SECTIONALLY PSEUDOCOMPLEMENTED RESIDUAL LATTICE

Md. Zaidur Rahman¹, Md. Abul Kalam Azad¹ and Md. Nazmul Hasan.² Dept. of Mathematics¹ Khulna University of Engineering and Technology

unia University of Engineering and recimon

Dept. of Mathematics²

Moheshpur Govt. College, Moheshpur, Jhenaidah.

 $E\text{-mail}\ mzrahman1968@gmail.com, azadmath.azad8@gmail.com$

Abstract : At first, we recall the basic concept, By a residual lattice is meant an algebra $L = (L, \lor, \land, \ast, \circ, 0, 1)$ such that

(i) $L = (L, \lor, \land, 0, 1)$ is a bounded lattice,

(ii) L = (L,*,1) is a commutative monoid,

(iii) it satisfies the so-called adjoin ness property: $(x \lor y) * z = y$ if and only if $y \le z \le x \circ y$

Let us note [7] that $x \lor y$ is the greatest element of the set $(x \lor y) * z = y$

Moreover, if we consider $x * y = x \land y$, then $x \circ y$ is the relative pseudo-complement of x with respect to y, i. e., for $* = \land$ residuated lattices are just relatively pseudo-complemented lattices. The identities characterizing sectionally pseudocomplemented lattices are presented in [3] i.e. the class of these lattices is a variety in the signature $\{\lor,\land,\circ,1\}$. We are going to apply a similar approach for the adjointness property:

Key words: Residuated lattice, non Distributive, Residuated Abeliean, commutative monoid:

1. Introduction

Residuated lattices were introduced by Ward and Dilworth [5] and studied by several authors. Two monographs contain a compendium on residuated lattices. They are that by Blyth and Janowitz [1] (where it is renamed as a residuated Abelian semi-group with a unit) and the book by R. Belohavek [7]. In this short note we will compare a certain modification of a residuated lattice with already introduced [2], [3]. At first, we recall the basic concept:

Definition 1. A lattice $L = (L, \lor, \land, 1)$ with the greatest element 1 is sectionally pseudo-complemented if each interval [y, 1] is a pseudo-complemented lattice.

From now on, denote by $x \lor y$ the pseudocomplement of $x \lor y$ in the interval [y, 1].

Naturally, $x \lor y \in [y,1]$ thus $L = (L;\lor,\land,1)$ is sectionally pseudo-complemented if and only if " \circ " is an (everywhere defined) operation on L.

Definition 2. An algebra $L = (L; \lor, \land, *, \circ, 1)$ is called a sectionally residuated *lattice if*

- (i) $L = (L, \lor, \land, 0, 1)$ is a lattice with the greatest element 1;
- (ii) L = (L,*,1) is a commutative monoid ;
- (iii) it satisfies the sectional adjointness

property: $(x \lor y) * z = y$ if and only if $y \le z \le x \circ y$

Lemma 1.1 Let $L = (L; \lor, \land, *, \circ, 1)$ be a sectionally residuated lattice. Then x * y is *the greatest element of the set* $\{z; (x \lor y) * z = y\}$

This immediately yields the following facts:

$$(x \lor y) * (x \circ y) = y$$
, (1)
 $(x \lor y) * y = y$, (2)
 $y \le x \circ y$, (3)

Lemma 1.2 Let $L = (L; \lor, \land, *, \circ, 1)$ be a sectionally residuated lattice. Then $x \le y$, *if and only If* $x \circ y = 1$

Proof: Suppose $x \le y$, Then $x \lor y = y$, and by Lemma 1.1, $x \circ y$ is the greatest element of the set $\{z; y * z = y\}$ By Definition 2, y * 1 = 1 thus $x \circ y = 1$. Conversely,

