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Abstract: At present fuzzy logic control is receiving 
increasing emphasis in process control 
applications. The paper describes the application of 
fuzzy logic control in a power system that uses a 12-
pulse bridge converter associated with 
Superconductive Magnetic Energy Storage (SMES) 
unit. The fuzzy control is used in both the frequency 
and voltage control loops, replacing the 
conventional control method. The control 
algorithms have been developed in detail and 
simulation results are presented. These results 
clearly indicate the superior performance of fuzzy 
control during the dynamic period of energy 
transfer between the power system and SMES unit. 

 
Keywords: Fuzzy logic controller, power system 
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1. Introduction 
Power system oscillations occur when there are 
system disturbances such as sudden load-
changes or faults.  The damping of the system 
must be such that the synchronous generators 
can return to their steady state conditions after 
the disturbances [1]. Especially when the load-
end of the transmission line experiences 
sudden load perturbations, the generators need 
continuous control to suppress undesirable 
oscillations in the system. Many 
countermeasures have been suggested by the 
researchers to increase the damping. These 
include power system stabilizers [2-3], optimal 
control of the turbine-governor system [4-6], 
and the use of static phase shifters [7-8]. 
Since the successful commissioning test of the 
BPA 30 MJ unit [9], SMES systems have 
received much attention in power system 
applications. Although the original purpose of 
the SMES unit is load leveling, an additional 
function of the SMES unit is the improvement 
of the system performance, by providing 
appropriate power modulation [10] during the 
dynamic period. The SMES can be applied for 

both active and reactive power compensation 
at suitable locations of the transmission line for 
both static and dynamic voltage control and 
system stability preservation [11-12]. 
However, some issues associated with the use 
of SMES unit still remain to be resolved. Two 
of these issues are, (i) the effective use of P-Q 
modulation, (ii) the evaluation of their 
performance after sudden disturbance.  
One way to address these issues is to 
investigate the use of alternative control 
techniques. At present, the use of fuzzy logic is 
finding much application in several areas [13-
14]. In this study, the conventional SMES 
controller proposed is replaced by a rule based 
fuzzy controller. To demonstrate the 
effectiveness of the proposed fuzzy controller, 
its performance is compared with the 
conventional one. The results show that the 
SMES unit responds very quickly following a 
sudden load change due to the effective use of 
its P-Q modulation capability.  Thus, the paper 
begins by outlining the main problems 
associated with conventional control scheme 
and then describes the details of the proposed 
fuzzy logic control scheme. The controller is 
applied to a test network and the simulation 
results are presented and discussed. 
 
2. Problems Associated with the Use of 
Conventional Control 
2.1. Review of Control Strategy 
Fig. 1 shows a typical configuration of a single 
area power system model equipped with a 
SMES unit. Application of a sudden load 
results in load-voltage and frequency 
deviations. Following these variations, the 
SMES unit is used to improve the performance 
subject to its limitation. The input to the SMES 
unit is a d.c voltage Vsm. This voltage is 
continuously varied by a 12-pulse cascaded 
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bridge type ac/dc converter as shown in Fig. 2. 
The converter d.c output current Ism being 
unidirectional, the control for the direction and 
magnitude of the inductor power flow Psm, is 
achieved by continuously regulating the firing 
angle α, under equal-α mode, which enables 
the DC voltage applied (Vsm) to the inductor to 
be varied through a wide range of positive and 
negative values as shown in Fig. 3. The 
controller is shown in Fig. 4. A switched 
capacitor bank is also placed at the load end to 
provide additional Var as required for reactive 
power compensation. The control procedure 
described in detail can be summarized as 
follows:  
(i)  At first the required inductor voltage Vsm is 

calculated by using the equation  
Vsm=K0∆f-Ksm∆Ism                             (1)     
Psm= Vsm Ism,                (2)      
where K0 and  Ksm are the gains 
corresponding  to the frequency variation 
(∆f) and the  inductor current variation 
(∆Ism) respectively.  

(ii) The desired reactive power Qdem can be 
calculated as  

  Qdem= Kv ∆VL                                         (3) 
  and Qdem =  Qsm + Q c                             (4) 

where Qsm is reactive power provided by the 
SMES unit and Qc is the  reactive power 
supplied by the switched capacitor; Kv is the 
gain corresponding to load voltage 
deviation. 

