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Abstract 
 

An understanding of the front propagation in a dynamically unstable state requires a theory 

that treats the superconducting-normal (SN) interfaces as a free boundary problem. The 

relevance of an interfacial representation based on dynamics of the superconducting order 

parameter and vector potential. When magnetic flux diffuses into the normal phases the 

interfacial dynamics can be determined by the free boundary model. This model involves 

surface tension for the motion of the interface which has been calculated by the exact 

solution of TDGL equation [8].This analytical result of the surface tension agrees with that 

of Osborn and Dorsey [9]. 
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wek„sLj MZxq Ae¯’vq AwZcwievnx‡Z AvšÍtc„ôwe Í̄viY Gi Rb¨ GKwU Z‡Ë¡i cÖ‡qvRb †hwU AwZcwievnx-

¯^vfvweK AvšÍtc„ô‡K GKwU gy³-evDÛvix mgm¨v wn‡m‡e we‡ePbv K‡i| AwZcwievnx‡Z AW©vi c¨vivwgUvi 

Ges †f±i c‡Ubwkqvj Gi MwZ AvšÍtc„ôwe Í̄vi‡Yi Dci wbf©ikxj| hLb †PŠ¤^Kxq d¬v· ¯^vfvweK `kvq 

cÖ‡ek K‡i gy³-evDÛvix g‡Wj Øviv AwZcwievnxi AvšÍtc„ô MwZwe`¨v wbY©q Kiv hvq| AvšÍtc„ô MwZi Rb¨ 

c„ôUvb G g‡W‡ji AšÍf©~³ hv TDGL mgxKi‡bi G·vKU& mgvavb e¨envi K‡iI wbY©q Kiv n‡q‡Q| 

c„ôUv‡bi G A¨vbvjvBwUKvj djvdj Osborn and Dorsey [9] Gi djvd‡ji mv‡_ msMwZc~Y©| 

https://doi.org/10.3329/cujs.v43i1.57330
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1. Introduction 

The interfacial surface tension between normal (N) and superconducting (S) phases 

in a superconductor is a great attraction to different research groups for studying the 

dynamical properties of the interface. It has shown that when a type-I superconductor 

is subjected to a magnetic field quench, the magnetic flux expelled. As a result 

superconducting nucleus grows in the background normal-phase. After growing the 

superconducting phase the possibility arises for the surface tension of the SN 

(superconducting-normal) interface to be positive (type-I superconductor) [1], [2]. If 

the surface tension is negative, the interface breaks down and type-II superconductor 

results. The motion of the interface into the normal state leads to dynamical 

instabilities. From recent studies it has shown that there is a strong relation between 

the dynamics of SN interfaces in a magnetic field and the motion of solid-liquid 

interfaces during solidification. The common thing of this relationship is the 

diffusion of magnetic field in the normal state by analogy with the diffusion of latent 

heat in crystallization. This suggests that diffusional instability e.g. Mullins-Sekerka 

instability should occur during flux invasion [3]. Studies of the time dependent 

Ginzburg-Landau (TDGL) equation confirmed these instabilities. The free boundary 

model has derived from the TDGL equation.  
 

As a superconducting nucleus grows, the expelling flux (Meissner effect) creates 

eddy current in the normal phase. In the normal region the interface dynamics is 

given by a diffusion equation for the magnetic field [4].  
 

hDh Ht

2∇=∂
          

        (1.1) 

where, )(4

1
= nHD


is the magnetic field diffusion constant,

)(n  is the normal state 

conductivity. 
 

For the magnetic field at the SN interface (denoted by the subscript i) the continuity 

equation is  
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where, n


is the unit normal at the interface directed towards the normal phase,
nv  is 

the normal velocity of the planar interface, as sketched in Fig. 1. 
 

 

 
Figure 1. Mullins-Sekerka instability [3] along a growing solid-liquid interface. The 

unperturbed planar interface is growing in the vertical direction with a normal 

velocity , shown by the dotted line. The dashed arrows indicate the propagation of 

the perturbation along the interface. 

 

The field at the interface 
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Here, 
cH , 

ns  and   are the critical field, surface tension, curvature and kinetic co-

efficient of the interface respectively. 
 

In the conventional units the surface tension is defined in terms of dimensionless 

surface tension as  

ns
c

ns

H





 )

4
(=

2

                 (1.4) 

 

where, is the penetration depth. 

nv



34     Neelufar Panna 

 
The aim of this paper is to obtain explicit formula for the surface tension of SN 

interface as a function of the GL parameter, . The paper is organized as follows. In 

section 2 surface tension has discussed and the exact solution of TDGL equation has 

used to derive surface tension. Section 3 provides the results of the calculations for 

surface tension of SN interface. 

