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Abstract: Steady two-dimensional Magneto 
hydrodynamic free convection flow with thermal 
radiation in the presence of magnetic field along a 
vertical flat plate is concerned in the present study. 
The fluid is taken to be gray, absorbing-emitting 
radiation. The non-linear governing equations have 
been transformed by the usual similarity 
transformation to a system of ordinary differential 
equations. These dimensionless similar equations 
are then solved numerically employing the 
Nachtsheim-Swigert shooting iteration technique 
along with sixth order Runge-Kutta integration 
scheme. Finally the effects of the pertinent 
parameters are examined. 
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1. Introduction 
Considerable interest has recently been shown 
in radiation interaction with free convection for 
heat transfer in fluid. This is due to the 
significant role of thermal radiation in the 
surface heat transfer when convection heat 
transfer is small particularly in free convection 
problems involving absorbing-emitting fluids. 
The free convection processes involving the 
combined mechanism of heat and mass transfer 
are encountered in many natural processes, in 
many industrial applications and in many 
chemical processing systems. 
In recent years, the study of free convective 
mass transfer flow has become the object of 
extensive research as the effects of heat transfer 
along with mass transfer effects are dominant 
features in many engineering applications such 
as rocket nozzles, cooling of nuclear reactors, 
high sinks in turbine blades, high speed 
aircrafts and their atmospheric re-entry, 
chemical devices and process equipments. 
One of the initiators of this problem of 
radiation transfer in a vertical surface is Goody 

(1956), who considered a neutral fluid. Cess 
(1966), on the other hand, considered an 
absorbing-emitting gray fluid with a black 
vertical plate. His solution was based on 
perturbation technique and was applicable for 
small values of the conduction- radiation 
interaction parameter. Novotny et al. (1974), 
however, made a non-gray analysis employing 
the method of local non-similarity and the 
continuous correlation of Tien and Lowder 
(1966) to account for the absorption. The 
effects of radiation on free convection flow of a 
gas past a semi infinite flat plate was studied by 
Soundalgekar and Takhar (1981) using the 
Cogley-Vincentine-Giles equilibrium model. 
Ali et al. (1984) studied the same effects on 
natural convection flow but over a vertical 
surface in a gray gas. Following Ali et al., 
Mansour (1990) studied the interaction of 
mixed convection with thermal radiation in 
laminar boundary layer flow over a horizontal, 
continuous moving sheet with suction and 
injection. At the same time Alabraba et al. 
(1992) studied the same problem of free 
convection interaction with thermal radiation in 
a hydro-magnetic boundary layer taking into 
account the binary chemical reaction and less 
attended Soret-Doufour effects.  
By using the Rosseland diffusion 
approximation (1976), a study of the combined 
unsteady free convective dynamic boundary 
layer and thermal radiation boundary layer at a 
semi-infinite vertical plate was made by Sattar 
and Kalim (1996). Hossain and Takhar (1996) 
also analyzed the same effect of radiation using 
the Rosseland approximation in a mixed 
convection flow of an  optically   dense  
viscous   incompressible  
fluid past a heated vertical plate with a free 
uniform stream velocity and surface 
temperature. Since suction is the best control 
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method of boundary layer growth in the 
presence of radiation El-Arabawy (2003) 
studied the effect of suction/injection on a 
micropolar fluid past a continuously moving 
plate. Ferdows et al. (2004), however, 
considered a variable suction in a boundary 
layer flow at a vertical plate with thermal 
radiation interaction with convection. Very 
recently Samad and Rahman   (2006)   
investigated   the   thermal radiation interaction  
on  an  absorbing  emitting   fluid past a vertical 
porous plate immersed in a porous medium. 
They (2006) considered an unsteady MHD 
flow and observed that magnetic field can 
control the heat transfer and radiation shows a 
significant effect on the velocity as well as 
temperature distributions. 
In analogy with the above works, in the present 
paper, the steady MHD free convection 
interaction with thermal radiation of an 
absorbing-emitting fluid along a vertical flat 
plate is investigated taking into account the 
Rosseland diffusion approximation. The 
investigation is based on known similarity 
analysis and the local similarity solutions are 
obtained numerically. 
 