Suppose $x \circ y = 1$.Then, by [1], we have $y = (x \lor y) * (x \circ y) = (x \lor y) * 1 = x \lor y$

whence $x \le y$

Lemma 1.3 In a sectionally residuated lattice, the following identities are satisfied:

and $1 \circ x = x$

Proof: The first three identities follow directly by Lemma 1.2. Further, by Lemma 1.1,

 $1 \circ x$ is the greatest element of the set $\{z; 1 * z = x\} = \{x\}$ thus $1 \circ x = x$

Lemma 1.4 In a sectionally residuated lattice, a * b = a if and only if a = b

Proof: Putting x = y = a and z = b in the sectional adjointness property, the assumption a * b = a yields $(a \lor a) * b$ iff $a \le b \le a \circ a = 1$ thus $a \le b$

Conversely, $a \le b$ implies by Lemma 3 $a \le b \le 1 = a \circ a$ and, by sectional adjointness, $a * b = (a \lor a) * b = a$

Applying Lemma 1.2 and Lemma 1.4, we get

Corollary 1.5 In a sectionally residuated lattice,

(a) x * y = x if and only if $x \circ y = 1$;

(b) x * x = x

Lemma 1.6 In a sectionally residuated lattice, $x \land y \le x * y$.

Proof: By [3] we have $x \land y \le x \circ (x \land y)$. Applying sectional adjointness, we infer $x * (x \land y) = (x \lor (x \land y)) * (x \land y)$ and, analogously, $y * (x \land y) = x \land y$. Hence, by Corollary 1.5 (b),

$$x * y * (x \land y) = x * (x \land y) * y * (x \land y)$$

 $= (x \land y) \ast (x \land y) = x \land x$

and by Lemma 1.4, $x \land y \le x * y$.

Theorem 1.7 Let $L = (L; \lor, \land, *, \circ, 1)$ be a sectionally residuated lattice. Then it is a sectionally pseudo-complemented lattice.

Proof: Replacing y by $x \wedge y$ in the sectional adjointness property, we obtain $x * z = x \wedge y$ *iff* $x \wedge y \le z \le x \circ (x \wedge y)$.

However, $x \circ (x \land y)$ is the greatest element of the set $\{t; (x \lor (x \land y)) * t = x \land y\} = \{t; x * t = x \land y\}.$

By Lemma 1.4, $x \wedge t \leq x * t = x \wedge y$, thus the greatest t of this property satisfies $t \geq y$.

Thus $y \le x \circ (x \land y)$, i.e., $x \land y \le y \le x \circ (x \land y)$ and by the sectional adjointness, $x * y = (x \land (x \lor y)) * y = x \land y$. Hence, $x \circ y$ is the pseudo-complement of

 $x \lor y$ in the interval [y,1]

2. Conclusion

It is well known that every relatively pseudocomplemented lattice is distributive.

An extension of relative pseudocomplementation for the non-distributive case was already involved in [3], [4]:

Reffrences

- [1] Blyth, T.S. and Janowttz, M.F. : Residuation Theory, Pergamon Press, Oxford, 1972.
- [2] Chajda, I. and Halas, R: Sectionally pseudocomplemented lattice and semilattice, Advances in algebra, Springer Verlag, 2003, 282-290.
- [3] Chajda, I.: An extension of relative pseudocomplemention to non distributive lattices, Acta Sci. Math(Szeged), 69 (2003), 491-496.
- [4] Chajda, I. and Radeleczki, S.: On varities defined by pseudo-complemented nondistributive lattices, Publ. Math. (Debrecen). 63 (2003), 737-750.
- [5] Ward, M. and Dilworth, R.P.: Residuated lattices, Trans.Amer.Math. Soc., 45(1939), 335-354.
- [6] Chajda, I. : Sectionally Residuated lattices, Miskolc Mathematical notes, Vol. 6 (2005), no. 1, pp. 27-30
- [7] R. Belohavek; Fuzzy relational systems, Kluwer Academic/ Plemun Publ., New York, Boston, Dordrecht, London, Moscow, 2002