offered by the
instruction set. There is a tradeoff in selecting the
right set of instructions: having many fine-
grained instructions can lead to greater accuracy,
but it requires a longer simulation time than
having fewer coarse-grained instructions.
The next stage TLM Refinement involves
simulating the application program and
extracting a trace file for the processor. A trace is
the sequence of instructions/data items a
component executes during its simulation. The
aim is to estimate the component’s switching
activity.
The last step (SystemC RTL Model
Development) consists of mapping the
instructions requested by the various tasks
performed by the component into abstract
functional units that are used to estimate
complexity-that is, gate count and timing delay.
Given switching activity and complexity, the
framework can also compute the component’s
power per instruction and execution time per
instruction.

To Solve the equation 3*e^2 - 4.5*e^6 + 7.2

11000000000001000000000100000000 // EXP #4, #4

00101100000001000000000000000000 // MULTFF #4, #0

11000000000001010000000101000000 // EXP #5, #5

00101100000001010000000001000000 // MULTFF #4, #0

00001000000001000000000101000000 ADD FF #4,#5

00001100000001000000000010000000 // ADDFC #4, #2

Fig. 5 Object Code with its Assembly Pneumonics

To Synthesis Tool

System
Requirement

Documentation

Design Entry

TLM Refinement

ASIP Architecture Model
Development

SystemC RTL Model
Development

Application
Test Program

Fig. 4: Basic Structure of Framework of
Methodology

Fig. 6: Waveform Result

DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 7, ISSUE 1, JANUARY 2012

 48

5. Results
The design is implemented using WindowsXP as
platform and Microsoft Visual Studio 2005 as
simulator for SystemC whereas the Waveforms
are seen through BlueHDL VCD Viewer. In this
framework, we simulated ten different
application programs and validated the
functionality. One of the test program and its
result are shown in the Fig. 5 and Fig. 6.

6. Conclusion
In this paper, we presented the SystemC
processor design platform – a framework for the
design of application specific integrated
processors. The platform supports the
architecture designer in different domains:
architecture exploration, implementation,
application software design and system
integration/verification. An ASIP developed by
CEERI , Pilani, was completely realized using
this novel design methodology – from
specification to implementation.

Acknowledgment
 The work reported in this paper is a byproduct
of many, vibrant, insightful discussions with
many creative individuals. The authors of this
paper would like to thank all of them especially
stressing contributions of: Dr. R S Shekhawat,
Dr. G.P. Srivastava, Dr. R.C. Ramola, Graziano
Pravadelli (Department of Computer Science at
the University of Verona, Italy), Md. Rashid
Ansari, R.K. Chaurasia , Ranjan Mishra and Dr.
Umesh Gupta.

References
[1] A.Alomary, T.Nakata, Y.Honma, M.Imai, N.

Hikichi, “An ASIP instruction set optimization
algorithm with functional module sharing
constraint.”, Proc. ICCAD-93, 1993, pp. 526-532.

[2] Andreas Hoffmann, Oliver Schliebusch, Achim
Nohl, Gunnar Braun, Oliver Wahlen and Heinrich
Meyr, “A Methodology for the Design of
Application Specific Instruction Set Processors
(ASIP) Using the Machine Description Language
LISA”, Proceeding International Conference on
Computer Aided Design (ICCAD’01), 2001 pp.
625-630.

[3] A. Hoffmann, F. Fiedler, A. Nohl, and S.
Parupalli.A methodology and tooling enabling
application specific processor design. In VLSID ’05,
Washington, DC, USA, 2005, pp 399–404.

[4] Chandra Shekhar, Raj Singh, A. S. Mandal, S. C.
Bose, Ravi Saini and Pramod Tanwar, "Application
Specific Instruction Set Processors : Redefining
Hardware-Software Boundary," vlsid, , 17th
International Conference on VLSI Design, 2004, pp.
915.

[5] Christian Genz, Rolf Drechsler, “System
Exploration of SystemC Designs”, Proceedings of
Emerging VLSI Technologies and Architectures
(ISVLSI’06), pp 522-528, 2006

[6] Claudio Talarico, Min-sung Koh, Esteban
Rodriguez-Marek, “System Level Performance
Assessment of SOC Processors with SystemC
“,Proceedings of the 14th Annual IEEE International
Conference and Workshops on the Engineering of
Computer-Based Systems (ECBS'07) , pp. 523-530,
2007.

[7] Frank Ghenassia. Transaction Level Modeling with
SystemC TLM:Concepts and Applications for
Embedded Systems, Springer, 2005.

[8] IEEE Std. 1666-2005, Standard SystemC Language
Reference Manual, IEEE, 2006.

[9] J. Bhasker; “A SystemC Primer:” Star Galaxy
Publication; edition February 2003.