2. Governing Equations 
Let us consider a steady two-dimensional MHD 
flow of a viscous, incompressible and 
electrically conducting fluid of temperature ∞T  
along a heated vertical flat plate under the 
influence of a uniform magnetic field. The flow 
is assumed to be in the x-direction, which is 
chosen along the plate in the upward direction 
and y-axis normal to the plate. The flow 
configuration and the coordinate system are 
shown in the Fig.1. 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Flow configuration and coordinate 
system. 

 

The fluid is considered to be gray, absorbing 
emitting radiation but non-scattering medium 
and the Rosseland approximation is used to 
describe the radiative heat flux in the energy 
equation. The radiative heat flux in the x-
direction is negligible to the flux in the y-
direction. A uniform magnetic field of strength 
B0 is applied normal to the plate parallel to y-
direction. The plate temperature is initially 
raised to Tw (where ∞>TTw ) which is thereafter 
maintained constant.  
Under the condition that the flow of viscous 
incompressible fluid in steady two-dimension, 
the boundary layer equations are   
Continuity equation  
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which is treated by H. Blasius (1965), where 
u and v  are the velocity components along x- 
and y- directions respectively, υ  is the 
kinematic viscosity. For free convection flow 
we have added the term )TT(g ∞−β0 where 
β  is the volumetric coefficient of thermal 
expansion, g0 is the acceleration due to gravity, 
and T & ∞T are the fluid temperature within 
the boundary layer and in the free-stream 

respectively. And the term 
ρ

σ uB 2
0 stands for 

magnetic field where σ  is the electric 
conductivity, ρ  is the density of the fluid, 0B  
is the uniform magnetic field strength 
(magnetic induction). Hence the momentum 
equation for the present problem takes the form      
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where α  is the thermal diffusivity and the term 
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the radiative heat flux and cp is the specific heat 
at constant pressure. 
Within the frame work of the above mentioned 
assumptions, we assume that the boundary 
layer and Boussinesq approximations hold and 
the flow and heat transfer in the presence of 
radiation are governed by the equations (1), (3) 
and (4). 
By using Rosseland approximation (1976) 

rq takes the form 

y
Tqr ∂
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−=
4

1

1

3
4
κ
σ                               (5) 

where, 1σ  is the Stefan-Boltzmann constant and 

1κ  is the mean absorption coefficient. It is 
assumed that the temperature differences within 
the flow are sufficiently small such that 

4T may be expressed as a linear function of 
temperature. This is accomplished by 
expanding 4T in a Taylor series about ∞T and 
neglecting higher-order terms, thus  

( ) 43344 344. ∞∞∞∞∞ −=−+≅ TTTTTTTT              (6) 
Using equations (5) & (6), eqn (4) takes the 
form 
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where, κ is the thermal conductivity. 
Eventually the corresponding boundary 
conditions for the above problem are given by  
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3. Non-dimensionalization 
In order to obtain similarity solution of the 
problem the following non-dimensional 
variables are to be chosen 
The suitable similarity variables, for the 
problem under consideration, are 
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where, U∞ is the free stream velocity . 
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velocity components from eqn (8) given by  
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Here f(η) is the dimensionless stream function 
and prime denotes the derivative with respect to 
η. Now introducing the similarity variables 
from eqn (9) and using eqn (10) into equation 
eqn (3) and (7) we have 
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parameter. 
As a result the corresponding boundary 
conditions take the form 
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4. Numerical Computation 
The numerical solutions of the nonlinear 
differential equations (11) & (12) under the 
boundary conditions (13) have been performed 
by applying a shooting method namely 
Nachtsheim - Swigert (1965) iteration 
technique (guessing the missing value) along 
with sixth order Runge-Kutta integration 
scheme. We have chosen a step size of ∆η = 
0.01 to satisfy the convergence criterion of 10-6 
in all cases. The value of η∞ was found to each 
iteration loop by η∞ =η∞ + ∆η. The maximum 
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value of η∞ to each group of parameters xGr , 

