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Abstract 
The holographic dark energy (HDE), a form of dark energy, has been a useful tool in 

explaining the recent phase transition of the universe. In this paper, we study the 

anisotropic and homogeneous Bianchi type-III model of the universe filled with minimally 

interacting matter and holographic dark energy under the framework of the Brans-Dicke 

(BD) scalar tensor theory of gravitation. Considering two physically plausible conditions 

such as, (i) the special law of variation for Hubble parameter and (ii) the scalar expansion 

proportional to the shear scalar, we propose two new models namely, exponential 

expansion model and power law expansion model. We also show the dynamics of these 

models fit with existing observational data and literature thereof. The transit behavior of 

the equation of state parameter for dark energy has been analyzed graphically. The jerk 

parameter is also studied for both of the models describing cosmological evolution. 
 

Keywords: Holographic dark energy (HDE), Bianchi type-III model, Brans-Dicke theory, 
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n‡jvMÖvwdK ¸ß kw³, GK ai‡Yi ¸ß kw³, hv gnvwe‡k¦i  mv¤úªwZK `kv iƒcvšÍi e¨vLv Ki‡Z GKwU Kvh©Ki 

c×wZ| G M‡elYvc‡Î, gnvK‡l©i Dci eªvÝ-wWuwK †¯‹jvi †Ubmi Z‡Ë¡i KvVv‡gv‡Z b~¨bZgiƒ‡c wµqvkxj 

c`v_© Ges n‡jvMÖvwdK ¸ß kw³‡Z c~Y© gnvwe‡k¦i A¨vbvB‡mvUªwcK I mg‡kÖYxfz³ weqvw¼ UvBc-III g‡Wj 

Aa¨qb Kwi| ev Í̄e hyw³msMZ `ÕywU kZ© h_v (1) nvej c¨vivwgUvi cwieZ©‡bi we‡kl wewa Ges (2) †¯‹jvi 

m¤úªmviY wkqvi †¯‹jv‡ii mgvbycvwZK, we‡ePbv K‡i Avgiv `ÕywU bZzb g‡Wj cª¯Íve Kwi h_v- m~PKxq 

m¤úªmviY g‡Wj Ges NvZ wewa m¤úªmviY g‡Wj| Avgiv AviI †`LvB †h g‡Wj¸‡jvi MwZkxjZv we`¨gvb 

ch©‡eÿYg~jK Z_¨ Ges we`¨vi mv‡_ m½wZc~Y©| ¸ß kw³i Rb¨ Ae¯’vi mgxKi‡Yi c¨vivwgUvi iæcvšÍ‡ii 

aiY wPÎmnKv‡i e¨vLv Kiv nq| gnvRvMwZK weeZ©b eY©bv Ki‡Z Dfq g‡W‡ji RvK© c¨vivwgUviI Aa¨qb 

Kiv nq| 
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1.    Introduction 

Recent observational studies very rationally explain the accelerated expansion of 

the current universe [1-5]. It seems to have some mysterious energy behind this 

expansion which is pulling apart all the cosmological objects. The nature of such 

entity brings it a name “dark energy”. Observational data of standard cosmology 

shows that dark energy occupies about 73 % of the energy of our universe that 

exerts a large negative pressure and dark matter occupies about 23 % whereas the 

ordinary matter occupies only about 4 % of the total energy of the universe. Thus 

our present conviction of the universe is that it contains cosmic fluid consisting of 

dark matter and dark energy with independent evolution. 

 

In recent years, several models have been proposed satisfying the present ratio of 

the dark energy. Despite having a large discrepancy with different theories and 

observations, the cosmological term is assumed to be the most simple and natural 

candidate for explaining dark energy and cosmic acceleration since it fits into the 

observational data [6, 7]. In recent time, modified theories of gravitation are 

attracting more and more attention to explain early inflation and late time 

acceleration and dark energy. Some significant modified theories of gravity 

includes scalar-tensor theories of gravity proposed in [8, 9], )(Rf  theory of gravity 

[10] and ),( TRf  gravity [11]. 

