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Abstract: The prediction capability of response surface methodology (RSM) and artificial neural network (ANN) models 
for propane selective oxidation to acrylic acid (AA) over Mo1V0.3Te0.23Nb0.12Ox catalyst was investigated in this work. 15 
experimental runs based on the Box-Behnken design (BBD) were employed to study the effects of temperature (380 to 
500 °C), superficial velocity (33.3 to 66.7 mL (min gcat)-1), (O2)/(C3H8) ratio (1 to 3) and their interactions on propane 
conversion, AA selectivity and COx selectivity. The quadratic polynomial BBD equations and the feed-forward back 
propagation ANN models were developed based on the designed experimental data. Statistical analysis; coefficient of 
determination (R2), mean absolute error (MAE) and analysis of variance (ANOVA) illustrated that there was acceptable 
adjustment between BBD and ANN predicted responses as compared to experimental data. While, the ANN model 
showed a clear preference and generalization capability over BBD model in the case of experimental data set which were 
not used to training the models. In addition the optimum conditions were found to be temperature (461.7 °C), GHSV 
(51.9 mL (min gcat)-1) and (O2)/(C3H8) ratio (2.1) which were determined by desirability function approach. In these 
conditions, propane conversion of 15.2%, AA selectivity of 32% and COx selectivity of 44% which obtained 
experimentally were in reasonable agreement with predicted responses.   
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1. Introduction 

In the last three decades, selective oxidation of 
light alkanes to olefins and oxygenated products, 
in particular propane to acrylic acid (AA) could 
bring intense attention in the research areas due to 
the lower cost of alkanes as well as lower 
environmental impacts [1-3]. For propane selective 
oxidation to AA, the developed catalysts can be 
categorized in three groups: heteropolyacids, 
vanadyl phosphates and mixed metal oxides [4]. 
Among different catalysts, MoVTeNbO mixed 
metal oxides have been proposed as a promising 
catalyst for this reaction [4].  

In selective oxidation of propane over 
MoVTeNbO catalyst, alongside AA, propylene, 
acrolein, COx, Acetone, acetic acid and propanoic 
acid are usually produced. Although many efforts 
have been carried out to enhancement the 

efficiency of the direct oxidation of propane to 
AA, commercial applications are hindered yet due 
to the inadequate AA yield of current catalyst 
formulations. Besides promotion the inherent 
properties of the catalyst [5, 6], different reactor 
technologies have also been investigated in order 
to improve catalytic performance and AA yield [7-
10]. In addition, the product distribution and 
catalytic performance can be influenced 
significantly by reaction conditions including 
temperature, GHSV and feed ratio [11-13]. The 
optimization of operating conditions plays a key 
role to obtain good catalytic results. In the 
previous published literature [11-13], the effects of 
the operating variables on the catalytic 
performance have been investigated using 
traditional one-factor-at-a-time approach. This 
method is very costly and time-consuming, 
especially when the number of variables that have 
been considered for the study, is high. Also, the 
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interaction effects of the input parameters on the 
output response have not been figured out with 
one-factor-at-a-time approach. This drawback can 
lead to the missing optimum process set points. 
Design of experiments (DoE) based on the 
response surface methodology and artificial neural 
network (ANN) provides beneficial approach to 
study process conditions. 

DoE is a collection of statistical and mathematical 
methods for evaluating the effects of different 
factors and the interaction among them with the 
aim of searching optimum conditions required for 
desired response [14]. One of the most relevant 
DoE methods is response surface methodology 
(RSM) based on the Box-Behnken design(BBD) 
which has been widely employed in the literature 
for optimization of reaction conditions [15] as well 
as catalyst preparation [16, 17]. The BBD is a 
three levels factorial design with systematic 
selected points from the full three levels factorial 
arrangements which can be used to create a second 
order polynomial function. In this way the number 
of experimental runs can be reduced. Therefore, 
this method, especially in the cases where large 
numbers of factors are studied, is very cost 
effective. 

