
DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 4, ISSUE 1, JANUARY 2009 1

AN ALGORITHM FOR SOLVING MINIMUM EDGE-RANKING
SPANNING TREE PROBLEM ON PARTIAL K-TREES

Razia Sultana

Department of CSE, CIS and CS
Daffodil International University, Dhaka-1207, Bangladesh

E-mail: razia_sultana_renu@yahoo.com

Abstract: An edge-ranking of a graph G is a
labeling of its edges with positive integers such
that every path between two edges with the same
label i contains an intermediate edge with label
j>i. The minimum edge-ranking spanning tree
problem is to find a spanning tree of a graph G
whose edge-ranking needs least number of ranks.
In this paper, we present an algorithm to solve the
minimum edge-ranking spanning tree problem on
a partial k-tree G in O(n2∆(k+1)+2 ∆k(k+1)+2

log2
k(k+1)+2n) time, where n is the number of

vertices, ∆ is the maximum vertex degree of the
graph G and k is bounded by a constant value.

Keyword: Algorithm, partial k-trees, edge-
ranking, spanning tree.

1 Introduction
An edge-ranking of a graph G is a labeling
(ranking) of the edges of G with positive
integers such that every path in G with end
edges of the same label i contain an internal
edge with label j ≥ i+1 [1, 2]. Clearly an
edge-labeling is an edge-ranking if and only
if, for any label i, deletion of all edges with
labels >i leaves connected components, each
having at most one edge with label i. The
integer label of an edge is called the rank of
the edge. The minimum number of ranks
needed for an edge-ranking of G is called the
edge-ranking number and is denoted by

)(' GX r . The edge-ranking problem is to find
an edge-ranking of a given graph G using

)(' GX r ranks. This problem has applications
in scheduling the parallel assembly of a
complex multi-part product from its
components [1].
The problem of finding an optimal edge-
ranking was first studied by Iyer et al. in
1991 as they found that the problem has an
application in scheduling the parallel
assembly of multipart products. Lam and Yue
have proved that the edge-ranking problem is
NP-hard for general graphs [3] and also they
have solved the optimal edge-ranking

problem on trees in linear-time [4]. A
polynomial-time algorithm of this problem is
also available on partial k-trees [5].
Makino et al. introduced a minimum edge-
ranking spanning tree problem which is
related to the minimum edge-ranking
problem but is essentially different. The
minimum edge-ranking spanning tree
problem (MERST) is to find a spanning tree
of G whose edge-ranking is minimum. They
proved that this problem is NP-hard and
proposed a polynomial-time approximation
algorithm for general graphs [6]. Exact
polynomial-time algorithm of this problem is
available only for threshold graphs [7]. This
problem has interesting applications, e.g., to
scheduling the parallel assembly of a multi-
part product from its components and the
relational database [6].
In this paper, for the first time, we give an
algorithm for solving the minimum
edge-ranking spanning tree problem on
partial k-trees that needs O(n2∆(k+1)+2 ∆k(k+1)+2
log2

k(k+1)+2n) time.

2 Definitions and Preliminary Results
2.1 Partial k-tree
All the graphs we consider in this paper are
finite and undirected. Let G=(V,E) be a graph
with vertex set V and edge set E. The set of
vertices and the set of edges of G are often
denoted by V(G) and E(G), respectively. A
natural generalization of ordinary trees is the
so-called k-trees. The class of k-trees is
defined recursively as follows [8]:
(a) A complete graph with k vertices is a k-

tree.
(b) if G=(V,E) is a k-tree and k vertices v1,v2,

. . . ,vk induce a complete subgraph of G,
then G′= (V ∪ {w}, E∪ {(vi, w) | 1≤ i ≤
k}) is a k tree, where w is a new vertex
not contained in G.

(c) All k-trees can be formed with rules (a)
and (b).

SULTANA: AN ALGORITHM FOR SOLVING MINIMUM EDGE-RANKING SPANNING TREE PROBLEM ON PARTIAL K-TREES 2

A graph is called a partial k-tree if it is a
subgraph of a k-tree. Thus a partial k-tree G=
(V, E) is a simple graph without multiple
edges or self-loops and |E |< kn. In this paper
we assume that k is bounded by a fixed
integer.
2.2 Tree-Decomposition
A tree-decomposition of a graph G =(V, E) is
a pair (T, S), where T=(VT, ET) is a tree and
S= {Xx | x∈VT} is a collection of subsets of V
satisfying the following three conditions [9]:
(a) ∪ x∈ TV Xx = V ;
(b) for every edge e = (v, w)∈E, there exists

a node x∈VT with v, w ∈Xx; and
(c) for all x, y, z ∈VT , if node y lies on the

path from node x to node z in T, then Xx
∩ Xz ⊆ Xy.

