
The Chittagong Univ. J. Sci. 41(1) : 112-121, 2019 
DOI: https://doi.org/10.3329/cujs.v41i1.51919 

A New Solution of Intermediate Cosmological Inflation 
with the Effect of Scalar Field 

 
Shomi Aktar1 and Anjan Kumar Chowdhury2* 

 
1. Department of Mathematics, University of Chittagong, Chittagong-4331, 

Bangladesh 

2. Jamal Nazrul Islam Research Centre for Mathematical and Physical Sciences, 
University of Chittagong, Chittagong-4331, Bangladesh 

 *Corresponding Author; E-mail: anjan.kumar@cu.ac.bd 
 

Abstract 

According to the inflationary model, the universe had a brief period of 

extraordinarily rapid expansion or inflation during which its diameter increased by 

a factor at least 1025 times larger than previously thought. In this work an analysis 

is given on inflationary universe, which expands at a rate intermediate between that 

of power-law and exponential inflation. We have examined the model of Barrow 

which is solved exactly and leaded to power law inflation. We have tested a new 

potential by applying the scalar field using the equation of motion and found some 

new interior solutions. 
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ùxwZ g‡Wj Abyhvqx, gnvwe‡k¦i GKwU mswÿß AmvaviYfv‡e AwZ `ªæZ ea©b ev ùxwZ Kvj 

wQj, hv‡Z Zvi e¨vm Av‡Mi Abygv‡bi †P‡q Kgc‡ÿ 1025 ¸Y e„w× n‡qwQj| G Kv‡Ri g‡a¨ 

ùxwZg~jK gnvwe‡k¦i hv NvZ m~Î I m~PKxq ùxwZi ga¨eZx© nv‡i cÖmvwiZ nq Zvi GKwU 
we‡kølY †`qv n‡q‡Q| Avgiv e¨v‡iv g‡WjwU cix¶v K‡iwQ hvi h_v_© mgvavb Kiv n‡q‡Q Ges 
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hv NvZ m~Î ùxwZi w`‡K avweZ n‡q‡Q| MwZi mgxKiY e¨envi K‡i †¯‹jvi †ÿÎ cÖ‡qvM K‡i 
Avgiv GKwU bZyb wefe cixÿv K‡iwQ Ges wKQy bZyb Af¨šÍixY mgvavb †c‡qwQ| 
 

1. Introduction 
The expansion rate of “intermediate inflation” lies between the exponential 

expansion and power law expansion but corresponding accelerated expansion does 

not start at the onset of cosmological evolution, for example, by scalar fields with 

purely exponential potentials or scalar-tensor gravity theories in which the Brans-

Dicke theory is extended so that the constant Brans-Dicke parameter ߱ becomes an 

increasing power-law function of the Brans-Dicke scalar field [5]. However, it is 

possible to parameterize all of these possibilities by a simple equation of state in 

which the pressure ݌ and the density ρ are related by the non-linear relation [1] 

݌ + = ߩ  ఒ ,                                            (1)ߩߛ

where ߛand ߣ are constants. The two defining equations for the scale factor ܴ(ݐ) of 

a Friedman universe with curvature parameter ݇ (8ܩߨ = ܿ =  1 ) are  

ଶܪ2 = ߩ − ܴ݇ିଶ ,                                       (2)  

ߩ̇ + ݌)ܪ3  + (ߩ = ܱ ,                                              (3)  

where the Hubble expansion rate is defined asܪ ≡  ோ̇
ோ
  . 