[10] Jérôme Chevalier, Maxime de Nanclas, Luc Filion,
Olivier Benny, Mathieu Rondonneau, and Guy Bois,
El Mostapha Aboulhamid, A SystemC Refinement
Methodology for Embedded Software, Proceedings
of IEEE Design & Test of Computers , 2006, pp
148-158.

[11] J.V. Praet, G.Goossens, D.Lanneer , H. De Man:
“Instruction set definition and instruction selection
for ASIPs.”, Proc. Int. Symp. on High-Level
Synthesis, 1994, pp. 11-16,.

[12] Li Zhang, Shuangfei Li , Zan Yin and Wenyuan
Zhao , “A Research on an ASIP Processing Element
Architecture Suitable for FPGA Implementation”,
International Conference on Computer Science and
Software Engineering, 2008, pp 441-445.

[13] Manoj Kumar Jain, M. Balakrishnan, Anshul
Kumar, “ Integrated On-Chip Storage Evaluation in
ASIP Synthesis” , Proceedings of the 18th
International Conference on VLSI Design held
jointly with 4th International Conference on
Embedded Systems Design, 2005, pp 274 - 279 .

[14] M. Goudarzi, S. Hessabi, A. Mycroft, "Object-
Oriented Embedded System Development Based on
Synthesis and Reuse of OO-ASIPs", Journal of
Universal Computer Science, Vol. 10, No. 9 , 2006,
pp. 123-135.

[15] Rana Mukherji, “SystemC-based Design Approach
for Modeling Reconfigurable Computing Systems”,
The Icfai University Journal of Science and
Technology, Vol 4, No.3, 2008, pp 30-40.

[16] Rana Mukherji, “Behavior Modeling of the
Application Specific Instruction Set Processor
(ASIP) For Text-to-Speech Synthesis Using
SystemC”, .M.Tech. Dissertation, Panjab
University, Chandigarh, INDIA, 2004.

SYSTEM LEVEL MODELING METHODOLOGY OF APPLICATION SPECIFIC INSTRUCTION SET PROCESSOR (ASIP) USING
SYSTEMC

 49

[17] Rana Mukherji, T R Choudhary , Amit Chatterjee,
“An Approach to Implement AMBA APB Timer IP
Using SystemC” , Journal of Computer Science and
Mathematics, Vol. 1, No. 3, 2010, pp 310-318.

[18] Ravi Saini, Pramod Tanwar, A. S. Mandal, S. C.
Bose, Raj Singh, Chandra Shekhar, "Design of an
Application Specific Instruction Set Processor for
Parametric Speech Synthesis," vlsid, , 17th
International Conference on VLSI Design, 2004,
pp.773.

[19] S.Saponara, L.Fanucci, S Marsi, G.Ramponi,
D.Kammler and E.M. Witte, “Application-Specific
Instruction- Set Processor for Retinex-Like Image
and Video Processing,” IEEE Transactions on
Circuits and Systems II: Express Briefs, Vol.54,
No.7, 2007, pp 596–600.

[20] S. Swan “SystemC Transaction Level Models and
RTL Verification,” Proc. 43th Design Automation
Conf. (DAC 2006), IEEE Press, 2006, pp. 90-92.

[21] Thorsten Grötker, Stan Liao, Grant Martin, Stuart
Swan, System Design with SystemCTM, Kluwer
Academic Publishers, 2002.

Rana Mukherji received
Masters of Science in
Electronics and Masters of
Technology in Instrumentation
Engineering from Panjab
University, Chandigarh in 2002
and 2004 respectively. He is

currently working as Faculty Member in Faculty
of Science and Technology, The Icfai University,

Dehradun, INDIA. He had published various
papers in reputed national and international
conferences and journals. He is actively
associated with many technical bodies VSI
(VLSI Society of India), ISI (Instruments
Society of India, IISc, Bangaluru, INDIA), IMS
(Indian Microelectronics Society, Chandigarh,
INDIA), OSCI (Open SystemC Initiative) and
Educational Consultants of India Ltd. (A Govt.
of India Enterprise). His current research areas
include VLSI, Reconfigurable Architectures,
SystemC and Robotics.

Manishita Das has submitted
her PhD thesis in the field of
Environmental Sciences from
Sardar Patel University, Vallabh
Vidyanagar, Gujarat, India.
Presently, she is working as
Faculty Member at Amity

Institute of Biotechnology (AIB), Amity
University Rajasthan, Jaipur, INDIA. She has a
total of eight (08) publications in various
journals of national and international repute. Her
areas of interest comprise Wetland Pollution
Mitigation and its biodiversity study,
Bioremediation and ASIP development for
Environmental Issues.

DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 7, ISSUE 1, JANUARY 2012

