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Abstract

An understanding of the front propagation in a dynamically unstable state requires a theory
that treats the superconducting-normal (SN) interfaces as a free boundary problem. The
relevance of an interfacial representation based on dynamics of the superconducting order
parameter and vector potential. When magnetic flux diffuses into the normal phases the
interfacial dynamics can be determined by the free boundary model. This model involves
surface tension for the motion of the interface which has been calculated by the exact
solution of TDGL equation [8].This analytical result of the surface tension agrees with that
of Osborn and Dorsey [9].
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1. Introduction

The interfacial surface tension between normal (N) and superconducting (S) phases
in a superconductor is a great attraction to different research groups for studying the
dynamical properties of the interface. It has shown that when a type-I superconductor
is subjected to a magnetic field quench, the magnetic flux expelled. As a result
superconducting nucleus grows in the background normal-phase. After growing the
superconducting phase the possibility arises for the surface tension of the SN
(superconducting-normal) interface to be positive (type-I superconductor) [1], [2]. If
the surface tension is negative, the interface breaks down and type-I1 superconductor
results. The motion of the interface into the normal state leads to dynamical
instabilities. From recent studies it has shown that there is a strong relation between
the dynamics of SN interfaces in a magnetic field and the motion of solid-liquid
interfaces during solidification. The common thing of this relationship is the
diffusion of magnetic field in the normal state by analogy with the diffusion of latent
heat in crystallization. This suggests that diffusional instability e.g. Mullins-Sekerka
instability should occur during flux invasion [3]. Studies of the time dependent
Ginzburg-Landau (TDGL) equation confirmed these instabilities. The free boundary
model has derived from the TDGL equation.

As a superconducting nucleus grows, the expelling flux (Meissner effect) creates
eddy current in the normal phase. In the normal region the interface dynamics is
given by a diffusion equation for the magnetic field [4].

8,h=D,V *h (L1)

1 . e e - .
where, D,, =, —y is the magnetic field diffusion constant, o™ is the normal state

o™
conductivity.

For the magnetic field at the SN interface (denoted by the subscript i) the continuity
equation is

A xh)xﬁ‘i =—D,v h, (1.2)
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where, nis the unit normal at the interface directed towards the normal phase, v_ is
the normal velocity of the planar interface, as sketched in Fig. 1.
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Figure 1. Mullins-Sekerka instability [3] along a growing solid-liquid interface. The
unperturbed planar interface is growing in the vertical direction with a normal
velocity v, , shown by the dotted line. The dashed arrows indicate the propagation of

the perturbation along the interface.

The field at the interface

h = H -5 o 447, 13)

c

Here, H
efficient of the interface respectively.

o, and f are the critical field, surface tension, curvature and kinetic co-

c!

In the conventional units the surface tension is defined in terms of dimensionless
surface tension as

HA —
O-ns :( 472_ )Uns (14)

where, A is the penetration depth.
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The aim of this paper is to obtain explicit formula for the surface tension of SN
interface as a function of the GL parameter, K . The paper is organized as follows. In
section 2 surface tension has discussed and the exact solution of TDGL equation has
used to derive surface tension. Section 3 provides the results of the calculations for
surface tension of SN interface.

2. Theory

One of the important aspects of the dynamics of interface in superconductor is that
there is a competition between dynamic instability which promotes the growth of
highly ramified interface and surface tension, which favors a smooth interface.

In dimensionless units [5, 6, 7] the one dimensional TDGL eq. in this case become

athizF"—QzF+F—F3 (2.1)
K
50,Q=Q"-F*Q (2.2)

where F is the magnitude of the superconducting order parameter v, Q is the gauge

invariant vector potential related to the magnetic field as hzaxQ,gis the

dimensionless normal state conductivity which is the ratio of the order parameter
diffusion constant to the magnetic field diffusion constant.

In the previous paper [8] we made a minor contribution to the interface problem by
considering the following generalized Ginzburg-Landau eq.:

(L+ B2 )F" +VF' —Q°F +aF +a,F* +a,F° =0 2.3)

Q"+0,Q'-F*Q=0 (2.4)

.1
taking— =1+ p? and &v=o0,).a,,a,anda,are constant parameters.
92 0/ A, anda,
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The exact solutions of eqn.(2.3) and eq.(2.4) have constructed which shows a duality
between order parameter and vector potential. The order parameter connects F =1
at X=— (the superconducting phase) to F =0 atXx= (the normal phase).The

solutions are

F0= s @3
&
Qx) = ﬁﬂ; = (2.6)

a is any arbitrary constant.

