Association of Vitamin-D Receptor Gene Single Nucleotide Polymorphism (FokI) with COPD

Akter K1, Riad RZ2, Ali T3, Rosy S K4, Banu LA5

Abstract

Background: Vitamin D receptor gene (VDR) polymorphism and its association with various diseases have been previously investigated. But the association of vitamin D receptor gene polymorphism with COPD has not been investigated yet. **Objective:** To assess the association between vitamin D receptor gene polymorphism (FokI) and COPD. **Methods:** This cross sectional study was carried out in the Department of Physiology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka from March 2019 to February 2020. For this study, 15 (fifteen) pulmonologists diagnosed COPD patients with age 40 to 80 years (post-bronchodilator FEV1/FVC<0.70 and FEV1<80% predicted) and 15 (fifteen) apparently healthy age-matched individuals (for comparison), were selected. The single nucleotide polymorphism of vitamin D receptor gene (FokI) of all subjects was assessed by PCR-RFLPs. Data were expressed as mean ± SD and percentage. Statistical analysis was done by independent sample ‘t’ test and chi-square test. In the interpretation of the results, ≤0.05 level of probability (p) was accepted as significant. **Results:** The frequency distribution of FokI genotype was 13.33% (FF), 73.34% (Ff), 13.33% (ff) and 13.33% (FF), 80% (Ff), 6.66% (ff) COPD patients and healthy subjects, respectively. Associations of FokI [FF (OR 1, 95% CI 0.12-8.21, p=1.00); Ff (OR 0.68, 95% CI 0.12-3.78, p=0.66); ff (OR 2.15, 95% CI 0.17-26.67, p=0.54)] VDRSNP with COPD was statistically non-significant. Conclusion: The present study reveals that the FokI of VDR SNP is not associated with COPD.

Keywords: Vitamin D receptor gene, Single nucleotide polymorphism, FokI.

Introduction: Chronic obstructive pulmonary disease (COPD) is a common, preventable and treatable disease that is characterized by persistent respiratory symptoms and airflow limitation that is due to airway and or alveolar abnormalities usually caused by significant exposure to noxious particles or gases. It is a complex disease associated with the multifactorial background of long-term exposure to noxious gases and particles, combined with a variety of host factors, including genetics, airway hyper-responsiveness and poor lung growth during childhood1. It has been found that different genes are associated with COPD. Among them, alpha1- antitrypsin (AAT) deficiency is one of the most common genetic causes of COPD. This enzyme deficiency occurs due to Taq-I polymorphism of AAT, Z-isoform of AAT, and mutation of serpin family A member 1 (SERPINA1). In addition, Single nucleotide polymorphism (SNP) of matrix metalloproteinase 9 (MMP9), the promoter region of tumour necrosis factor-alpha (TNFα) gene and SERPINA3 were also associated with COPD2-6.

As COPD is a chronic inflammatory respiratory ailment, so, immunomodulation would be one of its major causative factor7-9. Recently the immunomodulatory role of vitamin D has been explored10-14. This immunomodulatory characteristic acts via vitamin D receptor (VDR), which alters genomic signaling12,15-19. So, the main regulator of vitamin D signaling is the VDR19, which is present in numerous tissues, including kidney, heart, muscle, breast, colon, prostate, brain and immune cells.

1 Dr. Khalada Akter, Assistant Professor, Department of Physiology, EMCH, Cumilla, Bangladesh.
2 Dr. Md. Riadul Zannat Riad, Assistant Professor, Department of Anatomy, EMCH, Cumilla, Bangladesh.
3 Dr. Taskina Ali, Professor, Department of Physiology, BSMMU, Dhaka, Bangladesh.
4 Dr. Sharkia Khanom Rosy, Lecturer, Department of Physiology, ShSMC, Dhaka, Bangladesh.
5 Dr. Laila Anjuman Banu, Professor, Genetics and Molecular Biology, BSMMU, Dhaka, Bangladesh.

Correspondence : Dr. Khalada Akter, Mobile: 01795-745687, Email: khaledajmc11@gmail.com
making itself a natural target of modulation in disease pathogenesis, including a variety of cancers43, metabolic syndrome22,23, renal transplant24 and dermal disorders25. In addition, polymorphisms of the VDR gene have been found to be associated with immune-mediated diseases characterized by an imbalance in helper T-cell development9, such as Crohn’s disease26 and tuberculosis27.

VDR gene is located on 12q13.11 possessing 11 exons with a length of 5.6 kb28. This VDR gene has more than3 470 single nucleotide polymorphisms (SNPs), a number of which modulate the uptake of 1,25 (OH)\textsubscript{2}D35. Among them, the common SNPs are ApaI30, BsmI31, TaqI32 and FokI33.