(iii)The SMES unit provides Psm and Qsm  to 
improve the system performance by 
controlling the firing  angles of the 12-pulse 
converter. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.2. Problems Arising from the Conventional 
Control Strategy 

The use of ∆f (error) signal alone is 
insufficient to determine the desired value of 
real power (Psm) modulation required by the 
SMES unit. In addition to this error signal, the 
change in error between successive samples 
should be used to determine Psm. The absence 
of this additional signal makes the SMES unit 
less sensitive to the disturbance. This will in 
turn result in a larger value of ∆Ism in the 
SMES unit. A similar problem arises when 
only load voltage deviation (∆VL) is 
considered to determine the desired value of 
reactive power modulation Qsm, instead of the 
change in  ∆VL between successive samples. 
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Fig. 1.  Single line diagram for test network 
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3. Design of Proposed Fuzzy Logic 
Controller (FLC) 
Fig. 5 shows the proposed FLC  along with 
SMES unit. The ∆f and ∆VL are the inputs to 
the corresponding fuzzy controllers. The 
output of the Fuzzy Frequency Controller 
(FFC) is Pdem, while Qdem is the output of the 
Fuzzy Voltage Controller (FVC). At any 
instant, the P-Q modulation of the SMES unit 
depends on the present value of inductor 
current, Ism. The P-Q regulator decides the 
actual value of (Psm, Qsm) to be provided by 
SMES, and Qc by switched capacitor bank. 
Once Psm and Qsm are selected, the firing angles 
of the 12-pulse converter can be calculated. 
Fig. 6. shows the conceptual diagram of active 
and reactive power control of SMES unit under 
equal-α mode. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.1. Fuzzification 
Fig. 7 shows the fuzzy logic control system 
with a fuzzy logic controller. The approach 
taken here is to exploit fuzzy rules and 
reasoning to generate controller parameters. 
The triangular membership functions for the 
proposed FFC of the three variables   (ek, kce& , 
Pdem) are shown in Fig. 7, where frequency 
error (ek) and the rate of change of frequency 
error ( kce& ) as shown bellow are used as the 
inputs of the FFC. Pdem is the output of FFC. 
Input   1:     error = ek = ∆f = fnorm-ft          (5) 
Input 2:     rate of change of error 
= kce =∆f = f -ftnominal

& &&&                               (6) 

Finally, the input variables can be expressed as 
per unit quantities as follows: 
ek(pu) = ek(k)/GE, and kce& (pu) = kce&  (k)/GCE 

where, k = Sampling interval, GE and GCE are 
the respective gain factors of the controllers. 
Considering these two inputs, the output of 
Pdem is determined. The use of two input and 
single output variable makes the design of the 
controller very straightforward. In the 
triangular membership functions as shown in 
Fig. 7,  in which linguistic variables NB, NS, Z, 
PS and PB stands for Negative Big, Negative 
Small, Zero, Positive Small and Positive Big 
respectively. A membership value for the 
various linguistic variables is calculated by the 
rule given by  
( ) ( ) ( )k k k kµ e ,ce =min µ e ,µ ce⎡ ⎤⎣ ⎦& &               (7) 
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3.2. Fuzzy Rule Base 
A fuzzy controller typically follows the “IF-
THEN” rules. In the work, we have developed 
25 simple control rules corresponding to 5 
linguistic variables NB, NS, Z, PS and PB of 
the frequency deviation, for the fuzzy 
controller design. These are as follows: 
IF <e(k) is  Z> AND  < kce& (k) is NB>  THEN  
u(k) is  PS. 
Here u(k) is either Pdem (MW) or Qdem (MVAr), 
and k is sampling interval. 
These rules are developed easily from the 
viewpoint of practical system operation and by 
trial and error method. 
 
3.3. Inference Mechanism  
For the inference mechanism of the proposed 
fuzzy logic controller, Mamdani’s method [15] 
has been utilized. According to Mamdani, the 
equation of the triangular membership function 

used to determine the grade of membership 
values in this work is as follows: 

( ) ( )b-2 x-a
A x =

b
                                      (8) 

where A(x) is the value of grade of 
membership, ‘b’ is the width and ‘a’ is the 
coordinate of the point at which the grade of 
membership is 1 and x is the value of the input 
variables. The control rules for the proposed 
strategy are very straightforward and have 
been developed from the viewpoint of practical 
system operation and by trial and error 
methods. The fuzzy rule base for the fuzzy 
frequency controller is shown in Table 1. 
 

Table 1:  Fuzzy Rule Base for FFC 
  

     e 
ce 

NB NS Z PS PB 

NB PB PB PS PS Z 
NS PB PS PS Z NS 
Z PB PS Z NS NS 
PS PS Z NS NS NB 
PB Z NS NS NB NB 

 
3.4. Defuzzification  
The center-of-gravity method is the most well 
known and rather simple defuzzification 
method [15], which is implemented to 
determine the output (Pdem). This is given by 
the following expression 

d e m

n
µ uj jj = 1P = n

µ jj = 1

∑

∑
                             (9) 

where uj is the output (Pdem) crispy value in the 
fuzzy rule table. Note that the fuzzy subsets for 
output variable have an asymmetrical shape 
causing more crowding near the origin. This 
allows precision control near the steady state 
operating point. 
The control of the voltage loop is done in the 
same way except that the triangular 
membership functions and the gain factors are 
different. 
    