xRe  , M, Pr and N determined when the value 
of the unknown boundary conditions at η = 0 
not change to successful loop with error less 
than 10-6. 
In order to verify the effects of the step size 
(∆η) we ran the code for our model with three 
different step sizes as ∆η = 0.01,  0.005 and 
0.001 and in each case we found excellent 
agreement among them. Figure 2(a) & 2(b) 
show the velocity and temperature profiles for 
different step sizes respectively. 
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Fig. 2(a): Velocity profiles for different step 

size ∆η. 
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Fig. 2(b): Temperature profiles for different step 

size ∆η. 
 

 
 

5. Results and Discussion 
In this chapter, the problem of the thermal 
radiation interaction with MHD boundary layer 
flow past a vertical flat plate in the presence of 
magnetic field has been investigated using 
Nachtsheim-Swigert (1965) shooting iteration 
technique. For the purpose of discussing the 
results, the numerical calculations are presented 
in the form of non-dimensional velocity and 
temperature profiles. Numerical computations 
have been carried out for different values of the 
Reynolds number ReX , Magnetic field 
parameter M, radiation parameter N, Prandtl 
number Pr and Grashof number Grx. Since we 
consider a cooling problem only positive values 
of Grashof number are chosen. 
Fig. 3(a) and 3(b) express the effect of 
Reynolds number (ReX) on the velocity and 
temperature profiles respectively. From Fig 
3(a) we see that the velocity decreases rapidly 
with the increase of xRe  but far away from the 
plate these profiles overlap whereas the 
temperature profiles increase monotonically 
with the increase of ReX shown in Fig 3(b).  
Fig 4(a) reveals the effect of magnetic field 
parameter M on the velocity profiles. From this 
figure we see that velocity decreases with the 
increase of M but far away from the plate these 
profiles overlap. As magnetic field increases 
the Lorentz force also increases which then 
tends to retard the motion of the fluid. Fig 4(b) 
depicts that temperature of the fluid increases 
as M increases. Thus increasing the magnetic 
field intensity we can control flow and heat 
transfer mechanism. 
Fig. 5(a) and Fig. 5(b) show the velocity and 
temperature profiles for different values of 
radiation number N. From Fig 5(a) we see that 
velocity decreases with the increase of the 
radiation parameter for cooling problem (Grx > 
0) as expected.  We also see from Fig 5(b) that 
temperature decreases smoothly with the 
increase of N.  So, one can control the flow 
characteristics using radiation. 
The effect of Prandtl number Pr on the velocity 
as well as temperature profiles are shown in 
Fig. 6(a) − 6(b). The velocity profile decreases 
with the increase of Pr; this is due to the fact 
that as Pr increases the dynamic viscosity of the 
fluid increases which then slow down the 
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               curves    ∆η..  

            0.01    
             0.005   

  f΄                 ◊      0.001   
 
 
 
 
 
 
 
 

η

            Grx =10, Rex =1.0, M = 0.5 
                Pr = 0.71, N=1.0 

               curves    ∆η..  

            0.01    
             0.005   

  θ                 ◊      0.001   
 
 
 
 
 
 
 
 

         η



DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY,  VOLUME 6, ISSUE 2, JULY 2011 
 

 