 

In 1961, Brans and Dicke [8] brought an interesting alternative to general relativity 

based on Mach‟s principle. Brans-Dicke (BD) theory is explained by a scalar 

function   which has the dimensions of the inverse of gravitational constant and 

interacts equally with all forms of matter. Due to its vast cosmological 

implications, the BD theory is considered as a significant scalar-tensor theory of 

gravitation [12, 13], based on which the latest inflationary models [14], possible 

„graceful exit problem‟ [15] and extended chaotic inflation [16] have been 

investigated. 
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Attention paid to the holographic dark energy models is the best choice among the 

many different approaches explaining dark energy cosmological models. The 

holographic dark energy model, constructed by the holographic principle [17], is an 

emerging model as a candidate for dark energy. It is considered that the 

cosmological constant problem and some other issues may be interpreted by this 

model. Cohen et al. [18], Horova and Minic [19], Thomas [20], Hsu [21] and Li 

[22] have investigated several aspects of holographic dark energy. In a study [23], 

Setare and Vagenas have discussed the cosmological dynamics of the interacting 

holographic dark energy model. Das and Mammon [24] discussed interacting 

model of dark energy in the BD theory. In current time, Sarkar and Mahanta [25] 

and Sarkar [26, 27] have investigated minimally interacting holographic dark 

energy models in the Bianchi type-I universe, while Adhav et al. [28] have studied 

the interacting dark matter and the holographic dark energy in an anisotropic 

universe. Very recently, Kiran et al. [29] obtained Bianchi type-V minimally 

interacting holographic dark energy model for the scalar-tensor theory of 

gravitation given by Saez and Ballester [9]. 

 

This paper is devoted to investigate the exact solutions of Bianchi type III space-

time in the context of Brans-Dicke scalar tensor theory of gravitation. For this, we 

assume two physically plausible conditions such as, (i) a law of variation of 

Hubble‟s parameter and (ii) the scalar expansion is proportional to the shear scalar, 

in Bianchi type III space-time model of the universe filled with minimally 

interacting dark matter and holographic dark energy. These conditions together 

with field equations lead to two different solutions of the models representing 

exponential expansion model and power law expansion model. 

 

2.    Basic Equations 

In this section, we study the BD field equations with the help of Bianchi type-III 

metric in the presence of matter and holographic dark energy [30-32]. We take the 

Bianchi type-III spatially homogeneous and anisotropic space-time metric defined 

by 
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where  is a positive constant which can be taken as unity. 

And the Brans-Dicke (BD) field equations [8] for combined scalar and tensor fields 

in the presence of dark matter and holographic dark energy as follows 
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where  is the scalar field satisfying 
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Moreover, the energy conservation for dark matter and holographic dark energy is 

confined by  
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where ijR  is the Ricci tensor, R  is the Ricci scalar,   is the dimensionless coupling 

constant (constrained as 40000  for its consistency with solar system bounds 

[33,34]),   is the BD scalar field, and ijT and
ijT  are energy momentum tensors for 

dark matter and holographic dark energy, respectively, defined as 

jimji uuT                    (5) 

   pguupT jijiji                  (6)

 
Thus in a case of co-moving coordinate system with the metric defined by (1), the 

BD field equations (2) and (3) are transformed into the followings
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And also, we derive the following expression for the BD scalar field using the 

Bianchi type-III metric 
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Plugging this value in equation (3), we obtain 
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where an overhead dot (.) denotes the differentiation with respect to cosmic time t . 

In the study of holographic dark energy, Barotropic equation of state is given by 

 wp 
                

(13) 

where w  is the equation of state (EoS) parameter for the dark energy. The vacuum 

energy )1( w  is the simplest dark energy (DE) candidate, which is assumed to 

be equivalent to the cosmological term )(  [35]. Based on the evolution, 

quintessence )1( w , phantom )1( w  and quintom (transition from 1w to

1w ) are some of the usual alternatives, explaining minimally coupled scalar 

fields. 

Taking the covariant differentiation of the energy momentum tensor for dark matter 

and holographic dark energy (HDE), we obtain, respectively 
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Using these results, we write the equation of conservation (4) for matter and dark 

energy as follows 
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In this study, we consider the minimally interacting matter and holographic dark 

energy. Both of the components are conserved separately so that we have [26, 27] 
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To study the field equations above, let us define the parameters for the metric (1) as 

given below. 

The spatial volume is 
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where )(ta is the average scale factor of the universe. 
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with the average Hubble parameter given by 
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Also, the expression for scalar expansion   and shear scalar 
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The average anisotropy parameter is defined as  
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where )3,2,1( iH i  represent the directional Hubble parameters. 

 

3.    Bianchi type-III Universe in Brans-Dicke Theory 

In this section, we present the solutions of the set of equations (7) - (12) in the 

minimally interacting matter and holographic dark energy model in the Bianchi 

type III universe in Brans-Dicke theory. Then taking the special law of variation for 

Hubble parameter into account [36], we present two new models for zero and 

nonzero values of n . 

