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Abstract: In the present study we have confined 
our attention to the laminar boundary layer 
equations for the unsteady free convection flow 
over a heated horizontal semi-infinite porous plate 
by simplifying them using the Boussinesq 
approximation. Similarity requirements for an 
incompressible fluid are sought on the basis of 
detailed analysis in order to reduce the governing 
coupled partial differential equations into a set of 
ordinary differential equations. Numerical results 
are displayed graphically for some selected values 
of the controlling parameters provided by the 
similarity transformation. The influence of suction 
and blowing on the flow and temperature fields and 
other flow factors like skin friction and heat 
transfer coefficients are extensively investigated. It 
is found  that a small value of  suction or blowing 
play a vital role on the patterns of flow and 
temperature fields as well as on the coefficients of 
skin friction and heat transfer. 
 
Keywords: Natural convection, Boussinesq 
approximation, Similarity transformation,     
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1. Introduction 
The fluid flow caused only due to the density 
differences resulting from temperature 
gradients, without the assistance of any 
external force is termed as natural or free 
convection flow. Such a flow is generated due 
to the buoyancy effects which is observed in 
many heat transfer processes in nature and is 
applied in many technological applications. 
Furthermore, the solution of a system of 
coupled partial differential equations with 
boundary conditions is often difficult and even 
impossible with the usual classical method. 
Thus, it is imperative to reduce the number of 
variables from the system which reached in a 
stage of great extent. Similarity solution is one 

of the important means for the reduction of a 
number of independent variables with 
simplifying assumptions and finally the system 
of partial differential equations reduces to a set 
of ordinary differential equations successfully. 
A vast literature of similarity solution has 
appeared in the area of fluid mechanics, heat 
transfer, and mass transfer, etc.  
The theoretical, experimental and numerical 
analysis for the natural convection boundary 
layer flow about isothermal, vertical flat plates 
have been carried out widely by many authors 
(viz. [1, 2, 3, 4, 5, 6]). In 1978, Johnson and 
Cheng [7] examined the necessary and 
sufficient conditions under which similarity 
solutions exist for free convection boundary 
layers adjacent to flat plates in porous media. 
The solutions obtained in their work were more 
general than those appearing in the previous 
studies. Studies of the natural convection over 
a horizontal impermeable plate are available in 
[8, 9, 10, 11]. It is also well established that the 
suction or injection of fluid through a 
horizontal surface can significantly modify the 
flow field and affect the heat transfer rate for 
forced as well as free convection flows. The 
study of natural convection on a horizontal 
plate with suction and blowing is of huge 
interest in many engineering applications, for 
instance, transpiration cooling, boundary layer 
control and other diffusional operations. Using 
the usual asymptotic approach, the similar 
solutions of the steady natural convection 
boundary layer for a non-similar flow situation 
on a horizontal plate with large suction 
approximation has been developed by Afzal 
and Hussain [12]. A detailed study on 
similarity solutions for free convection 
boundary layer flow over a permeable wall in a 
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fluid saturated porous medium was carried out 
by Chaudhary et al. [13]. They have shown 
that the system depends on the power law 
exponent and the dimensionless surface mass 
transfer rate. They also examined the range of 
exponent under which the solution exists. With 
constant plate temperature and a particular 
distribution of blowing rate Clarke and Riley 
[14] obtained a special case of similarity 
solution, allowing variable fluid density. But 
there is still a shortage of accurate data for a 
wide range of both suction and blowing rate. 
Lin and Yu [15] presented a non-similar 
solution for the laminar free convection flow 
over a semi-infinite heated upward-facing 
horizontal porous plate with suitable 
transpiration rate as a power-law variation. 
Emphasis was given for an isothermal plate 
under the condition of uniform blowing or 
suction. Lately, using a parameter concerned 
pseudo-similarity technique of time and 
position coordinates, Cheng and Huang [16] 
studied the unsteady laminar boundary layer 
flow and heat transfer in the presence and 
absence of heat source or sink on a continuous 
moving and stretching isothermal surface with 
suction and blowing. In their analysis they paid 
attention on the temporal developments of the 
hydrodynamic and thermal characteristics after 
the sudden simultaneous changes in 
momentum and heat transfer. Recently, an 
analysis is performed by Aydin and Kaya [17] 
for the laminar boundary layer flow over a 
porous horizontal flat plate, particularly, to 
study the effect of uniform suction/injection on 
the heat transfer. Using the constant surface 
temperature as thermal boundary condition 
they also investigated the effect of Prandtl 
number on heat transfer. 
In the present study we have confined our 
discussion about a complete similarity solution 
of the unsteady natural convection boundary 
layer flow above a heated horizontal semi-
infinite porous plate and investigated the 
effects of suction and blowing on the flow and 
temperature fields and other important flow 
parameters like skin friction, heat transfer 
coefficients. Firstly, the governing differential 
equations relevant to the problem have been 
solved by using the similarity technique. The 
Boussinesq approximation is employed to deal 
with the possible requirements of unsteady 
solution. Similarity requirements for an 
incompressible fluid are sought on the basis of 
detailed analysis in order to reduce the 