Hence when ߣ = 1 the equation of state (1) reduces to that of a standard perfect 

fluid equation of state. When ݇ = 0 and ߛ = 0, the system (2),(3) has the 

exponential solution  

(ݐ)ܴ =   ଴ is a constant .                        (4)ܪ,(ݐ଴ܪ)݌ݔ݁

When ߛ ≠ 0,it has the power-law inflationary solution [3-5]  
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(ݐ)ܴ = ଶݐ ଷൗ   (5)                                              , ߛ

when 2
3ൗ > ߛ > 0. Both (4) and (5) are generated by particular scalar field potentials 

[2,6,8 ] of the form  

ܸ = ଴ܸ ݁(6)                                         ,(߮ߙ)݌ݔ  

with 3ߛ =  .ଶߙ

However, when ߣ ≠ 1new types of inflation can arise from the stress (1). Primarily 

in the case ߛ > 0 and ߣ > 1, this generates a new form of intermediate inflation 

[1,10] dependents on cosmic time ݐ in which  

(ݐ)ܴ  =   (7)                                      , (௙ݐܣ)݌ݔ݁

where A is a positive constant and  

݂ = ଶ(ଵିఒ)
ଵିଶఒ

.                                                   (8) 

We see that 0 < ݂ <  1 and we have slower than exponential inflation. In this case 

it is also possible to rewrite the model fluid stress (1) as that of a scalar field with 

self-interaction potential ܸ(߮) of the form [1] 

ܸ(߮) = ସ଼஺మ

(ఉାସ)మ
( ఝିఝబ

(ଶ஺ఉ)భ మൗ
)ିఉ − ସ஺ఉ

(ఉାସ)మ
൬ ఝିఝబ

(ଶ஺ఉ)భ మൗ
൰
ିఉିଶ

 ,         (9)  

with     ߮ = ߮଴ + ଵ(ݐߚܣ2) ଶൗ ,                                (10) 

where ߮଴ is a constant and  

ߚ ≡ 4(݂ିଵ − 1).                                        (11)  

Here, we shall investigate the behavior of the intermediate inflationary universes of 

the type (7). Although, as we have just pointed out, it is possible to derive such 

solutions from explicit chaotic inflationary potentials or from Brans-Dicke models, 
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it is rather difficult to represent them in this manner and so we shall discuss them in 

terms of the parameters ݌ and ߩ of ( 1 ) where,݇ =  0,  

ߩ = ଶܪ3 =   ଶ௙ିଶ.                           (12)ݐଶ݂ଶܣ3

A feature of matter fields of this type is that they produce a Hubble rate that falls 

off more slowly than an inverse power of time. In the limit that ݂ → 1 the de Sitter 

behaviour is recovered and the density is a constant. We shall now investigate 

whether intermediate inflationary universes satisfy a no-hair theorem of the type 

found for exponential and power-law inflationary universes. In particular, we shall 

determine whether the solution of the Friedman equations for zero curvature, given 

by equations (1), (7) and (12), is stable against density, velocity and gravitational-

wave perturbations. We shall use the formalism of Weinberg [2] and consider a 

linearization of the Einstein equations around the background Friedman metric ෤݃௜௝ 

defined by the solutions (1), (7) and (12). We expand the metric as  

݃௜௝ = ෤݃௜௝ + ℎ௜௝.                                          (13)  

Here, ෤݃௜௝ are the background and ℎ௜௝ are the small perturbations. The metric ℎ௜௝ can 

be decomposed into scalar, vector and transverse-traceless tensor modes. Consider 

ℎ௞௞ = 0 for first transverse-traceless (gravitational wave) perturbations [14]. They 

satisfy the propagation equation 

ℎ̈௜௝ −
ோ̇
ோ
ℎ̇௜௝ + ቀ௞

మ

ோమ
− 2 ோ̈

ோ
ቁℎ௜௝ = 0 ,                          (14) 

where ݇ is the gravitational wave number and the derivatives are with respect to the 

commoving proper time t. For long-wavelength limit ݇ → 0 we can neglect the 

݇ଶܴିଶ term. Using the background of intermediate inflation defined by (1), (7) and 

(12), the equation (14) then becomes  
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ℎ̈௜௝ − ௙ିଵℎ௜௝ݐ݂ܣ − ݂)݂ܣ2] − 1)݂௙ିଶ + ଶ௙ିଶ]ℎ௜௝ݐଶ݂ଶܣ2 = 0.   (15)    
  