These SNPs have been found to be associated with the efficacy of antiresorptive treatments in postmenopausal women (with BsmI)34, essential hypertension (with FokI)35, metabolic syndrome (with FokI)23, prostate cancer (with ApaI)36, Leprosy (with FokI and ApaI)13, lumbar spine pathogenesis (with BsmI, ApaI and TaqI)37 and multiple familial sclerosis (with TaqI)38. Moreover, in the perspective of respiratory ailments, both FokI and ApaI VDR SNPs were found to be associated with asthma11,39,40 and FokI VDR SNP was found to be associated with tuberculosis41,42. In addition, ApaI was associated with osteoporosis43 and FokI along with BsmI were associated with skeletal muscle strength in COPD patients44. To the best of our knowledge, different diseases were found to be associated with VDR polymorphism. However, as far as we searched, no study was available on the association of VDR SNP with COPD. Therefore this study aimed to investigate the association of one common VDR SNP (FokI) with COPD.

Materials and Methods Data collection
This cross-sectional study was conducted from March 2019 to February 2020 in the Department of Physiology, Bangabandhu Sheikh Mujib Medical University (BSMMU), after getting protocol approval from the Institutional Review Board (IRB) of BSMMU. For this study, 15 male (age 40 to 80 years) COPD patients (Study group) were diagnosed by a Pulmonologist with spirometric evidence of COPD (presence of a post-bronchodilator FEV1/FVC <0.70 and FEV1 <80% predicted) and enrolled by purposive sampling from Out-Patients Department (OPD) of the National Institute of the Diseases of Chest and Hospital (NIDCH). For comparison, 15 age, BMI and smoking status matched apparently healthy males (Comparison group) were selected by personal contacts. Written informed consent was taken from all the participants after detailing the study procedure. With all aseptic precautions, 5ml of venous blood was drawn from the ante-cubital vein.

DNA extraction
DNA extraction was done by ReliaPrepTM Blood gDNA isolation kit (Promega, Wisconsin, USA) and assayed for purity and concentration by spectrophotometry (absorbance at 260 nm and 280 nm).

FokI polymorphism
PCR amplification of the VDR gene was done in 25μ 1 reaction mixtures containing primers for FokI polymorphism45. The PCR amplification conditions were initial denaturation at 94°C for 5 minutes followed by 35 cycles at 94oC for 30 sec, 58°C for 30 sec, 72°C for 1 min and final extension at 72°C for 7 minutes. The primers for FokI polymorphism were 5’- GATGCCAGCTGGCCCTGGCAGCTG-3’ and 5’- ATGGAACACCTTGCTTCTCTCCCTC-3’45. The PCR product (272 bp) was digested with 1.0 unit FokI restriction enzyme (New England Biolabs Inc, USA) in a heat block at 25°C for 20 minutes. The products of restriction enzyme cleavage were analyzed on 1% agarose gels and were visualized under UV light after staining with ethidium bromide (Figure 1, Table 1). FokI VDR SNP resulted in fragments of 272 bp, 198 bp and 74 bp. Thus for FokI, FF resulted in one fragment of 272 bp, ff in two fragments of 198 and 74 bp, and Ff exhibited all three fragments (272bp,198bp,74bp).

Table no. 1: Primer sequence and PCR conditions for genotyping of FokI VDR.

<table>
<thead>
<tr>
<th>Location</th>
<th>Locus</th>
<th>Alleles</th>
<th>PCR primer</th>
<th>PCR product (bp)</th>
<th>Restriction enzyme</th>
<th>RFLP products (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exon2</td>
<td>rs2228570</td>
<td>C/T</td>
<td>5’- GATGCCAGCTGGCCCTGGCAGCTG-3’</td>
<td>272</td>
<td>FokI</td>
<td>272</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5’- ATGGAACACCTTGCTTCTCTCCCTC-3’</td>
<td>198</td>
<td></td>
<td>198</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Initial denaturation: 94°C for 5 min; 35cycles: 94°C for 30s, 58°C for 30s, and 72°C for 1min; and final extension: 72°C for 7min</td>
<td></td>
<td></td>
<td>74</td>
</tr>
</tbody>
</table>

PCR- Polymerase chain reaction; RFLP-Restriction fragment length polymorphism; bp- Base pair.
Results

The baseline characteristics of all our study subjects are presented in Table 2. The distribution of FokI VDR genotype and allele frequency is shown in Table 3. The FokI genotype, frequency distribution was 13.33% (FF), 73.34% (Ff), 13.33% (ff) and 13.33% (FF), 80% (Ff), 6.66% (ff) COPD patients and healthy subjects, respectively. The associations of FokI FF (OR 1, 95% CI 0·12-8.21, p = 1.00); Ff (OR 0·68, 95% CI 0·12-3.78, p=0·66); ff (OR2.15, 95% CI0·17-26.67, p = 0·54)] VDR SNPs with COPD were statistically non-significant.