 

2. Theory 

One of the important aspects of the dynamics of interface in superconductor is that 

there is a competition between dynamic instability which promotes the growth of 

highly ramified interface and surface tension, which favors a smooth interface. 
 

In dimensionless units [5, 6, 7] the one dimensional TDGL eq. in this case become 
 

32
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1
∂ FFFQFFt 


                (2.1) 

 

QFQQt
2-                  (2.2) 

 

where F is the magnitude of the superconducting order parameter  , Q is the gauge 

invariant vector potential related to the magnetic field as ,∂= Qh x  is the 

dimensionless normal state conductivity which is the ratio of the order parameter 

diffusion constant to the magnetic field diffusion constant. 

 

In the previous paper [8] we made a minor contribution to the interface problem by 

considering the following generalized Ginzburg-Landau eq.: 
 

  01 3

3

2

21

22  FaFaFaFQFvF             (2.3) 
 

0- 2

0  QFQQ                   (2.4) 
 

(taking 2

2 +1=
1




  and  
0=v ). 21, aa and

3a are constant parameters. 
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The exact solutions of eqn.(2.3) and eq.(2.4) have constructed which shows a duality 

between order parameter and vector potential. The order parameter connects  1=F  

at ∞x (the superconducting phase) to 0=F  at ∞=x  (the normal phase).The 

solutions are 
 

( )
xe

xF +1

1
=                  (2.5) 

 

( )
x

x

e

e
xQ 







+1
=                  (2.6) 

 

 is any arbitrary constant. 
 

These solutions have used to calculate the surface tension of the SN interface. 

 

We know the canonical form of the dimensionless surface tension of the SN interface 

is [4], [9] 
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Multiplying the equilibrium form of the 1st G-L eq.(2.1) by F  and 2nd G-L 

eq.(2.2) by Q and then adding the two eqns. This result together with eq.(2.7) gives 
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By using the identity 
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it can be shown from eq.(2.8) that 
 

 
2

2



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(2.9)  

 

And 
 

  













22

2

1
2 QQdx =

2222 QFdx



          (2.10) 

 

Substituting eqs. (2.9) and (2.10) into eq. (2.8), we have the expression for the 

surface tension of SN interface 
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To solve this integral eq. let us set 
xez +1= . 

Solving the 1st term of R.H.S. of eq. (2.11) gives 
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2nd term of R.H.S. of eq. (2.11) gives 
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last term gives 
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Substituting eqs. (2.12) - (2.14) into eq. (2.11) 
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(after putting the value of z). 

 

3. Results and Discussion 
 

This paper presents an analytical derivation of surface tension of superconducting- 

normal interface in terms of G-L parameter . 
 

Now, setting eq. (2.16) becomes 
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is the surface tension in terms of for which a superconducting front is obtained. 
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Figure 2 represents the graph for the positive surface tension of the SN interface for 

different values of , ranging , according to the analytical expression 

eq. (2.17) shows that the superconductor is of type –I. 

 

 

 

 
 

Figure 2. The dimensionless surface tension ns  as a function of the GL parameter

 for 3<<5.0  , calculated by eq. (2.17) 

 

 

 

 

 

 

 

 

 

 3<<5.0 
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Figure 3 shows the dependence of surface tension on in the range . 
 

In this case the G-L parameter produce a negative contribution to the surface tension 

as a result of type- II superconductor. 

 

 

 
 

 
 

Figure 3. Dimensionless surface tension ns  as a function of the GL parameter for

0.10<<0.2  , calculated by eq. (2.17). 

 

4. Conclusion 
  

We know TDGL equation is widely used to calculate the surface tension of SN 

interface. The propagation of interface separating the superconducting and normal 

phases are produced after a quench to zero applied magnetic field. From a modified 

Gibbs-Thomson boundary condition for the magnetic field at the SN interface the 

dimensionless surface tension is calculated. It was known that the growth of 

superconducting phase into the normal phase should be dynamically unstable; such 

 10<<2 
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instabilities were discussed in the TDGL eq. of superconductivity for propagating 

interfaces. The dimensionless surface tension can be expressed in terms of the 

solutions of one dimensional TDGL eqs. Here the exact solutions of TDGL have 

used to calculate the surface tension. The result is in good agreement with the work 

of Osborn and Dorsey [9]. 
 
 

 

I would like to expand my work in two dimensional superconductivity such as TPS 

(Twinning plane superconductivity). It is possible to calculate the surface tension in 

the framework of GL theory. 
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