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Abstract: In recent years, the development of 
application specific instruction set processors (ASIP) 
is the exclusive domain of the semiconductor houses 
and core vendors. This is due to the fact that 
constructing such architecture is a difficult 
assignment that needs skilled knowledge in distinct 
domains: application software development tools, 
processor hardware implementation, and system 
integration and verification. To specify the design and 
implementation of such systems and incorporate the 
functionality implemented in both hardware and 
software forms, we are compelled to move on from 
traditional Hardware Description Languages 
(HDLs). Since C and C++ are dominant languages 
used by chip architects, system engineers and 
software engineers today, we believe that a C++ 
based approach to hardware modeling is necessary. 
This will enable codesign, providing a more natural 
solution to partitioning fuctionality between hardware 
and software. In this paper, we discuss a design 
approach of SystemC (a C++ class library) for ASIP 
at the system-level which provides necessary features 
for modeling design hierarchy, concurrency and 
reactivity in hardware. To exemplify and validate the 
method we employed it to the design of a 32-bit ASIP 
for Hindi Text-to-Speech Synthesis developed by 
CEERI, Pilani (INDIA). 
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1. Introduction 
Due to the ever-decreasing feature size of 
today’s semiconductor processes, the cost of a 
mask set has already crossed the one-million-
dollar line. To pay off this investment, a design 
must be applicable for multiple purposes. The 
flexibility needed to achieve this is commonly 
provided by programmable elements. A unique 
opportunity to trade off the flexibility of general-
purpose processor cores against the performance 
of hard-wired logic is offered by application-

specific instruction-set processors (ASIPs). The 
instruction set of an ASIP is dedicated towards a 
particular class of applications by compound 
instructions that speed up critical parts of the 
applications without compromising the 
flexibility of the processor in its application 
domain [ 1, 12, 13,19]. 
Due to the diversity of the application domains 
that ASIPs are specialized in, it demands greater 
attention during synthesis tool development [2, 
3, 11, 14]. It is the function of the synthesis tool 
to offer abstraction from the low level details of 
the hardware, in order to make the 
implementation of algorithms a tractable 
problem for the human programmer. It merely 
shifts the burden from the application developer 
to the synthesis tool designer. Generally, there 
are two types of approaches by the commercially 
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supported flows: the tool oriented design flow or 
a language oriented design flow. Here we are 
only discussing the language oriented design 
flow.  
The goal of the language-oriented approach is to 
create an environment where implementations 
can be realized in a ‘stress-free’ programming 
language; it makes some sense to assume such a 
language from the outset, and to implement it in 
a top-down fashion. it is summarized as follows: 
1.  Design or choose a programming language 

which provides behavioral semantics for the 
constraints of the algorithms 

2.  Generate transformation schemes for each of 
the language’s behavioral constructs[15].  

 

SystemC one of the languages which is capable 
of providing all the requirements for the ASIP 
architecture exploration. It is an emerging 
standard modeling platform based on C++ which 
it allows describing a fully functional model that 
incorporates design constraints and has a 
simulation environment for an integrated 
validation against a set of test vectors. More of 
its feature is discussed in section 2. The work 
presented in this paper refers to an optimized 
system level framework for implementation of 
an ASIP using SystemC platform. In Section 3, 
we describe the architecture design overview of 
ASIP of Hindi text-to-speech conversion 
(developed by IC Design Group, CEERI, Pilani, 
INDIA). In section 4, we illustrate the SystemC 
implementation methodology of the said 
processor. In Section 5, we show the testing 
environments and results. Finally, Section 6 
draws the conclusion.  
 
2. SystemC LANGUAGE 
SystemC has been initiated by the Open 
SystemC Initiative (OSCI). OSCI is a non-profit 
association that has been found by several 
industrial, academical and individual partners. 
The aim of OSCI is the standardization of 
SystemC as an open source standard for system 
level design. Since the SystemC library is open 
source, various kinds of modifications and 
extension libraries are publicly available, too 
[15,6,5,8,20]. Fig. 1 summarizes the SystemC 
language architecture and Fig. 2 describes the 
design environment of SystemC . 

 The system description language SystemC 
provides hardware constructs, implemented in a 
C++ class library. The hardware models 
specified using SystemC can be compiled on a 
large number of supported architectures using a 
standard C++ compiler [16, 9]. The compiled 
executables can be cycle accurate simulations as 
well as untimed algorithmic descriptions of the 
given design. The executable specifications can 
be used for evaluation, debugging and 
refinement purposes without the usage of a 
commercial simulator. Depending on the 
abstraction level the simulation speed can be a 
multiple of a functional equivalent HDL model. 
Because of its unrestricted C++ conformance 
each SystemC model can be combined with 
other  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
software libraries. This allows system engineers 
to take advantage of HW/SW Co-Design and to 
refine their SoC designs with a high level of 
flexibility. Another benefit of SystemC, coming 
with its C++ conformance, is a wide range of 
abstraction levels that can be used to simplify 
huge system designs [21].  Complex 
communication protocols and control logic can 
easily be separated from functional parts of the 
specification. For this reason SystemC offers 
techniques that can raise or lower the level of 
abstraction. The TLM library implements such a 
technique to support SystemC’s efficient 
refinement methodology [7]. 
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SystemC combines HDL typical features, like 
concurrency as it appears in hardware, with 
software paradigms, like object orientation. 
These features distinguish SystemC from VHDL, 
Verilog and SystemVerilog and enable system 
description capabilities. SystemC allows real 
polymorphism which includes the application of 
arbitrary memory access using pointers and 
dynamic memory allocation. Even the concept of 
virtual functions that binds overloaded class 
members to function pointers, is applicable in 
system descriptions. Special benefits, like 
channels, make SystemC ideal for describing 
complex communication protocols and their easy 
reuse. 
 