So every partial k-tree G has a tree-
decomposition (T, S) with ≤k and nT≤n,
where nT is the number of nodes in T and
every node of the tree-decomposition can
contain at most k+1 vertices.
The construction of a partial k-tree can be
represented by a “binary decomposition tree”
Tb. Let (T, S) be a tree-decomposition of a
graph G with width ≤ k then it can be
transformed into a binary tree-decomposition
as follows[8]: Regard T as rooted tree by
choosing an arbitrary node as the root and
replace every node x of d children, say y1, y2,
. . ., yd, with d+1 new nodes x1, x2, . . . , xd+1
such that Xx= 1xX =

2xX = . . . =
1+dxX , where

xi, 1 ≤ i ≤ d, is the father of xi+1 and the i-th
child yi of x, and xd+1 is a leaf of the tree. This
transformation can be done in O(n) time.
Let (Tb, S) be the binary tree-decomposition
of a partial k-tree G= (V, E), where
Tb=(

bTV ,
bTE). Let x be a node in Tb and T(x)

be the subtree of Tb rooted at x. We associate
a subgraph Gx = (Vx, Ex) of G with each node
x of tree Tb, where
(a) Vx =∪ {Xy | y=x or y is a descendant of x

in Tb}; and
(b) Ex = {(v,w) ∈ E | v, w ∈ Vx}.
The graph associated with the root of Tb is
the given graph G itself. Gx may have m
spanning subgraphs 1

xH , 2
xH ,..., m

xH . Let
p
xH =(Vx, p

xE), be a spanning subgraph of Gx,
where p

xE ⊆Ex.
Let x be a node in Tb and let ϕ be an edge-
labeling of the spanning subgraph

p
xH =(Vx, p

xE) of Gx. The label (rank) of an
edge e∈ p

xE is denoted by ϕ (e). The number
of ranks used by an edge-labeling ϕ is
denoted by #ϕ . One may assume without
loss of generality that ϕ uses consecutive
integers 1, 2, 3, . . ., #ϕ as the ranks.
 For a rank i, 1≤ i ≤ #ϕ , denote by
E(p

xH ,ϕ ,i) the set of edges e in p
xH with

ϕ (e) = i, and let n (p
xH ,ϕ , i) =|E(p

xH ,ϕ ,i)|.
Then ϕ is the edge-ranking of p

xH if and
only if n (D,ϕ , i) ≤ 1 for any i, 1≤ i ≤ #ϕ ,
and any connected component D of the graph
obtained from p

xH by deleting all edges with
ranks >i.
2.3 Upper Bound and Lower Bound of
Edge-ranking Number for Trees
Makino et al. presented a top-down algorithm
for tree-ranking and analyzed the lower and
upper bound of the ranking. We next cite the
two lemmas [6].
Lemma 1 For any tree T=(VT, ET), we have

)(' TX r ≥ max{∆T, ⎡log2n⎤}, where ∆T is the
maximum vertex degree in T and n=|VT|.
Lemma 2 Let T=(VT, ET) be a tree with
|VT|=n. Then

=)(' TX r ⎡log2n⎤ if ∆T=0, 1, 2

1log
log)2()('

2

2

−∆
−∆

≤
T

T
r

nTX if ∆T ≥ 3.

3 Main Idea of Algorithm
As like many other algorithms on partial k-
trees, dynamic programming and bottom-up
tree computation technique is used in this
algorithm to solve the problem. On each node
of the binary tree-decomposition of the input
graph, a table of all possible partial solutions
of the problem is computed from leaves to
root, where each entry in the table represents
an equivalence class. The time complexity of
such an algorithm mainly depends on the
number of partial solutions generated at each
node.
We now characterizes minimum edge-
ranking spanning tree problem of a partial k-
tree in terms of visible vertices, and also
describes types of spanning subgraphs of a
partial k-tree.

DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 4, ISSUE 1, JANUARY 2009 3

3.1 Visible Vertices
The rank of an edge e∈ p

xE is said to be
visible from a vertex v∈Vx under ϕ in p

xH if
p
xH has a path P from v to e every edge of

which has a rank ≤ϕ (e).
 For a subgraph),(EVG ′′=′ of G, we
denote by ϕ | G′ a restriction of ϕ to G′ . Let

'ϕ =ϕ | G′ , then 'ϕ (e)=ϕ (e) for e∈Ex. We
can have the following lemma which
characterizes the edge-ranking of a spanning
subgraph of a partial k-tree by the number of
visible vertices.
Lemma 3 Let Tb be a binary decomposition
tree of a partial k-tree G and let x be an
internal node in Tb with two children y and z.
Then an edge-labeling ϕ of a spanning
subgraph p

xH of Gx is an edge-ranking of
p
xH if and only if

(a) ϕ | q
yH and ϕ | r

zH are edge-rankings of
q
yH and r

zH , respectively, where q
yH

and r
zH are spanning sub-graphs of Gy

and Gz, respectively; and
(b) at most one edge of any rank is visible

from any vertex v∈Xx under ϕ in p
xH .

Proof. :⇒ Suppose that ϕ is an edge-ranking
of a spanning subgraph p

xH of Gx. Then for
any label i, deletion of all edges from

p
xH with labels >i leaves connected

components, each having at most one edge
with label i.
(a) Let x be an internal node of Tb with two
children y and z. Let ϕ | q

yH and ϕ | r
zH be

the restrictions of ϕ to q
yH and r

zH , where
q
yH and r

zH are spanning subgraphs of Gy
and Gz respectively. Since ϕ is an edge-

ranking of spanning subgraph p
xH of Gx and

q
yH is a subgraph of p

xH , for any label i,

deletion of all the edges from q
yH with label

>i leaves connected components, each having
at most one edge with label i. Therefore
ϕ | q

yH is an edge-ranking of q
yH . Similarly

ϕ to r
zH is an edge-ranking of r

zH .

(b) Let i be any rank. Delete all edges with
rank >i from p

xH . Among the connected
components of the resulting graph, let D be
the one containing a vertex v ∈Xx. Let n (D,
ϕ , i) be the number of edges in D with rank
i. Then exactly n (D, ϕ , i) edges with rank i
are visible from v under ϕ in p

xH . Since ϕ is

an edge-ranking of p
xH , we have n(D,ϕ ,i)≤1.

Therefore, at most one edge of rank i is
visible from v under ϕ in p

xH .
 :⇐ Suppose for a contradiction that an
edge-labeling ϕ satisfies (a) and (b), but ϕ
is not an edge-ranking of p

xH . Then there
exists a rank i such that the deletion of all
edges with labels >i from p

xH leaves a
connected component D containing more
than one edges containing i. Since (a) and (b)
hold, D is neither a subgraph of q

yH nor r
zH .

Furthermore q
yH and r

zH have common
vertices only in Xx. Therefore D has a vertex
v∈Xx. Then all edges with label i in D are
visible from v in p

xH . Therefore, more than

one edges of rank i are visible from v in p
xH ,

contrary to (b).
3.2 Types of Spanning Subgraphs
Consider x be a node in Tb. To compute a
table of all possible partial solutions for each
node x of Tb, all possible spanning subgraphs
of xG are generated and for each spanning
subgraph, all possible edge-labelings are
generated. From all these edge-labelings of
spanning subgraphs of Gx, feasible edge-
labelings are calculated which form a table of
partial solutions at node x. While generating
spanning subgraphs of Gx, both spanning
trees and spanning forests of Gx are
considered. Therefore, for each node x of Tb,
1 to | xX |-tree type spanning subgraphs are
considered. A one-tree type spanning
subgraph of Gx is a spanning tree of Gx and i-
tree type, 2≤ i ≤ (k + 1), spanning subgraph is
a spanning forest of Gx, having exactly i
components (trees).

4 Equivalence class
Many algorithms on partial k-trees use
dynamic programming. On each node of the
tree-decomposition of the input graph, a table

SULTANA: AN ALGORITHM FOR SOLVING MINIMUM EDGE-RANKING SPANNING TREE PROBLEM ON PARTIAL K-TREES 4

of all possible partial solutions of the
problem is computed, where each entry in the
table represents an equivalence class. The
complexity of the algorithm largely depends
on the size of the table. So we need to find
appropriate equivalence class to reduce the
table size. Before defining the equivalence
class, we need to define a few terms.
Let R = {1,2, . . . ,m} be the set of ranks.
Let x be node in Tb and let ϕ : p

xE → R be an
edge-labeling of the spanning subgraph p

xH =

(Vx, p
xE) of Gx. For an integer i, we denote

by count(ϕ , v, i) the number of edges ranked

by i and visible from v∈Xx under ϕ in p
xH .

