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EFFECTS OF HEAT SOURCE/SINK ON MHD FLOW AND HEAT TRANSFER
OVER A SHRINKING SHEET WITH MASS SUCTION
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Abstract: An analysis is made to study the effects heat source/sink on the steady two dimensional magnetohy-
drodynamic (MHD) boundary layer flow and heat transfer past ashrinking sheet with wall mass suction. In the
dynamic system, a uniform magnetic field acts normal to the plane of flow. The governing partial differential
equations are transformed into self-similar ordinary differential equations using similarity transformations. Then
the obtained self-similar equations are solved by finite difference method using quasilinearization technique.
From the analysis it is found that the velocity inside the boundary layer increases with increase of wall mass
suction and magnetic field and accordingly the thickness of the momentum boundary layer decreases. The tem-
perature decreases with Hartmann number, Prandtl number and heat sink parameter and the temperature increases
with heat source parameter. Furthermore, for strong heat source heat absorption at the sheet occurs.
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1. Introduction

The steady boundary layer flow of an incompress-
ible viscous fluid over a stretching sheet has many ap-
plications in manufacturing industries and technolog-
ical processes, such as, glass-fiber production, wire
drawing, paper production, metal and polymer pro-
cessing industries and many others. Crane [1] first
considered the steady laminar boundary layer flow of
a Newtonian fluid caused by a linearly stretching flat
sheet and found an exact similarity solution in closed
analytical form. Gupta and Gupta [2] discussed the
heat and mass transfer for the Newtonian boundary
layer flow over a stretching sheet with suction or blow-
ing. Wang [3] investigated the three-dimensional flow
due to the stretching surface. The uniqueness of the
solution obtained by Crane [1] was established by
McLeod and Rajagopal [4]. The MHD boundary layer
theory has a significant contribution in developing of
magnetohydrodynamic theory. Due to the important
effects of magnetic field on the boundary layer, the
study of MHD flow with heat transfer is always in-
teresting. In author’s knowledge, the first attempt to
study the MHD flow over a stretching surface in an
electrically conducting fluid was made by Pavlov [5]
in the presence of a uniform transverse magnetic field
and he obtained an exact similarity solution. Further-
more, some important contributions in stretching sheet
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flow were made by Chakrabarti and Gupta [6], Ander-
sson [7], Pop [8] and Bhattacharyya and Layek [9].

Recently, the flow of incompressible fluid due to a
shrinking sheet is gaining attention of modern day re-
searchers because of its increasing application to many
engineering problems. A steady flow over a shrinking
sheet is not possible because the generated vorticity is
not confined within the boundary layer. So, to over-
come this difficulty the flow needs a certain amount
of external opposite force at the sheet. Wang [10]
observed the flow around the shrinking sheet while
studying the flow behaviour of liquid film over an un-
steady stretching sheet. The existence and uniqueness
of the solution of steady viscous flow over a shrink-
ing sheet was established by Miklav˘cic̆and Wang [11].
Hayat et al. [12] reported an analytic solution of MHD
flow of a second grade fluid over a shrinking sheet.
Muhaimin et al. [13] showed the effects of heat and
mass transfer on MHD boundary layer flow past a
shrinking sheet subject to suction. Fang and Zhang
[14] obtained a closed-form analytical solution for
steady MHD flow over a porous shrinking sheet sub-
jected to mass suction. The MHD flow and mass trans-
fer of an upper-convected Maxwell fluid past a porous
shrinking sheet with chemically reactive species was
studied by Hayat et al. [15]. Fang and Zhang [16]
obtained the exact analytic solution of thermal bound-
ary layer over a shrinking sheet with mass transfer. On
the other hand, Wang [17] studied the stagnation-point
flow towards a shrinking sheet. Wang’s [17] work
was extended by Ishak et al. [18], Bhattacharyya and
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Layek [19] and Bhattacharyya et al. [20] under differ-
ent physical conditions.

The study of heat transfer in hydrodynamic bound-
ary layer flow over a porous stretching/shrinking sheet
becomes more interesting when internal heat genera-
tion or absorption occurs. Effects of heat source or
sink on the boundary layer flow over a stretching sheet
were studied by Vajravelu and Hadjinicolaou [21], El-
bashbeshy and Bazid [22], Bataller [23], Layek et al.
[24], Chen [25] and Mahantesh et al. [26].

In the present paper, the effects of heat source or
sink on the MHD boundary layer flow and heat trans-
fer over a porous shrinking sheet with mass suction are
investigated. Using similarity transformation, the gov-
erning partial differential equations are transformed
into a set of self-similar non-linear ordinary differen-
tial equations, which are then solved numerically by
finite difference method using quasilinearization tech-
nique. The numerical results are plotted in some fig-
ures and the variations in physical characteristics of
the flow dynamics and heat transfer for several param-
eters involved in the equations are discussed in detail.