4.  Results of the Proposed P-Q Control 
The single area power system shown in Fig. 1 
is considered as a test network. The purpose is 

Fig. 7.  Membership functions of the fuzzy 
frequency controller  
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to highlight the behavior of SMES under fuzzy 
logic control scheme and its economical 
advantage over the conventional scheme. The 
degree of impact on the power system would 
depend on the type of the power system and 
the nature of the load. The section begins with 
system modeling followed by the simulation 
results and performance evaluation.  Finally, 
economic aspects are presented. The 
parameters are  given in Appendix-I. The 
following aspects are discussed in details in the 
sub-sections: 
a)  system behavior without SMES unit 
b) its performance with conventional and fuzzy 
controller. 
 
4.1. System Modeling 
The following assumptions are made in the 
system modeling: 
(i) The reheat turbine type thermal plant 

supplies to a single generator whose 
capacity is 2000MW. 

(ii) The generator is equipped with automatic 
voltage regulator (AVR) with stabilizing 
speed feedback. 

(iii) The generator is cylindrical rotor type and 
the resistances of the generator and the line 
are negligible in comparison with the 
reactances. 

(iv) Strong coupling is present between P-f and 
Q-V loops. The coupling effect can be 
shown as follows. 

In general, the active and reactive powers 
taken by the load are functions of frequency 
and voltage. Hence, 

∆ V∆
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where, ∆P and ∆Q are the changes in the real 
and reactive loads as caused by relatively small 
variations ∆f and ∆⏐V⏐ in frequency and 
voltage. 
Let the step load change causing the 
disturbance be (∆PL+ ∆QL). The consequent 
changes in frequency and voltage, ∆f and ∆VL, 
would in turn affect the loading. Therefore, the 

net change in real and reactive loading ∆PLN 
and QLN can be expressed as  
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The net incremental power ∆Pt out of the 
synchronous machine is given by the sum of 
∆PG (the incremental generator power due to 

governor action) and ∆f
dt
d

f
2H

0
−  (the power 

derived out of the inertia of the rotor through 
speed change). Hence 

∆f
dt
d

f
2H∆P∆P

0Gt −=                 (14) 

With the addition of SMES unit at the load 
end, the active and reactive powers balance at 
the generator bus can be expressed as 
∆Pt=∆PLN+∆Psm                             (15) 
∆Qt==∆QLN+∆Qsm                            (16) 
Using equations (14), and (15), the following is 
obtained: 
 

δP δP2H d L L∆P - ∆f = ∆P + ∆f+ ∆ VL LG 0 dt δf δ Vf L

                              +∆Psm

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠  

or,  
0d f δP δPL L∆f= ∆P -∆P - ∆f - ∆ V  -∆PG L L sm2H δf δ Vdt L

⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 
5. Simulation Results 
  
5.1. Results without SMES 
Non-linear dynamic equations are used in the 
solution process. They are solved using  4th 
order R-K method. The time step and 
simulation have been chosen as 0.0015 sec and 
15 sec respectively. Two case-studies were 
conducted on the system: Case-1 
corresponding to sudden load change of (0.005 
+j0.005) pu and Case-2 corresponding to 
sudden load change of (0.008+j.0.008) pu.  
The frequency, rotor angle deviation, load 
voltage deviations and terminal voltage 
deviations of the power system without SMES 
unit for the above two cases are shown in Fig. 
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8. In Case-1, the maximum frequency and 
load-voltage deviations are -0.0156 Hz and 
0.00306 pu respectively. The maximum 
frequency and load-voltage deviations in the 
Case-2 are - 0.025 Hz and 0.00528 pu 
respectively.  The rotor angle also deviates 
accordingly for both the cases. The maximum 
terminal voltage deviation for Case-1 and 
Case-2 are –0.004 pu and –0.0084 pu 
respectively. The coupling effect between the 
Q-V and P-f loops is the main cause for the 
oscillations.  
 
5.2. Performance Evaluation with SMES 
 
Case-1: Load change (0.005+j0.005) pu 
Fig. 9 shows the simulation results for this case. 
When conventional controller is used, the 
maximum frequency deviation is 0.0105 Hz, 
and this occurs at an expense of change in the 
inductor current of -1.5 kA.  Meanwhile, the 
fuzzy controller limits the frequency deviation 
to 0.0093 Hz at the expense of inductor current 
change of -1.48 kA. It is evident from Fig. 9 
that the fuzzy controller can provide better 
compensation with less deviation of inductor 
current. This ensures the effective use of its 
power modulation. There is not much gain in 
voltage control loop except that the reactive 
power compensation provided by fuzzy 
controller is less than the conventional one for 
the similar load voltage profiles. Terminal 
voltage responses also show better 
performance with the effective use of proposed 
fuzzy logic controllers.  
 