If ϕ be an edge-ranking of p
xH , then by

Lemma 3, count(ϕ , v, i)≤1 for any vertex
v∈Xx and any integer i∈R. Let D be the
connected component containing a vertex
v∈Xx in the graph obtained from p

xH , by
deleting all edges w with ϕ (w)>i. Then count
(ϕ , v, i) = n (D, ϕ , i).
Iyer et al introduced the idea of “critical list”
to solve the ordinary vertex-ranking problem
for trees [10]. Later similar idea was used to
define visible-list L(ϕ , v). We use the similar
concept for edge-ranking and define visible-
list L(ϕ , v) as:

L(ϕ , v) = {ϕ (e)| e ∈ p
xE is visible from a

 vertex v under ϕ in p
xH }.

The ranks in the visible-list L(ϕ ,v) are stored
in non-increasing order.
For an edge-labeling ϕ of p

xH , we now
define a function obstacle ϕλ : Xx×Xx→R
∪ {0, ∞}as follows:

ϕλ (v, w) = min{ λ | p
xH has a path P from

 v ∈Xx to w∈Xx such that ϕ (e) ≤ λ
 for each internal edge e of P }.
Let ϕλ (v, w) = 0 if (v, w)∈ p

xE or v=w, and

let ϕλ (v, w) = ∞ if p
xH has no path from v to

w. Clearly ϕλ (v, w) = ϕλ (w, v).

ϕλ also indicates the type of spanning

subgraph of p
xH . If ϕλ (v, w) ≠∞ for each (v,

w)∈Xx× Xx, then there is a path between any
two vertices in p

xH , that is, p
xH is a one-tree

type spanning subgraph (spanning tree). But
if ϕλ (v, w) =∞ for any (v, w) ∈ Xx × Xx then

p
xH is a spanning forest with more than one

connected components (trees).
Finally we define a visible list-set L(ϕ) and

vector R(ϕ) for p
xH as follows:

L(ϕ) = {L(ϕ , v)| v ∈ Xx}.
R(ϕ) = (L(ϕ), ϕλ).

We call such a vector R(ϕ) the vector of ϕ
on node x. R(ϕ) is called a feasible vector if
the edge-labeling ϕ is an edge-ranking of

p
xH .

An edge-ranking ϕ of p
xH is defined to be

extensible if it can be extended to an edge-
ranking 'ϕ of a spanning tree T of G without
changing the labeling of edges in p

xH . We
then have the following lemma.
Lemma 4 Let ϕ and η be two edge-rankings
of the same spanning subgraphs or two
different spanning subgraphs of Gx such that
R(ϕ)= R(η). Then ϕ is extensible if and only
if η is extensible.
Proof. Let ϕ and η are two edge-rankings
of two different spanning subgraphs p

xH =
(Vx, p

xE) and q
xH = (Vx, q

xE) of Gx. It suffices
to prove that if ϕ is extensible then η is

extensible. Let *V =V−Vx and let *G be the
subgraph of G induced by *V and let *H =
(*V , *E) be the spanning subgraph of *G .
Assume that ϕ is extensible. Then ϕ can be
extended to an edge-ranking 'ϕ of a spanning

tree pH =(*HH p
x ∪) of G=(V, E) such that

'ϕ (e)=ϕ (e) for any edge e∈ p
xE . Let n(G,ϕ ,

i) be the number of edges in E having rank i
for the edge-ranking ϕ . Extend the edge-
ranking η of q

xH to an edge-labeling 'η of a
spanning tree Hq= (*HH q

x ∪) as follows:

⎪⎩

⎪
⎨
⎧

∈

∈
=

. if)('

and ; if)(
'

*Eee

Eee p
x

ϕ

η
η

Then it suffices to prove that 'η is a valid
edge-ranking of Hq, that is, n('ηF , 'η , i) ≤1
for any rank i ∈R and for any connected
component 'ηF =('ηV , 'ηE) of the graph

DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 4, ISSUE 1, JANUARY 2009 5

obtained from Hq by deleting all the edges
e∈E with 'η (e)>i. Then there are the
following two cases to consider:
 Case 1: 'ηF has no vertex in Xx.
In this case, 'ηF is a subgraph of either

*H or q
xH , since *H is connected to q

xH only
through vertices in Xx. Moreover

'η | *H = 'η | *H and 'η | q
xH =η are edge-

rankings of *H and q
xH respectively.