governing coupled partial differential 
equations into a set of ordinary differential 
equations. Secondly, numerical solutions were 
displayed for some typical values of the 
established parameters. The effects of these 
parameters on several variables will also be 
exhibited in the analysis. We also have tried to 
predict the role of small suction or blowing 
velocity on these parameters concerned. 
 
2.  Basic Equations 
The unsteady laminar two-dimensional 
boundary layer flows above a heated horizontal 
porous surface, maintained at a temperature 
different to that of the ambient fluid conditions 
are governed by the continuity, momentum and 
energy equations as follows: 
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In order to derive the boundary layer 
equations, it is anticipated that the v-
component of the velocity is small enough and 
assumed that the suction or blowing velocity 
normal to the surface has its order of 

magnitude 
1
2(Re )O

−
. Consequently, the flow 

outer the boundary layer is independent of wv , 
so that, the boundary conditions regarding 
velocities at the surface is given by  

0; 0, ( )wy u v v x= = =                  (5) 
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Fig. 1: Schematic Representation and Coordinate 

System of the Problem. 
   
where dashed variables are non-dimensional 
and U, L represent convenient characteristic 

velocity and length scales, Re
r

UL
υ

=  is a 

characteristic Reynolds number based on U 
and L. Suffix r refers to a convenient constant 
reference condition at a fixed point outside the 
boundary layer. The Cartesian co- ordinates x, 
y are chosen to lie along and normal to the 
plate, xg  and yg  are the components of the 
gravity vector in the x and y-directions. The 
perturbation pressure p~  is related to the 
absolute pressure p by the equation 

0
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. Here suffix 0 is considered to 

denote conditions in a fluid at rest and p~  is 
termed as the motion pressure. The gradients 
of the hydrostatic pressure 0p  are balanced by 
the body force terms. Also, in the present 
investigation we are concerned with those 
boundary layer flows for which 
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number. Since the variation in the buoyancy 
force normal to the surface is the only means 
of producing boundary layer motion, on a 

horizontal surface, the component of the 
buoyancy force parallel to the surface is zero, 

i.e., 0xg ′ = . In natural convection flow the 
order of magnitude of velocity created by the 
density differences across the boundary layer is 

determined as 
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If Re is large then 1Re−  is treated as very 
small in magnitude. The pressure gradient 
normal to the surface caused by the density 
difference generates the perturbation pressure 
field �p  inside the boundary layer, x′ - 
variations of this field being sufficient to cause 
the motion in the boundary layer. For those 
cases in which 0p  is determined by the 
condition that a given function of state is 
constant, it can be shown that 
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where 0l  represents the vertical scale of the 
flow field, which can considerably be taken to 
be the maximum boundary layer thickness and 
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Consequently, with the additional provision 
2 1r rk Uρ << , it follows that ),(Tρρ =  

rρρ =0 , so that variations in 0ρ  due to 
hydrostatic relations can be ignored .   
Since the present study is concerned solely 
with the possible self-similar flow situations 
for a Boussinesq fluid, without loss of 
generality we have been introduced the effect 
of buoyancy by means of the Boussinesq 
approximation. Thus, fluid property variations 
other than the essential density variation are 
ignored completely in this approximation. The 
density difference ( )rρ ρ= −  is indispensable 
to the free convection motion and must be 
retained where they appear in the body force 
term (i.e., term multiplied by g, the 
acceleration due to gravity), but elsewhere the 
density variation is considered to be small 
enough and is to be neglected. In view of the 
above discussions and omitting the dashes and 
ignoring the pressure and viscous work 
contributions because of the relatively small 
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encountered in the free convection flow, the 
governing boundary layer equations of laminar 
two-dimensional unsteady flow over a semi-
infinite heated horizontal porous surface in 
dimensional form are simplified to the 
following form: 
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imposed in order to determine the solution of 
the boundary layer equations (7) – (10). 
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(suffix ‘w’ represents the condition at the 
surface of the plate and suffix ‘r’ is the 
constant reference condition in the fluid at rest 
exterior the boundary layer). 
 