Case-2: Load change of (0.008+j0.008) pu 
Fig. 10 shows the results for this case. 
Compared to the results of Case-1, the fuzzy 
controller shows significant development for 
the larger disturbance. Fig. 10 shows that the 
P-modulation by the SMES unit with fuzzy 
controller reduces the frequency oscillation by 
almost 24.3% compared with 18.9% reduction 
by the conventional controller. Significant 
improvements in the first overshoot and 

settling time are also clearly observed. The 
inductor current deviation is much less than 
that of conventional controller. Like the 
previous case, the effective use of active and 
reactive power modulation is also ensured. 
In the case of sudden load application, system 
frequency goes down quickly in the first half 
cycle, so compensation provided by the SMES 
unit (Psm) just after detecting the disturbance is 
very important. The FFC chooses the initial 
value of Psm, depending on the frequency 
deviations and rate of change of frequency 
deviations. The change in ∆f is considered as a 
dominant factor in the first cycle.   Fig. 9 and 
10 show that fuzzy controller is able to damp 
the frequency oscillations by providing suitable 
compensation. Notice that there is a 
considerable increase in Psm just after 
disturbance. This in turn results in a smaller 
frequency deviation, which eventually leads to 
a smaller ∆Ism and a faster restoration of 
system frequency. With the help of switched 
capacitor bank, the Qnet supplied by SMES unit 
substantially reduces the voltage deviation. 
Similarly, during the initial period immediately 
after the sudden increase in load, the slope of 
the voltage deviation is very large and 
negative. The negative voltage deviation 
requires capacitive Var and initial values of 
Qdem are accordingly chosen by FVC after 
satisfying the requirement of Psm. Like FFC, 
the FVC also considers the change in ∆VL as a 
dominant factor in the first cycle. It is seen that 
with less Var compensation, the FVC is able to 
maintain same voltage deviation like the 
conventional controller. 
In both these cases, the P - modulation by the 
SMES unit reduces the oscillation in the 
frequency while Q-modulation along with the 
reactive power provided by the switched 
capacitor bank improves the load voltage 
profiles. However, Fig. 9-10 clearly show the 
advantage of fuzzy logic controller over 
conventional controller in every aspect.  
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6. Economic Aspect 
One of the most important criteria of using 
SMES unit either for load leveling and/or the 
improvement of power system performance is 
that it should be economically viable. With the 
proposed mode of control the fluctuation of 
inductor current is smaller. This clearly 
indicates that the SMES unit with fuzzy logic 
control is able to handle much bigger 
disturbances within the same capacity as 
compared with other controllers.  Fig. 10 
shows that the rating of switched capacitor 
bank can be decreased with the proposed mode 
of control, which further decreases the cost of 
the SMES unit. 
 
7. Conclusion 
This paper presents a new method of 
controlling the SMES unit for improving the 
dynamic performance of the single area power 
system. Fuzzy logic was used to design 
frequency and voltage controllers to generate 

required control signals for the SMES unit. 
Direct generation of control signals for the 12-
pulse converter from active and reactive power 
modulation using both error signals and change 
in successive error signals, makes the proposed 
controller more sensitive. As a result, in the 
proposed FLC system the time taken to damp 
the system oscillations is comparatively 
smaller. Also this occurs with a smaller 
deviation of the inductor current. Thus the size 
of the SMES unit can be reduced and  the 
rating of the switched capacitor bank can be 
made smaller. 
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Appendix - I  
System Parameters: 
Area capacity PR = 2000 MW,   Base MVA=2000.                  
Nominal loading =1000 MW at 0.9  p.f. lagging.              
Nominal load-end voltage = 1.0 ∠00  p.u. 
f 0 = 50 Hz, X d = 1.0 pu, X d

′ = 0.25pu, Xt = 0.3 pu,     H 
= 5.0 s, R = 2.4 Hz / pu MW, Kp= 100.0 Hz / pu MW, Kr 
= 0.5, Tp = 20.0 s, Kr = 0.5, Tp = 20.0 s, TT =  0.3 s, TG  =  
0.08 s, Tr =  10.0 s, and KI = 0.8 . 
FFC:  GE = 10-3, GCE = 10-5 
FVC: GE =  10-3, GCE = 10-6 
SMES: 
Smax =  9.6 MVA, L =   0.5 H , Id0 = 4.0 kA, RL = 0.0, Vd0 
= 1.2 kV, and RC = 0.02 Ω 
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