Therefore n('ηF , 'η , i) ≤ 1.
 Case 2: 'ηF has a vertex w in Xx.
Let e∈ 'ηE is an edge adjacent to w and e has
the smallest rank of all edges adjacent to w
under 'η . In this case, obviously 'η (e) ≤ i. If
e∈ *E then 'η (e)= 'ϕ (e) ≤ i. On the other
hand if e∈ q

xE then smallest rank in L(η ,
w) is η (e)≤ i. Since R(ϕ) = R(η) we have
L(η , w) = L(ϕ , w). So smallest rank in L(ϕ ,
w) equal to η (e). Hence, there must be an
edge having rank equal to η (e)≤ i adjacent to
w under ϕ . In both cases there is an edge
adjacent to w having rank ≤ i under 'ϕ . So
deletion of all edges e∈E with 'ϕ (e)> i from
Hp leaves a connected component 'ϕF =

('' , ϕϕ EV) containing the vertex w. Since 'ϕ is
valid ranking of Hp, n('ϕF , 'ϕ ,i)≤1.
Therefore, it suffices to prove that n('ηF , 'η ,
i) = n('ϕF , 'ϕ , i).

Since 'η | *H = 'ϕ | *H one can observe that

'ηV ∩ Xx= 'ϕV ∩Xx and 'ηE ∩ *E = 'ϕE ∩ *E . Let

ηF be the subgraph of 'ηF induced by 'ηE ∩

Ex and *
'ηF be the subgraph of 'ηF induced

by 'ηE ∩ *E . Similarly, let ϕF be the

subgraph of 'ϕF induced by 'ϕE ∩ Ex and
*
'ϕF be the subgraph of 'ϕF induced by

'ϕE ∩ *E . Then n('ηF , 'η , i) = n(ηF ,η , i) +

n(*
'ηF , 'η , i) and n('ϕF , 'ϕ , i) = n(ϕF ,ϕ , i) +

n(*
'ϕF , 'ϕ , i). Since 'ηE ∩ *E = 'ϕE ∩ *E and

'η | *H = 'ϕ | *H we have n(*
'ηF , 'η , i) =

n('ϕF , 'ϕ , i). Therefore it suffices to prove
that n(ηF ,η , i) = n(ϕF ,ϕ , i).

Each of the connected components of ηF and

ϕF contains at least one vertex of Xx.
Suppose for a contradiction that a connected
component D of ηF or ϕF , say ηF , contains
no vertex in Xx. Since 'ηF is a connected
graph containing w∈Xx, w is connected to a
vertex of D by a path in 'ηF . However, it is
impossible because D has no vertex in Xx and

ηF is connected with *
'ηF only through the

vertices in Xx.
Let u ∈V(ηF)∩ Xx=V (ϕF) ∩ Xx. Let ηD be

the connected component of ηF that contains
u, and let ϕD be the connected component of

ϕF that contains u. Let v∈V(ϕD)∩ Xx, then
obviously ϕλ (v, u) ≤i. As R(η)=R(ϕ), ϕλ (v,

u) = ηλ (v, u)≤i. Therefore v∈V(ηD)∩Xx.
Similarly, we can show that v∈V(ϕD)∩Xx
for any vertex v∈V(ηD)∩Xx. Hence we have
proved that V(ηD)∩Xx=V(ϕD) ∩Xx. Clearly

n(ηD ,η , i) = count(η , u, i) and n(ϕD ,ϕ , i)
= count(ϕ , u, i). Since L(η , u)=L(ϕ , u), we
have count(η ,u, i) = count(ϕ , u, i) and hence
n(ηD ,η , i) = n(ϕD ,ϕ , i).
Thus we have proved that ηF and ϕF have
same number of connected components

1η
D ,

2ηD ,...,
p

Dη and
1ϕ

D ,
2ϕD ,...,

p
Dϕ ,respec

tively. Since n(ηF ,η ,i)=∑
=

p

j 1

n(
j

Dη ,η ,i) and

n(ϕF ,ϕ ,i)=∑
=

p

j 1

n(
j

Dϕ ,ϕ ,i). We have

n(
j

Dη , η, i) = n(
j

Dϕ ,ϕ , i).

We have proved that whenever ϕ and η are
edge-rankings of two different spanning
subgraphs of Gx, and thenϕ is extensible if
and only if η is extensible. Similarly we can
prove thatϕ is extensible if and only ifη is
extensible, when ϕ and η are two edge-
ranking of the same spanning subgraph of Gx.

