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Abstract 

The paper presents a computationally efficient approach to develop a nonlinear data driven input/output model 

between the finite-time control trajectories and the quality index at the end of the batch. Polynomial chaos 

expansion (PCE) was applied to produce the approximate representation of the full process model of a nonlinear 

batch reactor with the reaction scheme CBA
21 kk

 . A surrogate model was developed to estimate the dependence 

of intermediate product (B) concentration at the end of the batch on the temperature trajectory applied during the 

reaction. The surrogate model was then validated for its performance. Later, the surrogate model was used to 

determine the optimal temperature profile needed to maximize the concentration of intermediate product at the end 

of the batch. The validation and optimization results prove that the experimental data based PCE can provide a very 

good approximation of the desired outputs, providing a generally applicable approach for rapid design, control and 

optimization of batch reactor systems. 
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1. Introduction 

The batch processes are responsible for the 

operation of 40-60% of chemical process industries 

[1] including pharmaceuticals, polymers, food 

products, biotechnology, and electronic chemicals [2]. 

However, due to the absence of steady state operating 

point, repetitive nature, non-linear behavior, 

constrained operation with few specific 

measurements, presence of disturbances [3], it has 

become a challenging issue for engineers to 

understand, model development, and control of batch 

chemical reactor [4]. Considering the above fact, an 

urgency has been increasing on control of complex 

distributed parameter chemical systems due to the 

boost of computing power, remarkable advancement 

in sensor and actuator, and the development of modern 

optimization and model reduction algorithms [5]. 

     There is a common practice in the batch process 

industries to overlook the difficulties associated with 

it and design batch processes using conventional 

methods approximating lumped models. From single-

input-single-output proportional-integral-derivative 

(SISO PID) controllers to plant wide Model Predictive 

Control (MPC) systems, there are multifaceted 

applications of feedback control systems, which 

implicitly or explicitly presume that process dynamics 

are either inherently linear or almost linear owing to 

process operation close to a steady state [6]. But this 

model is often insufficient to describe the process -  

 

dynamics satisfactorily due to the inherent non-

linearity of batch process. This insufficiency leads to 

the increase interest in Nonlinear Model Predictive 

Control (NMPC) which refers to MPC schemes that 

are based on nonlinear models and /or consider non-

quadratic cost-functional and general nonlinear 

constraints on the states and inputs [7]. Though 

nonlinear control usually poses substantially higher 

data, design, implementation, and maintenance 

demands than linear control [8], it is still a 

predicament whether nonlinear control strategy will be 

advantageous over linear control alternatives due to 

the time and effort required to develop a non-linear 

model [9]. As both of linear and nonlinear MPC are 

first principle model based approaches, their 

development is complicated, time-consuming and also 

expensive. 

     In this scenario, the monitoring and robust optimal 

control of batch processes diverts towards an alternate 

simple operating data driven and computationally 

efficient control strategies. Surrogate modeling has 

been used in the process design and optimization 

purpose which is created to estimate the 

computationally expensive simulation codes. They 

can be used to replace the exact analysis of 

evolutionary search and can also provide an 

understanding of the functional relationship between 

the input and output [10].  To develop a nonlinear data 

based control strategies for batch chemical reactors 

polynomial chaos expansion (PCE) based surrogate 
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modeling is used for system identification and 

optimization techniques. After being introduced by 

Norbert Wiener in 1938 for turbulence modeling [11], 

PCE has been used in diverse application over the 

decades which offers an efficient high-order precise 

way of including non-linear effects in stochastic 

analysis. 

     In case of optimal control of processes operating 

close to safety and performance constraints, 

uncertainty analysis of static and dynamic system 

models is essential since almost all mathematical 

models inherently hold uncertainty in form of 

perturbations and disturbances [12]. The development 

of model based computation without considering the 

uncertainty in the observed data, model parameters 

and implemented inputs may cause failure in optimal 

control [13]. Uncertainty is usually quantified by 

characterizing the effects of uncertainty on theoretical 

model of actual system which may be parametric 

model perturbations, lack of physical fidelity of 

models and uncertainty circumstances in system 

operation [13]. Monte Carlo evaluations are quiet 

expensive due to requiring large number of samples, 

are not sufficient for large and complex models and 

the single deterministic simulations also sometimes 

demand parallel high performance computing [14]. 

