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Abstract 

The speed of interface propagation in superconductors for the scalar reaction-

diffusion equation )(+∇= 2 uFuut is studied in detail. Here the non linear 

reaction term ( )uF  is the time-dependent Ginzburg-Landau or TDGL equation 

( ) 3-= uuuF which describes the dynamics of the order-disorder transition. In 

contrast to what has been done in previous work [1] here an improved exact 

solution has derived by using TDGL equation to determine the speed of the front 

propagation. The analytical treatment of this study has been found in good 

agreement with the numerical simulation of V. Mendez et al. [2] and Di Bartolo 

and Dorsey [3]. 
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AwZcwievnx‡Z AvšÍtc„ô we¯ÍviY Gi `ªæwZ we¯ÍvwiZ Av‡jvPbv Kiv n‡q‡Q †¯‹jvi wewµqv- 

wemiY mgxKiY )(+∇= 2 uFuut Gi Rb¨| GLv‡b A‰iwLK wewµqv c` ( )uF  n‡”Q mgq 

wbf©i Ginzburg-Landau A_ev TDGL mgxKiY ( ) 3-= uuuF , ‡hwU k„sLjv-wek„sLjv 

Ae¯’všÍ‡ii MwZwe`¨v eY©bv K‡i| AvšÍtc„ô we¯Ívi‡bi `ªæwZ wbY©‡qi Rb¨ c~e©eZx© Kv‡Ri [1] 
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wecix‡Z Ab¨ GKwU h_vh_ mgvavb †ei Kiv n‡q‡Q TDGL mgxKiY e¨envi K‡i| GB 
Kv‡Ri we‡kølYx eY©bv V. Méndez et al. [2] Ges Di Bartolo I Dorsey [3] Gi  
msL¨vZvwZ¡K djvd‡ji mv‡_ msMwZc~Y©|  
 
1. Introduction 
 

The study of interface propagation in superconductor is one of the most 

fundamental problems in non equilibrium physics. In these problems the system is 

first prepared carefully in an unstablestate by preparing an experimental system in a 

state it does not naturally stay in. This occurs when a sudden destabilizing change 

is applied, a system responds by forming fronts which propagates into the unstable 

states. 

In general the nonlinear equation have been employed to model front propagation 

in different areas such as dendrites and population growth, pulse propagation in 

nerves, and many other biological, chemical and physical phenomena are described 

by reaction diffusion equations which are of the form 

 )),((+),(∇=),( 2 tuFtutut rrr  (1.1) 
 

Here ( )tu ,r is a field variable (e.g. order parameter, populationdensity,magnetization 

chemical concentration) defined as a function of space (r) and time (t).The 

nonlinearfunction ( )( )tuF ,r  is a reaction term. There are two cases. One is the 

Fisherequation ( ) 2-= uuuF , which describes the dynamics of structured 

population [4]. Another one is the time-dependent Ginzburg-Landau or TDGL 

equation,   3uuuF  describes the dynamics of the order-disorder transition [5].  
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Now particular term of equation (1.1)is the Fisher equation 
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For one dimensional (1D) case Kolmogorov, Petrovskii and Piscounov (KPP) [6]  

wrote equation (1.2) in the form as  
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According to KPP equation (1.3) has stable traveling wave solution (they called 

‘clines’) which are walls traveling in the +x direction with 

velocity 2≥v and 1=)t, ∞-(u , ;0=),∞( tu or walls traveling in the x- direction 

with velocity 2≤v and 0=)t, ∞-(u , 1=)t, ∞(u , but whose analytical result were 

not known. 
 

Subsequently, Aronson and Weinberger [7], demonstrated the powerful result by 

considering the 1D version of equation (1.1), 
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Where ;0)1()0(,0)(  FFxF    100 FF   
 

They found that for a sufficiently broad class of initial condition the solutions of 

this equation evolve into fronts with a definite speed v, which satisfies 
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uuFvF )(sup2)0(2  so that for the special case 3)( uuuF  the selected 

speed is v=2. 

 

According to the work of Di Bartolo and Dorsy [3] consider a sample of 

superconducting material embedded in a stationary applied magnetic field H equal 

to the critical field cH so that there is a stationary planar superconducting-normal 

interface grows which separates the normal and superconducting phases. After than 

the magnetic field is rapidly removed, the interface becomes dynamically unstable 

and propagates towards the normal phase so as to expel any trapped magnetic flux, 

leaving the sample in Meissner state. It has been considered that the interface 

remains plannar during all the processes. 
 

Several methods are proposed for the analysis of dynamical velocity selection for 

fronts such as marginal stability hypothesis, variational speed selection [8], 

structural stability and construction of exact solutions [1] etc. In this work the front 

propagation speed is determined by using the construction of exact solution 

method. 
 

The purpose of this paper is to present a detailed study of the dynamics of the front 

propagation and hence to find out the front velocity in superconductor. This is an 

important problem to be solved and is an interesting issue to the Physics society. In 

section 2 construction of exact solution of the time dependent Ginzberg-Landau 

(TDGL) equations for superconducting fronts are presented. The starting points are 

TDGL equations which provide the self consistent description of the coupling 
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between the order parameter and the vector potential. Section 3 gives the results 

and discussions. 
 