SULTANA: AN ALGORITHM FOR SOLVING MINIMUM EDGE-RANKING SPANNING TREE PROBLEM ON PARTIAL K-TREES 6

5 The Algorithm
We first give an algorithm to decide, for a
positive integer m, whether a spanning tree T
of G has an edge-ranking using m ranks
exists with #ϕ ≤m. We use dynamic
programming and bottom-up tree
computation on the binary tree Tb: for each
node x of Tb from leaves to the root, all
(equivalence classes of) edge-rankings of all
spanning subgraphs of Gx are constructed
from those of two subgraphs Gy and Gz
associated with the children y and z of x. If
the root of Tb has at least one feasible
spanning tree solution, then the partial k-tree
G has a spanning tree T with edge-ranking ϕ
such that #ϕ ≤m. Then, by using a linear
search over the range of m, 1≤m≤∆ log2n, the
minimum value of m is determined such that
a spanning tree T of G has an edge-ranking
ϕ with m=#ϕ and find an optimal vertex
ranking spanning tree T of G.
We first presented the algorithm edge-
ranking to determine whether a spanning tree
T of G has an edge-ranking ϕ with #ϕ ≤m
for a positive integer m where #ϕ is the
largest rank assigned byϕ .
Algorithm edge-ranking
begin

1. obtain a binary decomposition tree Tb of
the partial k-tree G;

2. for each leaf x of Tb do
compute a table of all feasible
vectors;

3. for each internal node x of Tb do
compute a table of all feasible-vectors
from those on the two children of x,
and keep an edge-ranking ϕ of a
spanning subgraph of Gx arbitrarily
chosen from the edge-rankings having
the same feasible-vector;

4. repeat step 3 up to the root of the tree Tb;
5. check whether there exists a feasible-

vector for one-tree type spanning
subgraph of G in the table at the root;

end;

Now we describe the procedure of the above
algorithm. We first calculate the total number
of different equivalence class on any node x
of Tb. A feasible vector R(ϕ) of ϕ on x can
be seen as an equivalence class of extensible
edge-rankings of spanning subgraphs of Gx

by Lemma 4. Since |R| = m and 0 ≤count(ϕ ,
v, i) ≤1 for an edge-ranking ϕ and a rank
i∈R, the number of distinct visible-lists
L(ϕ ,v) is at most 2m for each vertex v∈Vx.
Furthermore |Xx|≤(k+1). Therefore, the
number of distinct list-sets L(ϕ) is at most
2m(k+1). On the other hand, the number of
distinct functions ϕλ : Xx×Xx→R ∪ {0, ∞} is
at most (m+2)k(k+1)/2, since ϕλ (v, v)=0 and

ϕλ (v,w)= ϕλ (w,v) for any v, w∈Xx.
Therefore, the total number of different
feasible vectors on x is at most 2m(k+1).
(m+2)k(k+1)/2. One may assume that m≤∆ log2n
=O(∆ log2n) by Lemma 1. Therefore the total
number of different feasible vectors on x is
O(n∆ (k+1)∆k(k+1)/2log2

 k(k+1)/2n) for any fixed
integer k.
Next we show how to find the table of all
feasible vectors R(ϕ)=(L(ϕ),λ (ϕ)) on a
leaf x of Tb. This can be done as follows:
1. enumerate all edge-labelings ϕ : p

xE →R of
a spanning subgraph p

xH of Gx;
2. compute all feasible vectors R(ϕ) from

the edge-labelings ϕ of p
xH ; and repeat

step (1) and (2) for all spanning subgraphs
of Gx on x.

3. repeat step (1) and (2) for all spanning
subgraphs of Gx on x.

Since |Vx|=|Xx|≤k +1 and |R|=m, the number of
edge-labelings ϕ : p

xE →R is at most mk. For
each edge-labelingϕ , ϕλ can be computed in
time O(1). Furthermore, the visible-lists L(ϕ ,
v), v∈Xx= Vx, can be done by Lemma 3 in
time O(1), and if so, computing L(ϕ) can be
done in time O(1). Therefore step (1) and (2)
can be executed in time O(mk) =O(∆ klogk

2n).
Since the number of spanning subgraphs of
Gx is a function of k, so step (3) can be
executed for a leaf x in time O(∆ klogk