3. Similarity Transformations 
In order to reduce the above system of 
equations into convenient forms, we adopt the 
method of seeking similarity solutions. Hence 
the following substitutions are introduced:    
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Guided by the idea of the similarity procedure, 
we also use the traditional 

substitution:
( ) ( )1

0

, ,
,

u d F
U x t

φ

φ τ ξ φ=∫   (12) 

Then we obtain: 
( ) ( ) ( )

( )
, , , , , ,0 ,

and w

UF

u UF v U F UF vφ ξ φ ξ

ψ τ ξ φ γ τ ξ φ ψ τ ξ

γ φ γ

= +

= = − +
 

                                                                  (13) 

Here
( ), ,0

wv
ψ τ ξ

ξ
∂

= −
∂

 represents the non-

zero wall velocity called the suction or blowing 
velocity normal to the porous surface, so that 
fluid can either be sucked or blown through it. 
Physically, 0wv <  and 0wv >  represent the 
suction and blowing velocity through the 
porous surface, respectively. For uniform 
suction (or blowing) constantwv = . However, 

0wv =  implies that the surface is impermeable 
to the fluid. In view of above transformations, 
equations (7) to (10) become: 
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The transformed boundary conditions are now: 

( ) ( ) ( )0 0 0, 0;F F Fφ φ= = ∞ =  

         ( ) ( )0 1, 0θ θ= ∞ =                         (18) 
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The equations (17) furnish us with the 
conditions under which similarity solutions are 
obtained provided that all a’s must be constants 
and thus equations (14) to (16) will finally 
become non-linear ordinary differential 
equations in the limiting situations for the 
remaining variable other than the similarity 
variable. Consequently, the relations given by 
equations (17) are the treated conditions which 
provide us the equations for ( ),U τ ξ  and 

( ),γ τ ξ , the scale factors for the velocity 
component and the ordinate. Uniquely, these 
scale factors together with the suction or 
blowing parameter will determine the flow 
characteristics of the boundary layer. We shall 
now proceed to find U, γ and consequently the 
suction velocity wv  for the possible 
requirements of similarity solution in the case 
of Boussinesq fluid. In view of conditions (i) – 
(v) in equation (17), we have 
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1U a Aγ ξ τ= +  and ( )2

02a Bγ τ ξ= + , 

where ( )A τ  is either a function of τ  or 

constant and ( )B ξ  is either a function of ξ  or 
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d dτ ξ

= + −                 (19) 

Therefore, the forms of the similarity 
equations, the scale factors U and γ entirely 
depend on the equation (19). 
3.1  Similarity Cases  
Equation (19) yields possibilities of four 
similarity cases noted below and for the sake 
of brevity we have discussed the first case 
only. 
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where C is a constant. Substituting these in the 
conditions (i) – (x) of equation (17) yields the 
relations between the constants as follows:  
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usually defined as the free convection velocity 
associated with the local characteristic length: 
      L ( ) ( )0 0 0U τ τ β ξ ξ= + + + .  
Since we are concerned with a purely free 
convection flow, without loss of generality we 
may put 0FU U=  and hence the similarity 
equations are: 
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where the boundary conditions for g  is 
obtained form that described for θ  according 
to equation (24). The velocity components, the 
skin friction and the local heat transfer 
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coefficients associated with the equations (23) 
– (25) are given by  

( )Fu U fη η= ,  

( )
1
2

( )
2

r F
w

Rv f f v
L η

υ β η η η⎡ ⎤− = − −⎣ ⎦ ,  
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1
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F F
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1
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0
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F
w

k TRq
L ηθ∆
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4.  Numerical Solution and Discussion 
To obtain the solution of the (23) – (25) having 
boundary conditions (26), we have used the 
shooting method. It is clear that the number of 
initial conditions are not sufficient to obtain the 
particular solution of the differential equations, 
so we require to assume additional 
missing/unspecified initial conditions. These 
are to be so assumed that the solution of the 
outer prescribed points also matches. With all 
the initial conditions (given and assumed) the 
equations are integrated in steps. If match is 
not found at the outer end then another set of 
initial conditions are considered. This trial and 
error process is taken care through 
Nachtsheim-Swigert iteration technique. The 
solution thus obtained in terms of the similarity 
variables are plotted and tabulated. The effect 
of suction parameter fw, β and Prandtl number 
Pr on velocity fη , temperature θ  and pressure 
g  are plotted in Fig. 2 through Fig. 10. Also 
their effects on the coefficient of skin-friction 
and heat transfer coefficient are tabulated in 
Table-1 and Table- 2, respectively.  To observe 
the effect of fw, β and Pr are kept as constants 
(0.33 and 0.71 respectively). Similarly, to 
observe the effect of β and Pr, fw and Pr and fw 
and β respectively are kept as constants. In all 
cases where fw is kept as constant, its value is 
chosen as 0.3, similarly, when Pr is kept 
constant, its value is chosen as 0.71. But to 
observe the effect of fw, β is chosen as 0.33, 
whereas, it is chosen as – 0.5 to observe the 
effect of Pr.  
Fig. 2 to Fig. 4 represent the effect of fw, β and 
Pr on the velocity profiles respectively. From 
figures it is observed that the velocity 
decreases with the increase in the controlling 