After a series of changes of variables we can write the exact solution of (15) in 

terms of the confluent hypergeometric functions [1-3] M and U as follows  

ℎ௜௝ = ݐ exp(−ݐܣ௙) ቂܤଵܯቀ1,݂ + ଵ
௙

, ௙ቁݐܣ3 + ଶܷܤ ቀ1,݂ + ଵ
௙

,  ௙ቁቃ ,      (16)ݐܣ3

where ܤଵ and ܤଶ are integration functions of the spatial coordinates alone. As 

ݐ → ∞ the solution has the asymptotic form  

ℎ௜௝ = (ݔ)ଵܤ exp(2ݐܣ௙) + ଵି௙ݐ(ݔ)ଶܤ exp(−ݐܣ௙) ,          (17)  

The second mode decays until the first grows only as fast as the background metric 

whose spatial components grow as ܴଶ(ݐ) = exp(2ݐܣ௙). Thus there are no growing 

metric movements and the space-time will appear increasingly homogeneous and 

isotropic within the event horizon of a geodesically moving observer [9]. When 

݂ → 1 the known stability of the de Sitter model can be recovered. In general the 

metric distortion does not damp to zero. There exists a distortion evolved by the 

spatial functions ܤଵ(ݔ) and ܤଶ(ݔ)which reflects the fact that no global 

homogenization occurs beyond the horizon of a geodesic observer [1].  
 

Both modes and the associated metric perturbation decay with time with respect to 

the Friedman backgroundܴ(ݐ) ∝ exp(ݐܣ௙). Let us consider a spherical overdensity 

in a ݇ = 0 Friedman universe; the perturbation behaves like an isolated ݇ = + 1 

Friedman model. If we consider the right-hand side of (2) we see that, with the 

solutions (7) and (12) for the ݇ = 0 background, the two terms there vary as 

ߩ ∝ (ݐ)ଶ௙ିଵandܴ݇ଶݐ ∝ exp(ݐܣ௙)respectively, and so the behaviour of the ݇ = + 1 
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overdensity approaches that of the ݇ = 0 background asymptotically; that is, the 

perturbation decays.  
 

This argument for the decay of density perturbations also establishes the fact that 

intermediate inflationary models will resolve the flatness problem in the context of 

isotropic universes. The influence of the curvature term decreases relative to that of 

the energy density term on the right-hand side of (2) just as it does for the 

exponential and power-law inflationary models [10] with݌ = ߛ) −  and ߩ(1

0 ≤ ߛ < ଶ
ଷ
. 

 

2. New Solutions throughout the Barrow’s Inflationary Model 
The density and pressure of the scalar field [11] are 

ߩ = ଵ
ଶ
߮̇ଶ + ܸ(߮) ,                                      (18) 

݌ = ଵ
ଶ
߮̇ଶ − ܸ(߮),                                      (19) 

where the scalar field ߮ is massless provided߮ =  only and ܸ(߮) is potential (ݐ)߮

energy. 
 

For the case where potential energy, ܲܧ = ܸ(߮) = 0, we have ݌ =  i.e. the ߩ

pressure and the density is same. In this case the pressure is positive and cannot be 

interpreted as a variable or cosmological constant. 

For the case where kinetic energy, ܧܭ = ଵ
ଶ
߮̇ଶ = 0, we have ݌ =  which means ,ߩ−

that ߩcan be interpreted as a strong cosmological constant. 
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Interpreting ρ as a cosmological constant leads us to expect that a weak 

cosmological constant can vary [12].This follows from ρ = constant or ߩ =  (ܴ)ߩ

giving a variable function (but a strong cosmological constant cannot vary). 

These results are true in general when ܸ(߮) isn’t specified yet. 
 