Besides DoE, ANN is a useful modeling tool 
which has been inspired by learning process of the 
brain. In recent years, the popularity of ANN has 
grown in many areas of chemical engineering 
including: catalyst design [18], kinetic modeling 
[19], process condition [18, 20] and modeling of 
the reactors [21]. The main feature of the ANN is 
its capability for functional prediction and system 
modeling where the problems are not understood 
properly or highly complex [19]. A typical neural 
network composed of an input layer, one or more 
hidden layers and an output layer. Each layer has a 
certain number of neurons which are linked 
together by adjustable weights and biases. 
Complex relationships between inputs and outputs 
variables can be simulated using training network. 
Training the network is the process in which the 
weights and biases are determined with an iterative 
algorithm in such a way that the errors between the 
model-calculated and the actual value of the 

outputs are minimized. In this work, the effects of 
reaction conditions: temperature, GHSV and 
(O2)/(C3H8) ratio and their interactions in selective 
oxidation of propane over 
Mo1V0.3Te0.23Nb0.12Oxwere studied using BBD 
statistical analysis. In addition, the optimum 
conditions for AA production were predicted using 
desirability function approach. Moreover, the 
predictive and generalization capability of ANN to 
determine catalytic performance were investigated. 
Also the efficiency of the BBD and ANN models 
were compared statistically by the coefficient of 
determination (R2) and mean absolute error (MAE) 
based on the experimental data which were not 
used to models development. To our knowledge, 
there was no attempt on BBD and ANN modeling 
of catalytic performance in propane selective 
oxidation to AA. The catalyst was synthesized by 
slurry method and activity tests were carried out in 
laboratory scale fixed bed reactor. 

2. Materials and methods 
2.1.  Catalyst synthesis 

Slurry method has been used to produce 
Mo1V0.3Te0.23Nb0.12Ox catalyst [12]. Appropriate 
amount of ammonium monovanadate (Merck), 
ammonium heptamolybdate tetrahydrate (Merck), 
niobium oxalate hydrate (Alfa Aesar), telluric acid 
(Fluka) were dissolved in de-ionized water to 
obtain uniform slurry. The prepared slurry was 
stirred vigorously until its water was eliminated at 
a bath temperature of 60 °C. Calcination was 
carried out in a nitrogen flow environment at 600 
°C. The furnace was heated at a rate of 5 °C/min 
up to 600 °C and held at that temperature for 2 h. 
The catalyst preparation procedure has been 
described in our previous work in detail [22]. 

2.2.  Catalytic activity test 

The catalytic performance of 
Mo1V0.3Te0.23Nb0.12Ox catalyst was evaluated in 
propane selective oxidation to AA using vertical, 
tubular quartz tube (i.e. 6 mm) at atmospheric 
pressure. The reactor was placed inside a vertical 
furnace which equipped with a PID temperature 
controller. The reactor temperature was measured 
by a K-type thermocouple placed just above the 
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catalyst bed. Propane, oxygen and nitrogen were 
fed into the reactor. Their flow rates were 
controlled using three mass flow controllers 
(Brooks). Specified flow rate of water was fed to 
the reactor using a syringe pump which converted 
to steam before entering into the reactor. The 
exited gases were passed through a cold trap at 0 
°C and high boiling point products (water, 
propionic and acrylic acids) were separated. Rest 
of the products including CO, CO2, propylene and 
un-reacted feed were analyzed by an on-line gas 
chromatograph equipped with TCD and FID 
detectors. The condensed liquid was also analyzed 
offline by a Lachrom HPLC, equipped with C8 
column. 

Propane conversion, AA selectivity and COx 
selectivity were calculated according to equations 
1 to 3: 
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2.3. Box-Behnken design 

Product distribution and catalytic performance in 
propane selective oxidation have been affected 
considerably by operating conditions: temperature, 
residence time and feed compositions. Based on 
the well-documented literature the water vapor 
presence in the reaction feed increases 
significantly the AA selectivity as compared to the 
reaction in the absence of water [12, 13 and 23]. 
But as shown by Zhu et al. [12] the steam 
concentration has little effects on the product 
distribution. The effects of steam concentration 

were investigated in other works [22, 23]. 
Obtained results were indicated that the steam 
reaction order in the developed Mars-Van 
Krevelen kinetic model was near zero [22]. 

In this work the effects of reaction conditions 
including temperature (X1), space velocity (X2) 
and O2/C3H8 ratio (X3) have been investigated on 
the response factors: propane conversion (Y1), AA 
selectivity (Y2) and COx selectivity (Y3). In the 
BBD, all factors have to be set up at three levels 
with equally distance apart. The higher and lower 
values of each factor were chosen based on the 
literature data and experimental set-up limitations. 
The input variables are encoded as +1, -1 and 0 for 
high, low and medial levels, which are shown in 
table 1. The number of experimental runs designed 
by the BBD is specified according to the equation 
4 [14]. 