A simple integration of the equation (11) leads to 
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These equations form a system of four independent equations with five unknowns

2a , 3a ,  ,  , p  [since m  can be eliminated by equation (15)]. To reach a 

deterministic solution, we adopt the following three physically plausible conditions. 

(i) The shear scalar 2  is proportional to scalar expansion ( ) so that we have [37] 
maa 32                        (29) 

(ii) 03   pTT m                    (30) 

which physically corresponds to the vanishing of the trace of both dark matter and 

dark energy tensors. This is analogous to the disordered radiation condition of 

general relativity [38]. 

(iii) The special law of variation for Hubble parameter proposed by Berman [24] is 

taken as follows 
nkaH                                   (31) 

where 0k  and  0n . 

These conditions are more rational in this study because of their physical 

characteristics and dynamical attitude. Application of these conditions along with 

different choices of n , enables us to propose the following models of the universe. 

Case (I): Exponential Expansion Model: 0n  

Substituting 0n  in equation (31), we get  
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Now from equations (17), (24), (29) and (33), we obtain the expression for the 

metric potentials as 
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Also from equations (28), (30) and (34), we obtain the expression for BD scalar 

field in the model as follows 
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where 0  and 0  are the constants of integration. 

Now a proper choice of coordinates and constants (choosing 11 c , 3/1k and 

00  ), the metric (1) can be written, with the help of equation (34), as 
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with the BD scalar field in this model given by 
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Now we present some physical and kinematical properties for this model. 

Equations (36) and (37) represent Bianchi type-III holographic dark energy model 

in BD scalar-tensor theory of gravitation. We figure out some physical and 

kinematical parameters that play a vital role in the discussion of cosmology. 

Spatial volume is found as 
teV                   (38) 

The average Hubble‟s parameter is given by 
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The scalar expansion is found as 
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The shear scalar is 
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The deceleration parameter is obtained as 
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Now using equations (36) and (37) in equation (25) we get the holographic pressure 

as 
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where  is given by equation (37). 

Using equation (36) in equation (15), we obtain the energy density of dark matter 

as 
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where 00  is a real constant of integration. Now using equations (45), (36), (37) 

in equation (27), we get the energy density of holographic dark energy as   
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where  is given by equation (37). 

With the use of equations (44) and (46) in equation (13), we have the equation of 

state (EoS) parameters as
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which shows that w  is a function of cosmic time t . By using equation (47), the 

variation of the equation of state (EoS) parameter )(w  for dark energy with time 

)(t  is depicted in Figure 1 for 0n  corresponding to 1q  (exponential 

expansion). It is observed that the value of w  lies in the quintessence region 

)1( w  and 0w  when t and this negative value of w is supported by SN 

Ia data [5]. On the contrary, in the context of general relativity, Yadav et al. [39] 

studied dark energy model with variable equation of state parameter )(w  using law 

of variation of Hubble‟s parameter and they found the range of w  as 

16.1  w (phantom fluid dominant universe). From these data, it reveals that 

the universe at early stage was dominated by quintessence fluid and it will be dust-

filled universe at late time which is also realistic. 

 
Figure 1. The plot of EoS parameter )(w  vs. cosmic time )(t for 0n

)1,1.0,1.0( 00  m  
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The coincidence parameter is 
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The matter density parameter m  and the holographic dark energy density 

parameter   are given by 

23H

m
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Using equations (39), (45) and (46) in (49) we obtain the overall density parameters 

as 
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Moreover, the jerk parameter is calculated as

 
1

1
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3
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a

H
tj
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                                 (51) 

We notice that this value overlaps with flat CDM  models. 

 

It may be observed in this case that there is exponential spatial volume expansion 

with time. The mean Hubble parameter, scalar expansion and shear scalar are found 

to be constants from equations (39), (40) and (41), respectively. Also m ,  and 

p are constants at 0t while they all vanish for infinitely large time. The 

coincidence parameter r remains constant at 0t  and t as in [28] for the 

similar case. The average density is constant when 0t and vanishes when t

. The universe exhibits exponential expansion since 1q . 

Case (II): Power-law Expansion Model: 0n  

For 0n , Equation (31) gives 

 ncnkta
1

2                      (52) 

where 2c  is an arbitrary constant of integration. 
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Therefore, the volume scale factor is given by 

 ncnktaV
3

2

3                       (53) 

Now, from equations (17), (24), (29) and (53), we obtain the expression for the 

metric potentials as 
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Also, from equations (28), (30) and (34), we obtain the expression for the BD 

scalar field in the model as follows 
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                    (55)

 
where 0  and 0  are constants of integration. 