Polynomial chaos expansion as a functional 

approximation of mathematical model, has proved 

better performance in diverse systems including finite 

elements and computational fluid dynamics [15]. 

Defining a system as a polynomial assuming that a 

finite sum of polynomials can accurately approximate 

the function of interest is a general trend nowadays 

where orthogonal polynomials are often used [16] 

though different orthogonal functions are optimal for 

different parameter probability density functions. PCE 

is expressed as an expansion of multidimensional 

Hermite polynomial functions of the uncertain 

parameters as it contains orthogonal basis with respect 

to Gaussian probability measure. A non-linear system 

can be replaced with surrogate model by PCE that 

depicts the input-to-state and input-to-output behavior 

within a fixed range. As PCE is convergent in the 

mean-square sense [17], least-squares minimization 

can be utilized to calculate the coefficients through the 

consideration of sample input-output or experiment.  

PCE has been applied in electrical measurement, 

electric circuit models, chemical processes, 

biotechnological processes, reaction engineering, 

transport phenomena, batteries, robot manipulators, 

helicopters, mechanical systems etc. Stability analysis, 

parameter estimation, optimal trajectory computation, 

robust optimal linear quadratic regular design, 

stochastic optimal control, filtering, observing design, 

design of stochastic model predictive controllers and 

many other applications are notable [13]. 

      

In this paper, polynomial chaos expansion (PCE) is 

used to develop a nonlinear surrogate model of a batch 

chemical reaction process. Performance analysis was 

also performed on the surrogate model to evaluate its 

accuracy. Later this model was used to optimize the 

temperature profile required to obtain a desired 

concentration of the intermediate product at the end of 

the batch. 

2. Polynomial Chaos Expansion (PCE) 

      If the input temperature trajectory described in 

terms of standard normal random variables, the 

polynomial chaos expansion (PCE) can describe the 

model output  as an expansion of multidimensional 

Hermite polynomial functions of the input parameters 

 [18]. Using the Hermite bases in the PCE, the output 

can be expressed in terms of the standard random 

normal variables {i} using an expansion of order d  

as shown in Equation 1, 
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The polynomial chaos terms are random variables, 

since they are functions of the random variables, and 

terms of different order are orthogonal to each other 

(with respect to an inner product defined in Gaussian 

measures as the expected value of the product of the 

two random variable, i.e., 
jiji

 for    0][ . 

The number of coefficients )(N  in the PCE depends 

on the number of uncertain parameters ( θ
n ) and the 

order of expansion ( m ).  

The general formula for the determination of 

number of coefficients is expressed by Equation 3. 
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Since, the PCE is convergent in the mean-square 

sense it is beneficial to calculate the coefficients using 

least-square minimization (LSM) considering sample 

input/output pairs from the model. The optimization is 

performed until the best fit is achieved between the 

surrogate PCE and the nonlinear model (or 

experimental data). 

3. PCE Based Surrogate Modeling and Validation 

of a Batch Reactor System 

     In this study a nonlinear batch reactor has been 

taken into consideration. Here temperature is the 

control variable [19]. The objective of the control 

problem is to maximize the intermediate product (B) 

after a certain reaction time. The sequence of the 

reactions is presented in Equation 4, 

CBA
21 kk

                                                                                                  (4) 

     where, 
21

, kk  are the rate constants for the 

production of B and C respectively. The rate equations 

describing the batch process are as shown in Equation 

5 and Equation 6, 
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where, 1
c  and 2

c  are the dimensionless 

concentration of A and B respectively; ref
/ TTv   is 

the dimensionless temperature of the batch reactor and 

ref
T is the reference temperature. The final time tf is 

fixed to be 1 hour; the values of the parameters

2121
 and,,, EEkk , are given in Table 1. 

 
Table 1 

Parameter Values for Batch Reactor [19] 

Parameter Values 

1
k  4×103 

2
k  6.2×103 

1
E  2.5×103 

2
E  5.0×103 

ref
T  348 K 

The initial conditions are kept at  1)0( ,1)0(
21

 cc  

and the batch reactor temperature is constrained 

between 298 K<T<398 K. 

