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Abstract: The calculation of vortex method has been 
accelerated by using special-purpose computers, 
MDGRAPE-2 and MDGRAPE-3, respectively. The 
similar algorithm has been implemented and the 
improvement in speed of MDGRAPE-2 was 100 
times while MDGRAPE-3 was 1000 times faster 
when compared with the ordinary PC Xeon 
5160(3.0GHz) for N=106. In addition, the speed of 
MDGRAPE-3 was 25 times faster compared with 
MDGRAPE-2. The round off errors have been 
investigated in both cases. 
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1 Introduction 
There has always been a strong relationship 
between progress in vortex methods and 
advancements in acceleration techniques that 
utilize this method. When the classical vortex 
methods became popular nearly 30 years ago, 
the calculation cost of the N-body solver was 
O(N2) for N particles. Due to this enormous 
calculation cost, the intention at that time was 
not to fully resolve the high Reynolds number 
fluid flow, but to somewhat mimic the dominant 
vortex dynamics using discrete vortex elements. 
One of the main difficulties of vortex methods 
to be accepted in the mainstream of 
computational fluid dynamics is the numerical 
complexity of calculating the velocity using the 
Biot-Savart law, which is in fact analogous to an 
"N-body problem" and hence requires O(N2) 
operations for N vortex elements. 
The large numbers of elements are required for 
accurate vortex methods calculation at high 
Reynolds number flows that is very high 
computation cost. Therefore, significant 
acceleration techniques are necessary to reduce 
the computation cost of N-body interaction 
calculation for millions of particles having the 
cost of O(N2) with growing N [1-3]. 

There are two techniques to reduce the force 
calculation cost of an N-body simulation which 
hardware and software techniques. In the 
hardware techniques, there are two techniques, 
one is a parallel computer and the other is a 
special-purpose computer. To accelerate the 
vortex methods calculation, parallel calculation 
has been widely used in previous studies [6, 9-
10]. Even though accelerate the calculation 
significantly; there are some difficulties to use 
parallel computations for longer calculations. It 
has limitations with parallelization according to 
hardware specifications. The memory 
bandwidth is a big problem to calculate for large 
number of vortex elements, which required 
special consideration. Power consumption and 
heat dissipation interrupt the longer time 
calculations. These problems are becoming 
serious for advanced scientific computation. 
Shortcomings of parallel computers, the special-
purpose approach can solve parallelization limit 
thoroughly. It has relaxed power consumption 
according to hardware specification. The cost-
performance is minimum ~100 times better than 
that of parallel computation using ordinary 
cluster computers [14]. 
In the present research, the special-purpose 
computers MDGRAPE-2 and MDGRAPE-3 
have been used rigorously to accelerate the 
vortex method calculation [11-12], separately.  
In this paper, a comparative study between 
MDGRAPE-2 and MDGRAPE-3 has been 
investigated for high Reynolds number flows. 

 
2 Vortex Method 
The vortex method describes the flow field by 
the superposition of particles with a smooth 
distribution of vorticity [3]. From this vorticity, 
the velocity of vortex elements is calculated by 
the Biot-Savart equation. The vortex elements 
are then convected according to this velocity, 
and at the same time, the vorticity is updated 
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according to the stretching and diffusion term of 
the vorticity equation. We will only show the 
final discretized form of each equation here. 
The discretized form of the Biot-Savart equation 
with the high order algebraic cutoff function by 
[15] can be written as 
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The subscript i stand for the target elements, 
while j stands for the source elements, thus 
rij=xi-xj is the distance vector. γ  is the vortex 
strength and σ  is the core radius of the vortex 
element. Using the same high order algebraic 
function as above, the stretching term becomes 
[15]. 
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For the calculation of the diffusion term, we use 
the core spreading method [5], which uses the 
relation 
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The radial basis function interpolation [2] is 
used every ten time steps to ensure the 
convergence of the core spreading method [17]. 
The convection is solved by updating the 
position of vortex elements according to their 
velocity 
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In summary, the vortex method sequentially 
solves Eqs. (1), (2), (3), and (4). The 
MDGRAPE-2 and MDGRAPE-3 are used to 
calculate Eqs. (1) and (2). 
 