2n) and
thus the table on x can be found in time
O(∆ klogk

2n).
We next show how to compute all feasible
vectors on an internal node x of Tb from those
on two children y and z of x. One may
assume that Xx= Xy. By the definition of Gx=
(Vx, Ex), we have Vx= Vy ∪ Vz and Ex= Ey ∪ Ez

and Ex=Ey ∩ Ez=φ . Let η and ψ respectively
be the edge-rankings of the spanning
subgraphs q

yH and r
zH of Gy and Gz

DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 4, ISSUE 1, JANUARY 2009 7

respectively. p
xH be the resultant graph such

that p
xH = q

yH ∪ r
zH so obviously it is a

subgraph of Gx.
First we have to check whether p

xH be a
spanning subgraph of Gx or not. If for any
pair of vertices (v, w)∈(Xy∩Xz)× (Xy∩ Xz),
there is two different paths in p

xH then p
xH

is not a spanning subgraph of Gx, so discard
the vector. But if this condition is false for all
pairs (v, w)∈(Xy∩Xz)× (Xy∩ Xz) then p

xH is
spanning subgraph of Gx. This spanning
subgraph checking can be done in time O(1).
Now let ϕ be the edge-labeling of p

xH
extended from η and ψ , then we have
ϕ | q

yH =η and ϕ | r
zH =ψ .

Now we show how to compute ϕλ from
vectors R(η) and R(ψ). Let G(η) be an
edge-λ -graph defined for η as follows: let

yXK be a complete graph of the vertices in

Xy; assign a weight of ηλ (v,w) to each edge
(v,w) in

yXK .Then the total number of

vertices in G(η) is at most k + 1 and the total
number of edges is at most k(k+1)/2.
Similarly define an edge-λ -graph G(ψ) for
ψ . Identify each pair of the same vertices in
(Xy∩ Xz), one in G(η) and the other in
G(ψ). Let)(' ϕG be the resulting weighted
graph. Then the total number of vertices in

)(' ϕG is at most 2(k +1) and the total number
of edges is at most k(k+1). Then, by the
construction of)(' ϕG , the function

ϕλ :Xx×Xx→R∪ {0, ∞} can be computed as
follows:
ϕλ (v, w) = min{ λ |)(' ϕG has a path P from

 v ∈Xx to w∈Xx every internal edges
 of which has a eight ≤ λ }.
Since)(' ϕG has a constant number of
vertices and edges, ϕλ can be computed in
time O(1). It is also easy to construct a λ -
graph)(ϕG from)(' ϕG .
We next show how to compute L(ϕ) from
η and ψ . Let i∈R be any rank. Delete all the

vertices with rank > i from p
xH . Among the

connected components of the resulting

graph, let ϕH be the one containing a vertex
v∈Xx. Then count(ϕ ,v,i)= n(ϕH ,ϕ , i). Since
|Ex|=O(n) and |R|=m=O(∆ log2n), the count-
lists L(ϕ ,v), v∈Xx, can be computed in time
O(n.m)=O(n∆ log2n). Then checking whether
an edge-labeling ϕ is an edge-ranking of p

xH
can be done by Lemma 3 in time O(∆ log2n),
and if so, computing L(ϕ) can be done in
time O(∆ nlog2n). The table of all feasible
vectors on an internal node x can be obtained
from the pairs of tables of all vectors on the
to children of x, and the number of these pairs
is O(n2∆ (k+1) ∆k(k+1)log2

 k(k+1)n). Therefore
the table on x can be computed in time
O(n2∆ (k+1)+1∆k(k+1)+1 log2

 k(k+1)+1n).
Finally, we have to check all feasible-vectors
at root to find out whether there exists a
feasible-vector for one-tree type spanning
subgraph (spanning tree) of G. At root,
computing all feasible-vectors needs
O(n∆ (k+1)+1∆ k(k+1)/2+1log2

k(k+1)/2+1n) time. And
then checking whether an edge-ranking ϕ is
a valid solution for one-tree type spanning
subgraph p

xH of G can be done by examining
each w∈ ϕλ of R(ϕ). If w ∞≠ for all w∈ ϕλ ,

then all vertices of p
xH is connected, which

implies that p
xH is a one tree-type spanning

subgraph of G. Consequently, we can say G
has a vertex-ranking spanning treeϕ . This
checking can be done in O(1) time.

