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Abstract 

This paper considers the Diophantine equation Z(n) + SL(n) = n, where Z(n) is the 

pseudo Smarandache function and SL(n) is the Smarandache LCM function. 
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GB wbe‡Ü Diophantine mgxKiY Z(n)+SL(n)=n we‡ePbv Kiv n‡q‡Q, †hLv‡b Z(n) 

n‡jv Pseudo ¯§vivÛv‡P dvskb Ges SL(n) n‡jv ¯§vivÛv‡P Gj.wm.Gg. A‡cÿK| 
 
1. Introduction 
 

The pseudo Smarandache function Z(n), introduced by Kashihara [1], is defined as 

follows : 

Z(n) = min {m : n | 2
)1m(m  }. 

The Smarandache LCM function, denoted by SL(n), is defined as 

SL(n) = min {k ≥ 1 : n | [1, 2, ..., k]}, 

where [1, 2, ..., k] is the least common multiple of the integers 1, 2, ..., k. 
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Then, we have the following result. 

Lemma 1.1. Let r    
r2

  
1 p...ppn 21  be the (unique) representation of the integer n in 

terms of its r prime factors p1, p2, ..., pr. Then, 

SL(n) = max { r    
r2

  
1 p ..., ,p ,p 21  }. 

In a paper, Xin Xu [2] considers the Diophantine equation 

Z(n) + SL(n) = n. 

In this paper, we follow a simple approach to the solution of the above equation. 

 
2. Main Result 
 
Though a closed-form expression of SL(n) is available, given in Lemma 1.1, the 

general form of Z(n) has not yet been found. The expressions of Z(n) for some 

particular cases of n, obtained so far, are given in Majumdar [3-5]. For a brief 

review of the pseudo Smarandache function, we refer the reader to Liu [6]. 

Theorem 4.2.2 in [3] gives a method of finding Z(pq), where p and q ( > p) are 

distinct primes. We follow the same method to find Z(2k pα) for some special cases. 

This is done in the lemma below. 

 
Lemma 2.1.  Let the integer n be of the form 

n = 2k pα, 

where p ≥ 3 is a prime, and k ≥ 1 and α ≥ 1 are integers. Then, 

(1) if 2k+1 | (pα  1), then Z(n) = pα  1, 

(2) if 2k | (pα  1) but 2k+1 does not divide (pα  1), then Z(n) = pα(2k  1), 

(3) if pα | (2k  1), then Z(n) = 2k(pα  1). 
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Proof.   Since 

Z(n) = Z(2k pα) = min {m : 2k pα | 2
)1m(m  }, 

there are two possibilities : 

 

Case 1. 2k+1 | m, pα | (m + 1). 

In this case, 

m = 2k+1 x for some integer x ≥ 1, 

m + 1 = pα y for some integer y ≥ 1. 

This leads to the following Diophantine equation : 

pαy  2k+1x = 1.                                                                   (1)  

                   

Case 2.   2k+1 | (m + 1), pα | m. 

Then, 

m + 1 = 2k+1 x for some integer x ≥ 1, 

m = pα y for some integer y ≥ 1, 

so that the resulting Diophantine equation is 

                      2k+1xpαy=1.                                                                 (2) 

(1) Let 2k+1 | (pα  1). Then, 

pα  1 = 2k+1 a for some integer a ≥ 1. 

Then, the Diophantine equations (1) and (2) take the forms 

(2k+1a + 1)y  2k+1x = 1, 

2k+1x  (2k+1a + 1)y = 1, 
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that is, 

       2k+1(ay  x) + y = 1,                                                              (3) 

2k+1(x  ay)  y = 1.                                                               (4) 

Therefore, the minimum solution is obtained from (3) with 

y = 1, ay  x = 0. 

Hence, the minimum m is given by  

m = pα  1. 

(2) Let 2k divide (pα  1) but 2k+1 does not divide (pα  1). Then, 

pα  1 = 2k b for some integer b ≥ 1, b ≠ 2. 

Therefore, the Diophantine equations (1) and (2) can be written as 

(2k b + 1)y  2k+1x = 1, 

2k+1x  (2k b + 1)y = 1, 

that is, 

                      2k(by  2x) + y = 1,                                                               (5) 

                      2k(2x  by)  y = 1.                                                                (6) 

In this case, the minimum solution is obtained from (6) as follows: 

2x  by = 1, y = 2k  1, 

Thus, the minimum m is 

m = pα y = pα (2k  1). 

(3) Let pα | (2k  1). 

Here, 

2k  1= pα c for some integer c ≥ 1. 

Then, the Diophantine equations (1) and (2) become 
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pα y  2(pα c + 1)x = 1, 

2(pα c + 1)x  pαy = 1, 

that is, 

      pα (y  2cx)  2x = 1,                                                               (7) 

      pα (2cx  y) + 2x = 1.                                                               (8) 

The minimum solution, obtained from (7) is 

y  2cx = 1, 2x = pα  1. 

Consequently, the minimum m is 

m = 2k+1 x = 2k(pα  1). 

All these complete the proof of the lemma. 

We now have the following theorem, giving the solution of the Diophantine 

equation  

Z(n) + SL(n) = n. 

Theorem 2.1. The Diophantine equation Z(n) + SL(n) = n has the solution 

n = 2k pα, 

where 2k and pα satisfy one of the two conditions (2) and (3) of Lemma 2.1 

Proof. is evident from Lemma 2.1. 
 

3. Conclusions 
 In the paper, we have obtained the solution of the Diophantine equation  

Z(n) + SL(n) = n  in the form n = 2k pα 
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