    Based on the above information, a rigorous 

simulation program was developed in MATLAB® 

and was treated as the real process. Initially, the batch 

length is divided into N=10 equal stages. Twenty 

batches of process operations under different 

temperature profiles were simulated using the 

MATLAB® model. These twenty sets of historical 

data were used as training data. The training data was 

generated to ensure the diverse behaviour of the state 

for capturing the system’s response precisely. The 

inputs were the temperature trajectories discretized in 

9 points (hence 10 input parameters, θi) over the batch 

duration of 1 hour. The output was the corresponding 

concentration 2
c  of intermediate product, B at the end 

of the batch.  

The batch rector system was then re-identified by 

a 2nd order nonlinear Polynomial Chaos Expansion 

(PCE) based surrogate model using these training data. 

As shown before, for second order PCE with 10 

parameters, the numbers of coefficients are 66. The 

coefficients of PCE were calculated by least square 

(LSM) method where a set of randomly chosen initial 

coefficients were applied and the simulation was 

carried out through trial and error basis using the 

former coefficients for the later trial until the 

prediction accuracy achieved no further progression. 

Figure 3 (a) represents the concentration values 

obtained from both the first principle model and PCE 

based model with respect to number of batches. It 

shows that the values obtained from PCE have a 

highest diversion by 0.65% from the actual model 

values. The straight line in the last graph (Figure 3 (b)) 

stands for the actual model values and the values 

obtained from PCE is noticed to be scattered around 

the straight line clearly. 

 

Fig. 3: Prediction of the 2nd order PCE (a) for 20 training batches 

(b) comparison of PCE prediction with nonlinear model  

  The surrogate model was validated then using 

different input temperature profile other than the 

training data set. Two types of input temperature 

profiles were used for this validation. Some input 

temperature profiles yield output concentration, c2 

within the range of training data set. The other set 

which was outside the range used for checking the 
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extrapolation ability. The results obtained from second 

order PCE validation is shown in Figure 4. It took 

about 5 minutes to complete the simulation in 

MATLAB R2020a of second order using the personal 

computer with Microsoft Windows 10 operating 

system and Intel Core i5, 8th Gen processor with 4GB 

RAM. The sum squared error was calculated as 

SSE=∑ (actual concentration obtained from nonlinear 

model-calculated concentration from surrogate 

model)2. The results of model identification and 

validation have been listed in the Table 2. 

Table 2 

Actual and Calculated Concentration SSE Values by Second Order 

PCE 

 SSE 

Surrogate model identification 7.64×10-03 

Validation within the limit of input trajectory 1.15×10-05 

Validation outside the limit of input trajectory 9.18×10-04 

 
Fig. 4: Prediction of second order PCE (a) for 20 training batches 

and 7 validation batches (b) comparison of PCE prediction with 

nonlinear model   

3.1.    Optimization of PCE Based Surrogate Model 

     The desired concentration, 2
c  of the intermediate 

product B was at first determined from the 

optimization of the first principal non-linear model of 

the batch reactor system. This desired concentration 

was set as output into the developed PCE based 

surrogate model to justify its performance and the 

corresponding optimal temperature profile at the end 

of the batch was determined.  

First Principal Model Based Open Loop Optimal 

Control 

     The simulated first principal model of the batch 

reactor was used for performance optimization 

purpose where the optimized time profile of the 

manipulated variable i.e. reactor jacket temperature as 

determined. The objective function was to maximize 

the intermediate product concentration ( 2
c ) leading to 

the optimal control problem of Equation 7. 

2T(N) , ... ... T(2),T(1),
max c                                                      (7) 

The system is subjected to the following constraints, 

Tmin≤ T(k) ≤Tmax 

Rmin≤ dT/dt ≤R max, and 

1)0( ,1)0(
21

 cc   

where, Tmin, Tmax, Rmin and Rmax are the minimum and 

maximum temperatures and temperature ramp rates, 

respectively, during the batch. A sequential quadratic 

programming (SQP) approach was implemented in the 

MATLAB function fmincon to solve the optimization 

problem. Figure 5 shows the optimal temperature 

trajectory and the corresponding intermediate product 

concentration )(
2

c trajectory. The optimal 

temperature profile is decreasing with time while the 

corresponding intermediate product concentration 

reaches the maximum value equal to 0.6093 at the end 

of the batch. 