6 Time complexity of the Algorithm
The main result of this paper is this following
theorem.
Theorem 1 A minimum edge-ranking
spanning tree of a partial k-tree with n
vertices can be found in time
O(n2∆ (k+1)+2∆ k(k+1)+2log2

k(k+1)+2n) where n is
the number of vertices and ∆ is the maximum
vertex degree of the graph.
Line 1 of the algorithm can be done in O(n)
time [9]. Line 2 can be done for each leaf in
O(∆ klogk

2n) time. Since there are O(n)
leaves, line 2 can be done in O(n∆ klogk

2n)
time in total for all leaves. Since line 3 is
executed for O(n) nodes in total in line 4, line
4 can be done in O(n2∆ (k+1)+2∆k(k+1)+1
log2

 k(k+1)+1n) time in total. At last Line 5 can
be done in O(n∆ (k+1)+1∆ k(k+1)/2+1log2

k(k+1)/2+1n)
time in total. Thus checking whether a

SULTANA: AN ALGORITHM FOR SOLVING MINIMUM EDGE-RANKING SPANNING TREE PROBLEM ON PARTIAL K-TREES 8

spanning tree of a partial k-tree G has an
edge-ranking ϕ such that #ϕ ≤m can be done
in O(n2∆ (k+1)+2 ∆k(k+1)+1 log2

 k(k+1)+1n) time.
Using the linear search technique over the
range of m, 1≤ m ≤∆log2n, one can find the
smallest integer)(' TX r such that T has an
edge-ranking ϕ with #ϕ =)(' TX r by calling
the algorithm edge ranking O(∆ log2n) times.
Therefore, a minimum edge-ranking
spanning tree T of a partial k-tree G with n
vertices can be found in time for any bounded
integer k. This completes the proof of
Theorem 1.

7 Conclusion
In this paper, we present an algorithm for
solving the minimum edge-ranking spanning
tree problem on partial k-trees. It is the first
polynomial-time algorithm for solving the
problem on partial k-trees for small values of
k. With some trivial modifications, our
algorithm can be used to solve the c-edge-
ranking spanning tree problem on partial k-
trees.

References
[1] A. V. Iyer, H. D. Ratliff, and G. Vijayan, “On an

edge-ranking problem of trees and graphs”,
Discrete Applied Mathematics, Vol. 30, 1991, pp.
43–52.

[2] J. S. Deogun, and Y. Peng, “Edge ranking of
trees”, Congressus Numerantium, vol. 79, 1990,
pp. 19–28.

[3] T. W. Lam, and F. L. Yue, “Edge Ranking of
graphs is hard”, Discrete Applied Mathematics,
Vol. 85, 1998, pp. 71–86.

[4] T. W. Lam, and F. L. Yue, “Optimal edge ranking
of trees in linear time”, Algorithmica, Vol. 30,
2001, pp. 12–33.

[5] M. A. Kashem, X. Zhou, and T. Nishizeki,
“Algorithms for generalized edge rankings of
partial k-trees with bounded maximum degree”,

Proceedings of the 1st International Conference
on Computer and Information Technology
(ICCIT), 1998, pp. 45–51.

[6] K. Makino, Y. Uno, and T. Ibaraki, “On minimum
edge ranking spanning trees”, Journal of
Algorithms, Vol. 38, 2001, pp.411-437.

[7] K. Makino, Y. Uno, and T. Ibaraki, “Minimum
edge ranking spanning trees of threshold graphs”,
LNCS, Vol. 2518, 2002, pp. 428–440.

[8] H. L. Bodlaender, “Polynomial algorithms for
graph isomorphism and chromatic index on partial
k-trees,” Journal of Algorithms, Vol. II, 1990, pp.
631–643.

[9] H. L. Bodlaender, “A linear time algorithm for
finding tree- decompositions of small tree width,”
Society for Industrial and Applied Mathematics
(SIAM) Journal on Computing, Vol. 25, 1996, pp.
1305–1317.

[10] A. V. Iyer, H. D. Ratliff, and G. Vijayan, “Optimal
node ranking of trees,” Information Processing
Letters, Vol. 28, 1988, pp. 225–229.

Razia Sultana has
completed her M.Sc.
Engg. in Information
and Communication
Technology from
Institute of Information
and Communication
Technology (IICT) of
Bangladesh University

of Engineering and Technology (BUET) and
B.Sc. Engg. in Computer Science and
Engineering from Rajshahi University of
Engineering and Technology (RUET). Now
she is working as Senior Lecturer in the
Department of CSE, CIS & CS of Daffodil
International University. Her topics of
interest are Graph Theory, Bioinformatics,
and Networking.