2. Theory 
 

To study the behavior of the superconducting-normal interface, TDGL equations in 

dimensionless unit are introduced in one dimension as: 

 
322

x2 -+- ∂
1

=∂ fffqfft 
 (2.1) 

 qfqq xt
22 - ∂=∂  (2.2) 

 

Here f is the magnitude of the order parameter   of the superconductor, q is the 

vector potential which is gauge invariant and related to the magnetic field as 

,qh x  is the dimensionless normal state conductivity which is the ratio of the 

order parameter diffusion constant  mD 2  (  is the order parameter 

relaxation time, m is the mass of Cooper pair) to the magnetic field diffusion 

constant  n
hD 41 and  is the Ginzberg-Landau parameter. 

 

The interesting case is finding traveling wave solutions for the model discussed in 

this paper. The steady traveling wave solution for the TDGL equation can be 

written in the form as    ( ) ( ) ( )vtxFXFtxf -==, and ( ) ( ) ( )vtxQXQtxq -==, , 

where vtxX  with 0v . Then equations (2.1) and (2.2) become  
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 0=-+-′+′′
1 32

2 FFFQFvF


 (2.3) 

 0=-′+′′ 2QFQvQ   (2.4) 
To determine front velocity as a function of ,a modification is given to the 

interface problem. Let us consider the following generalized Ginzberg-Landau 

equations    

 ( ) 0=-+-′+′′+1 322 FFFQFvF  (2.5)          

 ( ) 0=++-′-′′ 3
3

2
210 FbFbFbQQQ   (2.6) 

Here 1b , 32 ,bb are constant parameters and v =0 . 

The exact solution for order parameter and vector potential can e constructed as 
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Where 121 ,,,  and 2 are any arbitrary constants in front solution. Now 
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(2.9) 

and 



          An Exact Solution of the Reaction-Diffusion Equation for the Speed of the Interface Propagation in   
          Superconductors 

 
 

91

)++1(
)2+)(+(2

+
)++1(

)4+)(+(+)2+)(2+(

-
)++1(

)2+)(2+(
-

)++1(
4+

=′′

32
21

22
21

2

22
21

2
2

22
1

22
21

2

22
21

2
21

2

2
21

222

XX

XXXX

XX

XXXXXXXX

XX

XXXX

XX

XX

ee
eeCee

ee
eeeCeeeeCe

ee
eeeCe

ee
eCe

Q





























  (2.10)

 

                                                                                                                      
Substituting equations (2.7- 2.10) into equation (2.6), we get 
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21 )++1( XX ee   from equation (2.11) implies: 

0=
)++1(

2+
-

)++1(
4+

2
21

2

02
21

222

XX

XX

XX

XX

ee
eCe

ee
eCe
















                                       
(2.12) 

0=)2+(-4+ 2
0

222 XXXX eCeeCe    

Equating the coefficients of Xe , we get 
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For 
2

1
=  this can be written as 

2
1

=v v =0  

Hence                                             ( )2
1

=v                                                     (2.13) 
 

The front speed in terms of dimensionless normal state conductivity which 

determines the rate at which flux diffuses in the normal state is obtained. Note that 

as  increases v decreases that means the larger the flux diffuses in the front the 

smaller the front speed. 
 

Di Bartolo and Dorsey [3] constructed an exact solution for F and Q. For the 

perturbed approximation of equations (2.3) and (2.4), these solutions are used as 

the starting point to calculate the front speed. The selected velocity for 

superconducting-normal interface is  

 kQ
v

 +)2(
1

=
∞

        (2.14) 

 

Where k  is the kinetic coefficient and ∞Q  is the integrated magnetic field in the 

front which is an important control parameter for the front dynamics i.e., the larger 

the trapped magnetic flux in the front the smaller the front speeds. We see that for 

1=∞Q and 0=k , equation (2.14) is in excellent agreement with our result 

equation (2.13). 
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3. Results and Discussion 
We know fronts propagate into an unstable state in superconductor with a 

continuous order parameter at a unique shape and speed. There already exist 

several proposed criteria for the analysis of the dynamical velocity selection. In this 

paper exact solution method has been applied to TDGL equation in order to study 

the front speed. 
 

Figure 1 represents the graph for the speed of the fronts for different values 

of according to the analytical expression, equation (2.13), ( )2
1

=v .It has been 

shown that when 0=,
2
1

= k and 1=∞Q ,equation(2.14) yields v=1.5975, while 

following  equation (2.13),the result yields  v=1.414 which coincides with the 

numerical result using equation (2.1) and equation (2.2)  of Di Bartolo [3].This is 

also in agreement with the numerical simulation for the dimensionless speed as a 

function of the dimensionless parameter ‘a’ of V. Méndez et al.[2] in their front 

solutions to hyperbolic reaction-diffusion equations. The result coincides with the 

superconducting-normal interface propagation speed as a function of G-L 

parameter performed by A.de la Cruz [8] using variational method. 
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Fig-1: The speed v of the front, obtained from the equation (2.13) is plotted as a 

function of dimensionless normal state conductivity . 
 

4. Conclusions 
 

Throughout this work, the propagation of fronts separating the superconducting and 

normal phases, which are produced after a quench to the zero applied magnetic 

field have performed by a new approach. Based on this approach I have obtained an 

expression for the superconducting – normal interface propagation speed.   In my 

future work I will try to use two reaction-diffusion equations (parabolic and 
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hyperbolic) from the variational point of view to obtain the selected speed of 

superconducting fronts exactly. 
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