 

Fig. 5: Optimum temperature profile and corresponding 

concentration profile for first principle model based optimization  

Determination of the Optimal Temperature Profile by 

Surrogate Model to Produce Maximum Intermediate 

Product Concentration 

The nonlinear surrogate model was then used to 

determine the optimal temperature profile needed to 

obtain the desired intermediate product concentration 

( 2
c ) of 0.6093. The objective function is shown in 

Equation 8. 
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   The system was subjected to the following 

constraints, 

 Tmin ≤T(k)≤ Tmax                 and 

 Rmin ≤ dT/dt≤ Rmax 

    Where, Tmin, Tmax, Rmin and Rmax were the same as 

those for the first principal model based optimization. 

The minimum and maximum temperatures were 298K 

and 398K respectively. The temperature ramp rates 

were, -1<dT/dt≤0 K/hr. These inequality constraints 

ensure that the optimized temperature profile is 

implementable. The surrogate model based 

optimization has been demonstrated by two cases as 

described below.  

Case 1a: Optimization of the Surrogate Model Using 

a Linear Initial Temperature Profile with Fixed 

Terminal Conditions on Temperature 

     In this case, the initial profile was a linear cooling 

temperature trajectory that produced an intermediate 

concentration (𝑐2) of 0.5388. The cooling temperature 

was optimized where the lower and upper bound 

temperature were kept constant at the values 298K and 

398K respectively. During application to the 

theoretical non-linear model, the optimum 

temperature calculated by the second order PCE 

generated an actual concentration of 0.6069 at the end 

of the batch with the SSE of 5.76×10-6. The results for 

temperature and concentration trajectories are shown 

in Figure 6(a) and 6(b) respectively. 

Case 1b: Optimization of the Surrogate Model Using 

a Nonlinear Temperature Profile with Fixed Terminal 

Conditions on Temperature 

     In this case, in an effort to further improve the 

performance of the surrogate model, the initial profile 

was changed to a nonlinear cooling temperature 

profile that produced a final concentration of 0.5429. 

The lower and upper bound of temperature were kept 

constant at the values 298K and 398K respectively 

during optimization of the reaction temperature, 

similar to Case 1a. When applied to the theoretical 

nonlinear model, the optimum temperature calculated 

by the second order PCE produced an actual 

concentration of 0.6069 at the end of the batch with 

the SSE of 5.76×10-6. The results for temperature and 

concentration trajectories are shown in Figure 7(a) and 

7(b) respectively. 

 

 
Fig. 6 (a): Optimum temperature profile for cas1 1a 

 
Fig. 6 (b): Optimum concentration profile for case 1a 

 
Fig. 7 (a): Optimum temperature profile for case 1b 

          
Fig. 7 (b): Optimum concentration profile for case 1 
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From the observation of the optimization results, it is 

notable that as the final concentration of initial 

trajectory by nonlinear temperature profile (0.5429) is 

greater than that of linear profile (0.5388), it was 

expected that the final concentration by second order 

prediction for nonlinear case would produce a value 

closer to the theoretical optimum concentration 

(0.6093) than the linear case. However, the final 

concentration obtained by the second order prediction 

in both case 1a and 1b are same (0.6069) and the 

resulting curves also show little differences. This issue 

can be solved by increasing the order of polynomial 

chaos expansion which will also increase the number 

of coefficients and capture the nature of the actual 

model more accurately. Usually, an increase upto 4th 

order is enough for most engineering applications.  

4. Conclusion 

     In this study, a polynomial chaos expansion (PCE) 

based operating data-driven nonlinear surrogate 

modelling approach has been formulated for a batch 

chemical reactor system. The performance of the 

surrogate model was first validated and later 

optimized to generate the required temperature profile 

to obtain the desired intermediate product 

concentration at the end of the batch. The PCE 

approach used least square minimization (LSM) to 

calculate the coefficients. The initial assumption of the 

PCE coefficients played a vital role during all the 

simulations. So, the overall bottleneck of the PCE 

based nonlinear surrogate modeling can be identified 

to be the initial guess of coefficients (e.g. 
)()()(

321211
 and,, d

iii

d

ii

d

i
aaa ). The developed surrogate model 

showed reasonable overfitting during validation and 

optimization. The residual error was on average 

12.69% during validation (Figure 4). The validation 

and optimization results prove that the experimental 

data based PCE can provide a significant 

approximation of the desired outputs, providing a 

generally applicable approach for rapid design, 

control, and optimization of batch chemical reaction 

systems. 
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