3. Architecture Design of the  Asip 
In this section, we describe the design of the 
ASIP (Fig. 3) developed by the CEERI, Pilani, 
INDIA [4, 18]. It can serve as an efficient 
platform for embedded systems running the 
parametric speech synthesizer in portable/mobile 
applications. An application-friendly instruction 
set and a supporting micro-architecture have 
been created that permit execution of the 
parametric speech synthesizer in real-time using 
a relatively small gate count and memory size 
and potentially low power consumption 
following the design philosophy of [4]. It had an 
execution unit following with a number of 
application specific dedicated functional blocks- 
some with combinational architectures and 
others with their own optimized sequential 
architectures and associated controllers. These 
functional units and the integer and floating-
point memory blocks of required size along with 
the necessary temporary registers were 
connected through a single bus for transfer of 
data among them. This approach provided a 
mechanism for interpreting an application-
specific, user-friendly instruction set onto 
sufficiently high-level functional units by 
moving data to them over the bus and triggering 
them.  
The 32-bit instruction-set of the processor was 
designed to provide several application-specific, 
user-friendly, ’high-level’ instructions which 
implemented frequently-repeating, logically 
meaningful, computational patterns specific to 

the application-formant-based parametric speech 
synthesis. These include instructions like:  
1)  resonator: which computes the function of as 

second-order resonator. 
2)  setabc: which computes the three resonator 

coeffi cients — given the frequency of 
resonance and the resonance bandwidth. 

3)  rand12: which generates a sequence of 12 
pseudorandom numbers. 

4) exp: which computes the value of the 
exponential function for its operand. 

5)  sin-cos: which computes the values of the 
sine and cosine functions for its operand. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Besides these instructions, a number of low-
level, general-purpose instructions are also 
included for addition, subtraction, multiplication, 
division, data-moves, and type conversion of 
operands. The program control instructions 
include various conditional branch instructions 
(based on results of relational operators on 
variables), instructions for supporting loop 
constructs, and for subroutine calls and returns. 
The processor’s instruction set has a set of 44 
instructions 
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4. Model Implementation  
Fig. 4 illustrates the basic structure of framework 
of the methodology. we start with the traditional 
methods used to capture the customer 
requirements, a Product Requirements Document 
(PRD). From the PRD, a ASIP-SAM (ASIP 
System Architecture Model) is developed. The 
ASIP-SAM development effort may cause 
changes or refinement to the PRD. In an 
algorithmic intensive system, the ASIP-SAM 
will be used to refine the system algorithms.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Model Implementation Flow 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
The ASIP-SAM development consists of 
breaking the processor’s functionality into a set 
of instructions. A component’s functionality 
represents all possible behaviors that the 
components can assume, with behavior meaning 
the set of actions that the component performs 
during the execution of an application. The 
objective of ASIP-SAM development is to 
capture the specification of the system in terms 
of design behavior with the least amount of 

design work. This first step hides the complexity 
of the processor’s internal implementation 
behind the simple interface offered by the 
instruction set. There is a tradeoff in selecting the 
right set of instructions: having many fine-
grained instructions can lead to greater accuracy, 
but it requires a longer simulation time than 
having fewer coarse-grained instructions. 
The next stage TLM Refinement involves 
simulating the application program and 
extracting a trace file for the processor. A trace is 
the sequence of instructions/data items a 
component executes during its simulation. The 
aim is to estimate the component’s switching 
activity. 
The last step (SystemC RTL Model 
Development) consists of mapping the 
instructions requested by the various tasks 
performed by the component into abstract 
functional units that are used to estimate 
complexity-that is, gate count and timing delay. 
Given switching activity and complexity, the 
framework can also compute the component’s 
power per instruction and execution time per 
instruction.  
 
To Solve the equation    3*e^2 - 4.5*e^6 + 7.2  
 
11000000000001000000000100000000 // EXP #4, #4 

   
00101100000001000000000000000000 // MULTFF #4, #0 

   
11000000000001010000000101000000 // EXP #5, #5 

   
00101100000001010000000001000000 // MULTFF #4, #0 

   
00001000000001000000000101000000 ADD FF #4,#5 

   
00001100000001000000000010000000 // ADDFC #4, #2 

 
Fig. 5 Object Code with its Assembly Pneumonics 
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5. Results 
The design is implemented using WindowsXP as 
platform and Microsoft Visual Studio 2005 as 
simulator for SystemC whereas the Waveforms 
are seen through BlueHDL VCD Viewer. In this 
framework, we simulated ten different 
application programs and validated the 
functionality. One of the test program and its 
result are shown in the Fig. 5 and Fig. 6.   
 
6. Conclusion 
In this paper, we presented the SystemC 
processor design platform – a framework for the 
design of application specific integrated 
processors. The platform supports the 
architecture designer in different domains: 
architecture exploration, implementation, 
application software design and system 
integration/verification. An ASIP developed by 
CEERI , Pilani, was completely realized using 
this novel design methodology – from 
specification to implementation. 
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