parameters, i.e., the velocity decreases with the 
increase in fw (for fixed β and Pr) or increase in 
β (for fixed fw and Pr) etc. 
Fig. 5 to Fig. 7 represent the effect of fw, β and 
Pr on the temperature profiles respectively. 
The effect of the controlling parameters on 
temperature is the same as that on the velocity, 
i.e., with their increase (increasing one of them 
keeping the other two as fixed), θ  decreases.  

 

 
 
Fig. 2: Velocity profiles for different values of the 
suction parameter fw with fixed values of β and Pr 
 

 
 
Fig. 3: Velocity profiles for different values of the 
parameter β with fixed values of fw and Pr 

 

 
Fig. 4: Velocity profiles for different values of the 
Prandtl number Pr with fixed values of fw and β 
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Fig. 5: Temperature profiles for different values of 
the suction parameter fw with fixed values of β and 
Pr 
 

 
Fig. 6: Temperature profiles for different values of 
the parameter β with fixed values of fw and Pr 
 

 
Fig. 7: Temperature profiles for different values of 
the Prandtl number Pr with fixed values of fw and β 
 
Fig. 8 to Fig. 10 representing the effect of fw, β 
and Pr respectively, but on the pressure 
variable g . In these cases their effects are 
reversed i.e., with the increase in the 
controlling parameters, pressure increases. 
This increase-increase behaviour is observed 
for all three parameters. 

 
Fig. 8: Pressure distributions for different values of 
the suction parameter fw with fixed values of β and 
Pr 
 

 
Table 1:  Variation of the coefficient of skin friction 

with fw, β and pr 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. 9: Pressure distributions for different values of 
the Prandtl number Pr with fixed values of fw and β 
 

 

 

fw             fηη(0)    β        fηη(0)    Pr       fηη(0) 

-0.80     0.3131   -0.70       0.3413    0.20     0.9698 

-0.65     0.3110   -0.50       0.3265    0.50     0.4442 

-0.50     0.3060   -0.30       0.3143    0.71     0.3265 

 0.00     0.3019    0.00       0.2992    1.00      0.2399 

 0.50     0.2723    0.30       0.2873    7.00      0.0320 

 1.00     0.2355    0.50       0.2800      -               - 

 1.50     0.1977    0.70       0.2739      -               - 

Values Proportional to the coefficient of 
skin-friction with the variation of 

fw  
(for β =0.33  

and  
Pr = 0.71) 

β 
(for fw = 0.3 

and 
Pr = 0.71) 

Pr 
(for β =0.33 

and 
fw = 0.3) 
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Fig. 10: Pressure distributions for different values 
of the parameter β with fixed values of fw and Pr 
 
An important point is to be noted here that for 
the chosen fixed values of β and Pr when fw is 
assigned any values less than –0.81, the 
behaviour of the flow become chaotic i.e., 
turbulence is observed for fw < –0.81. All the 
three variables we have tried to observe show 
the same behaviour. 
The values proportional to the coefficient of 
skin-friction are tabulated in Table- 1. From 
this table the effect of fw, β and Pr on the skin-
friction can be observed. It is seen that for 
fixed β and Pr with the increase in the fw, the 
coefficient of skin-friction decreases. The same 
behaviour is being observed for the other 
controlling parameters (increasing one of them 
keeping the other two as fixed). 
Table 2 contains the values proportional to the 
heat transfer coefficient. The effect of the 
controlling parameters on it is as that to the 
skin-friction i.e., with the increase in the 
controlling parameters the coefficient of heat 
transfer decreases.  
 
5. Conclusion 
With the use of the similarity variables, the 
governing equations of the unsteady natural 
convection boundary layer flow is reduced to a 
set of ordinary differential equations. Four 
different similarity cases arise with the choice 

of and   dA dB
d dτ ξ

either zero or constant. 

Similarity solution for one case is being 
studied in this paper. It is being observed that 
the similarity variables related to the velocity 
and temperature have inverse relations with the 
controlling parameters. Whereas the variables 
related to the pressure has direct relation with 
the controlling parameters. It is also observed 
that the coefficient of skin-friction and heat 
transfer have also inverse relationship with the 
controlling parameters. It may be noted here 

that the flow became turbulent for fw < –0.81. 
Further study is necessary to solve the rest 
cases. 
 

Table 2: Variation of the heat transfer coefficient 
with fw, β and pr 
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