2. Formulation of the Problem

Consider the MHD boundary layer flow of an elec-
trically conducting Newtonian fluid and heat transfer
over a permeable shrinking sheet with internal heat
generation or absorption. The sheet coincides with
the planey = 0 and the flow is confined in the region
y > 0. The x and y axes are taken along and per-
pendicular to the sheet, respectively. A sketch of the
physical problem is given in Figure1. The governing
equations of motion for steady two-dimensional flow
in presence of uniform transverse magnetic field and
the energy equation are written in usual notation as:
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whereu andv are velocity components inx- andy-
directions respectively,υ(= µ/ρ) is the kinematic fluid
viscosity,ρ is the fluid density,µ is the coefficient of
fluid viscosity,σ is the electrical conductivity of the
fluid, B0 is the applied uniform magnetic field,T is
the temperature,T∞ is the free stream temperature,κ

is the fluid thermal conductivity,cp is the specific heat
andQ0 is the volumetric rate of heat generation or ab-
sorption.

The appropriate boundary conditions for the veloc-
ity components and temperature are given by:

u = Uw(x) = −cx, v = −vw at y = 0;u→ 0 asy→ ∞
(4)
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Figure 1: A sketch of the physical problem

T = Tw at y = 0;T → T∞ asy→ ∞ (5)

wherec > 0 is the shrinking constant andTw is tem-
perature of the sheet. Herevw(> 0) is a prescribed
distribution of wall mass suction through the porous
sheet.

Introducing the stream functionψ, the velocity com-
ponentsu andv can be written as:

u = ∂ψ/∂y andv = −∂ψ/∂x (6)

For relations of (6), the mass-conservation equation
(1) is satisfied automatically and the momentum equa-
tion (2) and temperature equation (3) take the follow-
ing forms:
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Also the boundary conditions in (4) reduce to:

∂ψ

∂y
= −cx,

∂ψ

∂x
= vw aty = 0;

∂ψ

∂y
→ 0 asy→ ∞ (9)

Next, we introduce the dimensionless variables for
ψ andT as:

ψ =
√

cυx f(η) andT = T∞ + (Tw − T∞)θ(η) (10)

whereη is the similarity variable and is given byη =
y(c/υ)1/2.

Using the dimensionless variables in (10) and simi-
larity variable, the above equations (7) and (8) finally
have taken the following self-similar forms:

f ′′′ + f f ′′ − f ′2 − M2 f ′ = 0 (11)

θ′′ + Pr( f θ′ − λθ) = 0 (12)

where M = (σB2
0/cρ)1/2 is the Hartmann number,

Pr = µcp/κ is the Prandtl number andλ = Q0/ρCpc is
the heat source (λ < 0) or sink (λ > 0) parameter.
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The boundary conditions (9) and (5) also reduce to

f (η) = S, f ′(η) = −1 atη = 0; f ′(η)→ 0 asη→ ∞
(13)

θ(η) = 1 atη = 0;θ(η)→ 0 asη→ ∞ (14)

whereS = vw/(cυ)1/2(> 0) is the mass suction param-
eter.

3. Numerical Solution

The nonlinear system of equations (11) and (12)
along with the boundary conditions have been solved
numerically by finite difference method using the
quasilinearization technique [27].

The discretised version of (11) and (12) with the
boundary conditions (13) and (14) are written as:

F′′(i+1)
+ f (i)F′(i+1)− (2F(i)+M2)F(i+1) = −F2(i) (15)

θ′′(i+1) + Pr f (i+1)θ′(i+1) − Prλθ(i+1) = 0 (16)

whereF = f ′.
The boundary conditions become:

f (i+1) = S, F(i+1) = −1 atη = 0;F(i+1) = 0 atη = η∗
(17)

θ(i+1) = 1 atη = 0;θ(i+1) = 0 atη = η∗ (18)

The functions with iteration index (i) denote thei-
th iteration level and the corresponding index (i + 1)
be the (i + 1)-th level andη∗ is suitable distance from
the origin selected by considering the flow behaviour
in the boundary layer region.

We divide the interval [0,η∗] into N equal subinter-
vals of length∆η = 0.001 taking the non-dimensional
distanceη∗ = 50 for all cases under investigation. Ap-
plying central finite difference formulae of the second
and first orders derivatives ofF as:
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F j+1 − 2F j + F j−1

(∆η)2
andF′ =
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2(∆η)
and similar forθ, the above system of equations (15)
and (16) along with the boundary conditions (17) and
(18) reduce to:
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We solve the system of algebraic (tri-diagonal sys-

tem) equations (19) with the conditions (21) by the
standard Thomas algorithm. Using the newly obtained
results forf (i+1)

j andF(i+1)
j the system (20), the discre-

tised temperature equation with the conditions (22) is
then solved by the same Thomas algorithm.