Let us now consider a new potential for Barrow model 

 ܸ(߮) =  ఒఝ,           (20)ି݁ߚ

we find that ߮̇(ݐ) = ଶ
ఒ

ln ߚ and ݐ = ଶ
ఒమ
ቀ ଺
ఒమ
− 1ቁ for 8ܩߨ = 1.          (21) 

As A is an arbitrary constant, we considerܣ ≡ ఒ
ଶ
 for a suitable solution. From 

equations (9), (10), (11) we get new value of (ݐ)߮,ߚ and ܸ(߮) as 

ߚ = ܣ3)ܣ − 1),          (22) 

(ݐ)߮ = ܣ2√ ln  (23)          ,ݐ

and     ܸ(߮) = ܣ3)ܣ − 1)݁
మ
ಲ.         (24) 

Now the density becomes, 

ߩ = ଷ஺మ

௧మ
 ,           (25) 

and  ߩ஻௔௥௥௢௪ = ଷ஺మ

௧మ
ቀଶ஺
ଷ
− 1ቁ = ቀଶ஺

ଷ
− 1ቁ  (26)          . ߩ

The general equation of state is ݌ = ఊ
ଷ
  gives the Barrow equation of state ,ߩ

஻௔௥௥௢௪ߛ = ଶ
ఒ
− 3.                                       (27) 

But the power law inflation results for ܣ > 1. Substituting this into the equation 

(27) implies 

஻௔௥௥௢௪ߛ > −3,                                           (28) 
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which we expect because power law inflation implies ܴ̈ > 0. Thus for ܣ > 1 the 

Barrow pressure is negative with ߛ < −1 and thus ߩ = ଷ஺మ

௧మ
 corresponds to a weak 

cosmological constant. Furthermore, this cosmological constant is variable and 

decays with time. 

Again if we put another type of potential 

ܸ(߮) = ଴ܸ݁஺ఝ  and  (ݐ) = ଵ(ݐܣ2) ଶൗ  ,         (29) 

it gives 

ܸᇱ(߮) = ܣ ଴ܸ݁஺ఝ =  (30)                                  ,(߮)ܸܣ

(ݐ)̇߮ = ට஺
ଶ
ିݐ

భ
మ  ,          (31) 

and          ߮̈(ݐ) = ቀܣ√− ଵଶ௧ቁ
య
మ .                                               (32) 

Then we get 

߮̈ + ̇߮ܪ3 + ܸᇱ(߮) = 0 ,                                        (33)       

which is the equation of motion [11]. It follows the expansion rate as 
ோ̇
ோ

= ଵ
ଷ
ቂ ଵ
ଶ௧
−        ቃ ,                                        (34)(߮)ܸܣݐ2√

and we get a new solution as 

(ݐ)ܴ     = ݐܿ
భ
ల − exp ቂ௏(ఝ)√஺

ଷ
(ݐ2)

య
మቃ .                         (35) 

This expansion includes Power law inflation as well as exponential expansion [7]. 

 

3. Conclusions 
The general concept of inflation rests on being able to achieve a negative pressure 

equation of state. In the case of inflationary model, we have performed first steps in 
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the study of the behavior of the intermediate inflation and we have found solutions 

for which one can obtain the two inflationary epochs and one matter dominated 

epoch. Present study of intermediate inflation reveals that it admits scaling solution 

and has got a natural exit form it at a later epoch of cosmic evolution, leading to 

late time acceleration. In this work we have calculated a type of expansion in which 

both the power law and exponential expansion [3, 4] like de-Sitter model. The 

Power law inflation is directly involved time-time which refers in the first term and 

the second term represents the exponential (de-Sitter) expansion [13]. For now, 

inflation is the extension of the standard cosmological model that looks most likely 

to survive. The power law inflationary universe model induced by a scalar field 

with an exponential potential is studied. The result shows that the degree of 

inflation is small for small initial values of the scalar field φ, and it grows 

exponentially with increasing ߮଴ (φ at ݐ =  This means that most of the physical .(݋

volume of the universe comes into being not by virtue of the expansion of regions 

which initially and randomly contained a small field φ. 
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