59

velocity of the fluid.  Fig. 6(b) shows that the 
Temperature decreases with the increase of Pr. 
In this study five different values are chosen 
where Pr = 0.71   corresponds   to   air  at  200c  
and  
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Fig. 3(a): Velocity profiles for various  

values of Reynolds number Rex. 
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Fig. 3(b): Temperature profiles for various  

values of Reynolds number Rex. 
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Fig. 4(a): Velocity profiles for various 
values of magnetic field parameter M. 
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Fig.4(b): Temperature profiles for various 

values of magnetic field parameter M. 
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Pr = 1.0 corresponds to electrolyte solution 
such as salt water and Pr = 7.0 for water. 
Fig. 7(a) indicates the velocity profiles showing 
the effect of the Grashof number Grx. From this 
figure we see that velocity increases very 
rapidly as the increase of Grx due to the fact 
that as Grx increases, the buoyancy of the fluid 
increases which then induces the fluid velocity. 
Fig. 7(b) shows the temperature profiles for 
different values of Grx. This figure reveals that 
temperature profiles decrease with the increase 
of Grx. This is due to the fact that as Grx 
increases, the thermal state of the fluid close to 
the wall increases which then oppose the rate of 
heat transfer from the plate to the fluid.  
The parameters of engineering interest for the 
present problem are the skin friction coefficient 
and local Nusselt number which indicate 
physically wall shear stress and rate of heat 
transfer respectively.  
The skin-friction coefficient is given by 

)0(
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The local heat transfer coefficient is defined as 

 ( )0
2

Re 2
1

θ ′⎟
⎠
⎞

⎜
⎝
⎛−= x

xNu     (15) 

where Nux is the local Nusselt number. 
Thus from equations (14) & (15) the values 
proportional  to  the  skin-friction  coefficient 

Grx =10, Rex = 1, M = 0.5, N = 1.0 
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Fig.6(a): Velocity profiles for various 

values of Prandtl number Pr. 
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Fig. 6(b). Temperature profiles for 

various values of Prandtl number Pr. 
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Fig.7(a): Velocity profiles for various 

values of Grashof number Grx. 
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Fig.7(b): Temperature profiles for various 

values of Grashof number Grx. 
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and Nusselt number are )0(f ′′  and – ( )0θ ′  
respectively. The numerical values proportional 
to cf and Nu, calculated from equations (14) & 
(15) are shown in Table1. 

 
Table 1. Values of skin friction cf and Nusselt   

number Nux for different values of Rex, M, Grx, 
Pr and N. 

Rex cf Nux
1.0 9.84970320 0.59607034 
3.0 1.89502879 0.34415683 
5.0 0.88060164 0.26659201 
7.0 0.53153146 0.22532093 

10.0 0.31125023 0.18852744 
M cf Nux
0.0 10.96468605 0.63209145 
0.5 9.84970320 0.59607034 
1.0 8.94715476 0.56331786 
2.0 7.62087789 0.50771991 
3.0 6.71642946 0.46368969 
Grx cf Nux
1 1.44229039 0.29779834 
3 3.68454677 0.42098446 
5 5.61984276 0.48949934 
7 7.39061992 0.53914063 
10 9.84970320 0.59607034 
Pr cf Nux

0.71 9.84970320 0.59607034 
1.0 9.29733324 0.67720833 
1.5 8.65996281 0.78306760 
3.0 7.62295654 0.98991105 
7.0 6.46555028 1.29183585 
N cf Nux

1.0 9.84970320 0.59607034 
2.0 9.30750130 0.67570691 
3.0 9.08010636 0.71178225
5.0 8.87307619 0.74607763 
7.0 8.77625675 0.76266776 

 
6. Conclusions 
In this paper we have studied the steady MHD 
free convection flow with thermal radiation in 
the presence of magnetic field past a vertical 
plate. Using similarity transformations the 
governing equations have been transformed 
into non-linear ordinary differential equations 
and were solved for similar solutions 
numerically. 
From the present study we can make the 
following conclusions: 
(i)  The velocity profiles increase whereas 

temperature profiles decrease with an 
increase of the free convection current. 

(ii)   Using magnetic field we can control the 
flow and heat transfer characteristics. 

(iii)  Radiation has significant effects on the 
velocity as well as temperature 
distribution. 

(iv)  Skin friction coefficient decreases with the 
increases of magnetic field parameter and 
radiation parameter. 

(v)   The rate of heat transfer from the plate to 
the fluid decreases with the increase of 
radiation parameter. 
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