These solutions have used to calculate the surface tension of the SN interface.

We know the canonical form of the dimensionless surface tension of the SN interface

is [4], [9]

2
” 1 1 1

G.=| |[-F*+=F*+=—F?+Q%F?+|Q —— | [x 2.7

O I{ > e Q [Q Ej} (2.7)

Multiplying the equilibrium form of the 1st G-L eq.(2.1) by F’ and 2nd G-L
ed.(2.2) by Q'and then adding the two egns. This result together with eq.(2.7) gives

G =2[ L—lz(F')Z +(Q —%Q’}dx (2.8)

By using the identity

_FZ+EF4+F2Q2=i2(Fr)Z+QI2_1
2 K 2
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it can be shown from eq.(2.8) that

2[" olx(|:')2:2,<2j_°‘;o|x[|=2 _F-F2Q?] (2.9)
And

2 [* 1 ' N2 | _ 2 [* 22
2K jwdx{EQ -(Q) }_ 2" dxF?Q (2.10)

Substituting egs. (2.9) and (2.10) into eq. (2.8), we have the expression for the
surface tension of SN interface

G, =2[ Fidx—2[ Fldx—4] F?Q%dx (2.11)

To solve this integral eq. let us set z =1+ ce* .
Solving the 1st term of R.H.S. of eq. (2.11) gives

ijszdXZEE“L log(z -1)-log ZLC (2.12)

2nd term of R.H.S. of eq. (2.11) gives

0
2[’ F“dx:%[zzztl—lo Z1+313} (2.13)
e z z— z° |,
last term gives
o . 4871 1T
4J10CF Q dx=? g—ﬁ (214)

Substituting egs. (2.12) - (2.14) into eq. (2.11)



Derivation of the Interfacial Surface Tension between Superconducting and Normal States within -~ 37
Ginzburg-Landau Theory

0 0 2 0
EnszéFﬂog(z—l)—logz} —%{22+1—Iogi+i} —ﬂ[i—i}
z —c —oc —oc

27° z-1 37° £ |32° 27°
12 3 4 2 T
S e A S 2.15
5{323 2° 37%° ZZK2:|_OC (2.15)
1 2 4 2 i
G == 3 + (2.16)
Sla+ae®f (+ae®f 3P(+ce®f w2(+ae*f |

(after putting the value of z).

3. Results and Discussion

This paper presents an analytical derivation of surface tension of superconducting-
normal interface in terms of G-L parameter « .

Now, setting « = 0.1eq. (2.16) becomes

_ 149

O,
ns 2
K

~0.82 (2.17)

is the surface tension in terms of « for which a superconducting front is obtained.

The result agrees with the result &, = 0.388(212 —1) of Osborn and Dorsey [9].
K
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Figure 2 represents the graph for the positive surface tension of the SN interface for

different values of x, ranging0.5 < x < 3, according to the analytical expression
eq. (2.17) shows that the superconductor is of type —I.
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Figure 2. The dimensionless surface tension O as a function of the GL parameter
x for0.5 < x < 3, calculated by eq. (2.17)
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Figure 3 shows the dependence of surface tension on « in the range 2 < x <10.

In this case the G-L parameter produce a negative contribution to the surface tension
as a result of type- Il superconductor.
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Figure 3. Dimensionless surface tension o, as a function of the GL parameter « for
2.0< xk<10.0, calculated by eq. (2.17).

4. Conclusion

We know TDGL equation is widely used to calculate the surface tension of SN
interface. The propagation of interface separating the superconducting and normal
phases are produced after a quench to zero applied magnetic field. From a modified
Gibbs-Thomson boundary condition for the magnetic field at the SN interface the
dimensionless surface tension is calculated. It was known that the growth of
superconducting phase into the normal phase should be dynamically unstable; such
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instabilities were discussed in the TDGL eq. of superconductivity for propagating
interfaces. The dimensionless surface tension can be expressed in terms of the
solutions of one dimensional TDGL eqs. Here the exact solutions of TDGL have
used to calculate the surface tension. The result is in good agreement with the work
of Osborn and Dorsey [9].

I would like to expand my work in two dimensional superconductivity such as TPS
(Twinning plane superconductivity). It is possible to calculate the surface tension in
the framework of GL theory.
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