3 The MDGRAPE-2 
The MDGRAPE-2 is a calculation accelerator 
board that dramatically increases the speed of 
molecular dynamics calculations by calculating 
the general force exerted between all pairs of 
particles in an N-body particle simulations [13].  
A single board increases the computing speed of 
an ordinary PC to 64GFlops comparable to a 
supercomputer. The calculation of interactions 
between particles as represented by potential 

and force are carried out in MDGRAPE-2. In 
case of calculating the potential, 
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and the force calculations are treated similarly, 
where g(w) is an arbitrary function equivalent to 
an intermolecular force, and aij, bij, and ijε are 
arbitrary coefficients which are settled down for 
every model. 
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To apply these libraries to the calculation of a 
vortex method, Biot-Savart law in Eq. (1) is 
expressed as follows. 
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where Aj, Bj are arbitrary constants. The details 
mathematical formulations are introduced in [3, 
7, 11-12, 16]. 
The function g() for an arbitrary value a|rij|2 is 
calculated by interpolation, from values that are 
tabulated prior to the execution of the main 
program. If the inter-particle distance is such 
that a|rij|2 falls out of this tabulated domain, the 
MDGRAPE-2 assumes g() is zero. The number 
of tabulated points is constant. Thus, defining 
the table in a large domain would result in larger 
spacing between the tabulated points, and 
therefore a larger interpolation error. On the 
contrary, defining the table in a small domain 
would yield a higher probability that the inter 
particle spacing would fall outside the tabulated 
domain, which can also cause errors. The 
optimum range has been investigated for the 
vortex ring calculation by [11] for MDGRAPE-2. 
 
4 The MDGRAPE-3 
The MDGRAPE-3 is a special-purpose 
computer exclusively designed for molecular 
dynamics simulations. A typical MDGRAPE-3 
system consists of a general-purpose computer 
and a special-purpose hardware connected via a 
PCI board. The MDGRAPE chips can only 
handle two types of calculations. The Coulomb 
potential 
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and Coulomb force 
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where g( ) is an arbitrary function, which must 
be defined prior to the calculation. a and bj are 
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constants, which can be used for scaling. The 
direct form of the Biot-Savart equation (1) and 
the stretching term (2) can be calculated by 
using a combination of (8) and (9). 
The three critical issues regarding the 
implementation of the MDGRAPE on vortex 
methods are the efficient calculation of the Biot-
Savart and stretching equation, the optimization 
of the table domain, and the minimization of the 
round-off error caused by the partially single 
precision calculation in the MDGRAPE. These 
problems were investigated by [11] for the 
preceding but similar machine; MDGRAPE-2. 
The only difference between the MDGRAPE-2 
and MDGRAPE-3 is that the latter can 
simultaneously calculate along with the host 
machine, but can only handle a small number of 
source particles at once [8]. However, these 
differences do not have any effect on the above-
mentioned critical issues, and the findings of 
[11] can be directly used for the MDGRAPE-3. 
 
5 Comparative Study  
The difficulties to use MDGRAPE-3 are the 
same as of MDGRAPE-2 and which has been 
solved in details for MDGRAPE-2. The only 
difference between them is that MDGRAPE-3 
can simultaneously calculate along with the host 
machine, but can only handle a small number of 
source particles at once [8]. However, these 
differences do not have any effect on the same 
critical issues once solved and the findings of 
MDGRAPE-2 can be directly used for 
MDGRAPE-3. 
 
5.1 Scaling Error 
Here we will first confirm that MDGRAPE-3 
outputs the same results as the previous 
calculations using MDGRAPE-2. Figure 1 
shows typical velocity distribution on a 
logarithmic scale, calculated from Eq. (1), with 
and without the use of MDGRAPE for six 
different input ranges, where a single source 
particle is positioned at the origin and 1000 
target particles are distributed from 10-4 to 104. 
Xeon 5160(3.0GHz), MDG2, and MDG3 stand 
for calculations without MDGRAPE, with 
MDGRAPE-2, and with MDGRAPE-3, 
respectively. The velocity becomes zero when 

jij σr  falls outside of the range of the table. 

Otherwise, the results of the Biot-Savart 
calculation on MDGRAPE-2 and MDGRAPE-3 
match those of the results on the host computer 
in each case. 