Table 1: Skin friction coefficient f ′′(0) for different values ofS with
M2 = 2

S Present study Muhaimin et al. [13]
2 2.414300 2.414214
3 3.302750 3.302776
4 4.236099 4.236068
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Figure 2: Velocity profilesf ′(η) for several values ofM

4. Results and Discussion

Numerical computations are performed for various
values of the physical parameters involved in the equa-
tion viz. the Hartmann numberM, the mass suc-
tion parameterS, the Prandtl numberPr and the heat
source/sink parameterλ. To ensure the occurrence of
steady flow near the sheet by confining the generated
vorticity inside the boundary layer, the opposite forces
i.e. the magnetic field and the wall mass suction are
taken quite strong by assigning large values ofM and
S. The calculated results are presented in Figures 2-8
to understand the effects of parameters on the flow and
temperature field.

In order to assure the accuracy of the applied nu-
merical scheme the computed values of skin friction
coefficient f ′′(0) are compared with the available re-
sults of Muhaimin et al. [13] in Table1 and have found
in excellent agreement.

The impacts of the Hartman numberM on the ve-
locity and temperature profiles are very significant in
practical point of view. In Figure2 and Figure3, the
variations in velocity field and temperature distribu-
tion for several values ofM are presented. The di-
mensionless velocityf ′(η) increases with increasing
values ofM. Accordingly, the thickness of the mo-
mentum boundary layer decreases. This happens due
to the Lorentz force arising from the interaction of
magnetic and electric fields during the motion of the
electrically conducting fluid. To reduce momentum
boundary layer thickness the generated Lorentz force
enhances the fluid motion in the boundary layer re-
gion. On the other hand, from Figure3, it is noticed
that the temperatureθ(η) at a point decreases withM.

Now we see the effects of mass suction parameter
S on the velocity and temperature profiles. The veloc-
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Figure 3: Temperature profilesθ(η) for several values ofM
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Figure 4: Velocity profilesf ′(η) for several values ofS

ity profiles for various values of suction parameterS
are depicted in Figure4. From the figure it is noted
that for a fixed value ofη, velocity profiles increase as
applied suction increases and it makes the momentum
boundary layer thickness thinner. The dimensionless
temperature profiles for several values of suction pa-
rameter are demonstrated in Figure5. It is seen that
the wall mass suction affects the temperature distribu-
tion in addition to the velocity field. With increasing
suction the temperatureθ(η) for fixedη decreases and
consequently, the thermal boundary layer thickness re-
duces.

The temperature field for various values of the
Prandtl numberPr is represented in Figure6. With
increasingPr, the dimensionless temperature profile
as well as thermal boundary layer thickness quickly
decrease. An increase in Prandtl number means a de-
crease of fluid thermal conductivity which causes a de-
crease in temperature. Since the momentum equation
is independent ofθ, so no effect ofPr on the velocity
field is observed.

In Figure7, the effect heat source or sink parame-
ter λ on the temperature is exhibited. From the figure
it is noticed that the dimensionless temperatureθ(η)
decreases for increasing strength of the heat sink and
due to increase of heat source strength the tempera-
ture increases. So, the thickness of thermal boundary
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Figure 5: Temperature profilesθ(η) for several values ofS
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Figure 6: Temperature profilesθ(η) for several values ofPr

layer reduces for increase of heat sink parameter, but
it increases with heat source parameter. This result is
very much significant for the flow where heat transfer
is given prime importance.

The variation of the temperature gradient at the
sheetθ′(0) which is a significant in evaluating the rate
of heat transfer from the sheet is presented in Figure 8
for various values ofPr andλ. The negative value of
θ′(0) means heat transfer and the positive value means
heat absorption. The rate of heat transfer increases
with Prandtl number. While, an interesting nature is
found for the variation of heat source/ sink parameter.
When the Prandtl number is small, for large values of
heat source parameter (λ < 0) heat absorption occurs
at the sheet. Although, for increase of heat sink pa-
rameter (λ > 0) heat transfer increases.

5. Conclusion

The effects of heat source/sink on the MHD bound-
ary layer flow and heat transfer over a shrinking sheet
subject to strong suction is investigated. The self-
similar equations are obtained using similarity trans-
formations. The self-similar equations are linearised
by the quasilinearization technique and are then solved
by finite difference method. The study reveals that due
to increase of the Hartmann number and the mass suc-
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Figure 7: Temperature profilesθ(η) for several values ofλ
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Figure 8: Temperature gradient at the sheetθ′(0) againstλ for sev-
eral values ofPr

tion parameter the momentum boundary layer thick-
ness reduces and the temperature at a point decreases.
The temperature as well as the thermal boundary layer
thickness decrease with increasing values of Prandtl
number. Most importantly, for some higher values
of heat source parameter heat absorption occurs at
the sheet. The heat transfer is enhanced for increase
of Prandtl number and heat sink parameter, this heat
transfer is very important in production engineering to
improve the quality of the final product.
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