Now through a proper choice of coordinates and constants (choosing 02 c , 1nk  

and 00  ), the metric (1) can be written, with the help of equation (54), as 

  2)12(
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222)12(
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22 dztdyedxtdtds mnxmn
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                   (56) 

and the BD scalar field is given by 

n

n
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n
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where strictly 3n .  

 

As before, here, we discuss some physical and kinematical properties of this model. 

Equation (56) along with equation (57) represents Bianchi type-III holographic 

dark energy model in BD scalar-tensor theory of gravitation. The following are the 

physical and kinematical parameters which play a vital role in the discussion of 

cosmology. 

Spatial volume is found as 

ntV

3

                        (58) 
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The average Hubble‟s parameter is given by 

nt
H

1
                       (59) 

The scalar expansion is found as 

nt
H

3
3                        (60) 

The shear scalar is 
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The average anisotropy parameter is  
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The deceleration parameter is obtained as 

1 nq                       (63) 

Now, using equations (56) and (57) in equation (25), we get the holographic 

pressure as 
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where  is given by equation (57). 

Using equation (56) in equation (15), we obtain the energy density of dark matter 

as 

n
m t
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                        (65) 

where 00   is a real constant of integration. Now, using equations (65), (56) and 

(57) in equation (27), we get the energy density of holographic dark energy as 
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(66) 

where  is given by equation (57). 
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Using equations (64) and (66) in equation (13), we have the equation of state (EoS) 

parameter as                            
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(67)    

which shows that w  is a function of cosmic time t . By using equation (67), the 

variation of the equation of state (EoS) parameter )(w  for dark energy with time 

)(t  is shown in Figure 2 for 5.0n  corresponding to 5.0q  (accelerating 

expansion i.e. 01  q ). It is seen that the EoS parameter w , at the very early 

stage of the universe, is found to be positive but surprisingly, changing the course 

of evolution, it goes to the phantom region )1( w  and then enters into the 

quintessence region )1( w  evolving with negative value. Yadav et al. [39] 

obtained the range of w as 5.01.1  w  throughout the evolution and our result 

shows 01.1  w  for the similar case with dissimilarity at the very early epoch of 

the evolution. This dissimilarity leads to an interesting point which may 

accommodate stiff fluid filled universe [40]. 
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Figure 2. The plot of EoS parameter )(w  vs. cosmic time )(t for 5.0n

)1 ,1.0 ,1.0( 00  m  

 

The coincidence parameter is given by                                                                                          
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Using equations (59), (65), (66) in (49), we obtain the overall density parameters as 
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Now we compute the jerk parameter for this model as
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Which also overlaps with flat CDM  models for 2/3n .The jerk parameter 

vanishes for 1n or 2/1n . 

 

The above results enable us to study the behavior of the physical and kinematical 

parameters of the universe. The model, given by equation (56), has an initial 

singularity. The spatial volume V  of the model increases with time showing the 

spatial expansion of the universe. It can be seen that the parameters H, θ, σ
2
, ρλ, pλ 

and φ are infinite at 0t  and these all vanish when t . The coincidence 

parameter r tends to infinity when 0t and 1r as t . The overall density 

parameter   decreases with the evolution of time t . The present model retains the 

anisotropy except when 1m , otherwise the universe is isotropic and shear free. 

The deceleration parameter takes the range 01  q  for 10  n  and thus the 

universe accelerates, otherwise it decelerates in the standard way. 
 

4.    Conclusions 

We investigated spatially homogeneous and anisotropic Bianchi type-III minimally 

interacting holographic dark energy models in the scalar-tensor theory of 

gravitation. Using this theory, we presented two models, namely exponential 

expansion model and power law expansion model. In these models, we derived the 

energy density of matter, holographic dark energy density, holographic pressure, 

equation of state parameter, the scalar field in the models, total energy density in 

the universe, the coincidence and jerk parameter and discussed their physical 

behavior accordingly. We also showed, the universe will be shear free and isotropic 

when 1m , for both of the models and the dark energy equation of state (EoS) 

parameter, for these models, is found to be negative with an exception in power law 

expansion model at the very early epoch of the evolution that reveals an interesting 

phenomenon. The EoS parameter in the proposed models may play a role of a 
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candidate of the dark energy. In fine, it is obvious that the transition of the dark 

energy equation of state can be contained by the minimally interacting holographic 

dark energy model. 
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