 
 
 
 
 
 
 
       
 
 
 (a) 2012 22 ≤≤− w                               (b) 1616 22 ≤≤− w  
 
 
 
 
 
 
         
 
 
 
 (c) 1418 22 ≤≤− w                                (d) 1022 22 ≤≤− w  
 
 
 
 
 
 
   
 
 
 
 
(e) 824 22 ≤≤− w                                (f) 428 22 ≤≤− w  
 
Fig. 1 Different ranges of a function table 
 
Figure 2 shows the comparative error for 
different input ranges between MDGRAPE-2 
and MDGRAPE-3. It can be easily observed 
that the errors are different for different ranges. 
The errors in figures 2(a) and 2(b) are below 10-

5. The rest of errors are larger and are not 
satisfactory in the vortex method calculations. 
The optimum range is determined 1e-2 ~1e6 for 
entire calculations. 
 
5.2 CPU-time and L2 norm error 
The calculation cost and accuracy are important 
issues for any numerical simulation. In this 
calculation these two factors have been 
investigated carefully. The calculation has been 
accelerated retained the accuracy at an 
acceptable label. The CPU-time has been 
compared with different acceleration techniques 
at one time step by changing the number of 
particles. 
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(a) 62 1~1 ee−                              (b) 53 1~1 ee−  
 
 
 
 
 
 
 
 
(c) 44 1~1 ee−                                (d) 35 1~1 ee−  
 
 
 
 
 
 
 
 
 
(e) 26 1~1 ee−                                (f) 17 1~1 ee−  

 
 

Fig. 2 Comparative scaling error between MDGRRAPE-2 
and MDGRAPE-3 
 
The L2 norm error is defined as the difference in 
the induced velocity of the same particles 
between the host and MDGRAPE for the same 
time step as follows.  
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where the suffices md and host represent with 
and without the use of MDGRAPE, 
respectively.  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig. 3 Acceleration using MDGRAPE-2 and MDGRAPE-3 

 
Figure 3 shows the cpu-time for one time step 
against the number of vortex elements with and 
without the use of MDGRAPE. The legends 
'Xeon 5160(3.0GHz)', 'MDG2', and 'MDG3' 
correspond to the calculations without the use of 
MDGRAPE and with the use of MDGRAPE-2 
and MDGRAPE-3.  It is clearly seen that the 
calculation time has been reduced with the use 
of both schemes for N~106 when compared with 
the host calculation time. From the figure it is 
shown that MDGRAPE-3 calculation has been 
further accelerated than MDGRAPE-2 when 
compared with host calculation. The 
MDGRAPE-3 is 1000 times faster when 
compared with the host calculation and 25 times 
faster compared with the MDGRAPE-2. This 
means that MDGRAPE-3 implies much faster 
calculation than MDGRAPE-2 which leads to 
use the new special-purpose computer. 
Numerical accuracy is an important issue for 
any numerical simulation and engineering 
applications as well. Therefore, here we will 
check the accuracy of MDGRAPE-3 
calculations compared with that of MDGRAPE-
2. 
It is already observed in Fig. 3 that MDGRAPE-
3 is faster compared with MDGRAPE-2. I must 
check the accuracy of present calculation before 
going to implement the actual calculation on it.  
 

 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 4 Accuracy of MDGRAPE-2 and MDGRAPE-3 
 

Figure 4 represent the L2 norm error as of Eq. 
(10) for Biot-Savart calculation compared 
between the old and new board. It is shown that 
both errors are in the same order of magnitude 
and below 10-5. On the one hand MDGRAPE-3 
gives less error for small number of elements 
but it keeps the same order of magnitude 
compared to large numbers. On the other hand 
MDGRAPE-2 gives large error for large number 
of elements but it keeps the same order of 
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magnitude with small number of elements.  This 
negligible discrepancy may cause by slightly 
different hardware specifications and the 
floating-point operations between them. 
 
6 Conclusions and Future Work  
The vortex method calculation has been 
accelerated using MDGRAPE-2 and 
MDGRAPE-3, respectively. It is observed that 
MDGRAPE-3 has been reduced computation 
cost is 1000 times while MDGRAPE-2 was 100 
times when compared with Xeon 5160(3.0GHz) 
PC. The CPU-time and accuracy of both boards 
have been investigated for vortex method 
calculations and compared with the host PC. 
The speed of MDGRAPE-3 is 25 times faster 
when compared with MDGRAPE-2. The 
accuracy has been retained in acceptable level. 
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