Table no. 2 : Baseline characteristics of COPD patients and healthy subjects (N=30)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>COPD patients (n=15)</th>
<th>Healthy subjects (n=15)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>60.46 ±6.31</td>
<td>56.00 ±7.80</td>
<td>0.096ns</td>
</tr>
<tr>
<td>Body mass index (BMI) (kg/m²)</td>
<td>22.76 ±4.26</td>
<td>21.96± 2.30</td>
<td>0.531ns</td>
</tr>
<tr>
<td>Duration of smoking (pack year)</td>
<td>14.07 ±5.41</td>
<td>17.16 ±5.17</td>
<td>0.121ns</td>
</tr>
<tr>
<td>FEV1/FVC(%)</td>
<td>57.60±10.61</td>
<td>80.60 ±6.38</td>
<td>0.000***</td>
</tr>
<tr>
<td>FEV1(%) of predicted value</td>
<td>44.88 ±10.98</td>
<td>83.26 ±10.51</td>
<td>0.000***</td>
</tr>
</tbody>
</table>

Data were expressed as mean ± SD; Figures in parentheses indicate ranges; Statistical analysis was done by Independent sample t-test; N = Total number of subjects; n = number of subjects in each group; Pack year = (number of cigarettes smoked per day/20) X no. of years smoked; FEV1 = Forced expiratory volume in the first second; FVC = Forced vital capacity; ns = non-significant; *** = statistically significant (p<0.001)

Table no 3: Genotype and allele distribution of FokI VDR SNP in study subjects (N = 30)

<table>
<thead>
<tr>
<th>SNP</th>
<th>COPD patients (n = 15)</th>
<th>Healthy subjects (n = 15)</th>
<th>OR(95%CI)</th>
<th>χ²-value (p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no %</td>
<td>no %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FokI</td>
<td>FF 2 13.33</td>
<td>2 13.33</td>
<td>1 (0.12-8.21)</td>
<td>χ²=0.00, p=1.00</td>
</tr>
<tr>
<td></td>
<td>FF 11 73.34</td>
<td>12 80</td>
<td>0.68 (0.12-3.78)</td>
<td>χ²=0.18, p=0.66</td>
</tr>
<tr>
<td></td>
<td>FF 2 13.33</td>
<td>1 6.66</td>
<td>2.15 (0.17-26.67)</td>
<td>χ²=0.37, p=0.54</td>
</tr>
<tr>
<td></td>
<td>F 12 50</td>
<td>16 53.34</td>
<td>1.14 (0.41-3.14)</td>
<td>χ²=0.06, p=0.79</td>
</tr>
<tr>
<td></td>
<td>f 15 50</td>
<td>14 46.66</td>
<td>0.87 (0.31-2.41)</td>
<td>χ²=0.06, p=0.79</td>
</tr>
</tbody>
</table>

VDR = Vitamin D receptor; SNP = Single Nucleotide polymorphism; OR = odds ratio; CI = confidence interval
Discussion

It is well known that the VDR gene is located on chromosome 12q13.1128,46 encoding the VDR protein by exon II to IX. In addition, it has been reported that exon VII to IX involves the binding of VDR to vitamin D47. It has also been observed that variations in the 3' UTR sequence often affect mRNA stability, the efficiency of protein translation and alter protein levels. Among the four common VDR SNPs, FokI is located in exon 2 at the 5' end of the VDR gene10,13,32,47,48,49,50,51,52. However, it is due to the nucleotide substitution of T to C within the first codon of exon 2 (ATG to ACG, giving rise to the allelic conversion of "f" to "F")52. Therefore, this FokI polymorphism may affect the activity of VDR and subsequent downstream effects of vitamin D53, including its immunomodulatory role50,51. FokI VDR SNP was found to be associated with essential hypertension, metabolic syndrome, acromegaly, leprosy, hepatocellular carcinoma, multiple sclerosis, urolithiasis and skeletal muscle strength in COPD patients13,22,23,29,35,44,47,54. From the perspective of respiratory ailments, FokI VDR SNP was found to be associated with asthma and tuberculosis39,41,42. However, in our study, neither the genotype nor the allele of FokI VDR single nucleotide polymorphism was associated with COPD. Similarly, in a Turkish study regarding the global COVID condition, was found no association between FokI polymorphism of the VDR gene with COVID-1955. It may be explained as respiratory diseases showing the similarity of genetic involvement.

Conclusion

The results of the present study elucidate that FokI VDR SNP is not associated with COPD. There were a few limitations in our study. First, the intake of vitamin D and environmental exposure to ultraviolet radiation of our study population could not be assessed. Second, as a genetic association study, the results were based on a small number of samples. For further research, a similar type of study should be done, including information on vitamin D intake and environmental exposure to ultraviolet radiation in a large number of COPD patients.

Conflict of interest

There is no existence of a conflict of interest in this study.

Funding

The financial support for conducting this study was given by BSMMU and also contributed by the authors.

Acknowledgement

The authors acknowledge Prof. Dr. Manzare Shamim, Professor of the Department of Anatomy, BSMMU, for permitting to do the laboratory work in his department (Genetic Lab).

References

15. Kliwer SA, Umesono K, Mangelsdorf DJ, Evans RM. Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signaling. Nature. 1992 Jan; 355(6359):446-449. doi:10.1038/355446a0

52. Hoseinkhani Z, Rastegari-Pouyani M, Tajemiri F, Yari K, Mansouri K (2021). Association of vitamin D receptor polymorphisms (FokI (Rs2228570), ApaI (Rs7975232), BsmI (Rs1544410), and TaqI (Rs731236)) with gastric cancer in a Kurdish population from west of Iran. Rep Biochem Mol Biol. 2021 Jan; 9(4):435.doi:10.52547/rbmb.9.4.435