Table 1: Input factors at three levels in the BBD 

Variables   Symbol  Real value of coded 
levels 

 -1  0  +1 

Temperature 
(°C) 
Space velocity 
(mL min-1 gcat

-1) 
(O2)/(C3H8) 

 X1 
X2 
X3 

 380 
33.3 
1 

 440 
50 
2 

 500 
66.7 
3 

 

( ) pCKKN +−= 12              (4) 

Where N is the number of experimental runs, K is 
the number of input variables and Cp is the central 
point replications. At least 3 replications of central 
point are needed to pure error estimation of 
activity test. The total 15 experiments designed by 
BBD with their configurations and three response 
factors, propane conversion, AA selectivity and 
COx selectivity are shown in table 2. Reaction 
conditions and product distribution are depicted in 
supplementary data, in detail. As can be seen, the 
steam/C3H8 ratio was fixed at 7.5 in each 
experimental run; the main products in this work 
were AA, propylene and COx. Trace amounts of 
propionic acid were also produced.  
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In order to modeling the relationship between 
input variables and response factors, a quadratic 
polynomial equation (equation 5) was applied for 
fitting experimental data. 
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Where Yi, β0, βj, βjj, βij and X are the response 
factor, the intercept, the linear effect, the square 
effect, the interaction effect and input variables. 
The analyzing and optimization procedures 
leading to maximum propane conversion, 
maximum AA selectivity, minimum COx 
selectivity, all the tables and figures were 
computed using Design Expert version 7.0.0 
software.   

Table 2: Box-Behnken design configuration with 
experimental responses  

Run  X1 X2 X3 Propane 
conversion 
(%) 

AA 
selectivity 
(%) 

COx 
selectivity 
(%) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

500 
380 
440 
440 
440 
440 
380 
500 
440 
440 
500 
380 
380 
440 
500 

66.7 
33.3 
66.7 
50 
33.3 
66.7 
50 
50 
50 
33.3 
33.3 
50 
66.7 
50 
50 

2 
2 
3 
2 
1 
1 
3 
3 
2 
3 
2 
1 
2 
2 
1 

26 
4.1 
7.8 
9.8 
12 
6.2 
4.1 
35 
10.5 
14.9 
36.3 
2.6 
2.4 
9.8 
28 

15.2 
32 
31 
40 
21 
33 
32.7 
9.2 
38 
18 
5.9 
30.6 
35.6 
40 
12 

74.8 
36.9 
42.9 
32.2 
65 
40.7 
25.5 
82.9 
33.7 
70 
88.8 
23.4 
17 
34.5 
77.7 

2.4.  Artificial neural network modeling 

ANN is composed of input, hidden and output 
layers. The number of neurons in input and output 
layers is set equal to the input variables and output 
targets, respectively. The number of hidden layers 
as well as the number of neurons in the hidden 
layers had to be adjusted in order to approach the 
best fit of experimental data. Each input is 
modified by a weight. The neurons in the hidden 
layers will combine these weighted inputs with an 

activation function and use these to determine the 
output values. The training algorithm adjusts the 
weights between layers in order to minimize the 
errors between experimental and predicted data.  

In this work, a feed forward back propagation 
ANN was developed. Feed forward is a type of 
neural network where the information moves only 
in forward direction through the neurons (i.e. do 
not form cycles like in recurrent networks) and the 
error between experimental and predicted data 
points is propagated backward through the 
network. The process is repeated until the error 
criteria are met. Temperature, GHSV and 
(O2)/(C3H8) ratio were considered as input 
neurons, while the output neurons were propane 
conversion, AA selectivity and COx selectivity. 
The BBD experimental data was used in 
developing ANN model (table 2). All the input and 
output data were normalized in the range of (-1,1) 
according to the equations 6 and 7 in order to 
prevent overflow, reducing errors as well as 
reducing the training time [24].  
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Where Xn, Yn, X and Y are the normalized value 
of the input, the normalized value of the target, 
input variable and target, respectively. The ANN 
in this study was trained by Levenberg-Marqurdt 
(LM) optimization algorithm and the performance 
function was mean square error (MSE) between 
output and target values (shown in equation 8). 
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Where Yi,e and Yi,p are experimental and predicted 
outputs, respectively. N is the number of 
experimental data. MATLAB R2008a was used to 
implement the ANN in this study. 
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3. Results and discussion 
3.1.  Modeling by BBD 

Propane conversion 

The quadratic predictive BBD model of propane 
conversion based on the coded factors is given as 
equation 9. Where X1, X2 and X3 are the coded 
input factors: temperature, space velocity and 
(O2)/(C3H8) ratio, respectively. The ANOVA was 
applied to figure out of the efficiency of the BBD 
model for propane conversion. The ANOVA 
results are shown in table 3.  

2
3

2
2

2
1

3231213

2183

17.0021.022.7
33.037.123.263.1

15.305.1403.10(%)

XXX
XXXXXXX

XXconversionHC

++
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−+=

                                                                 (9) 

The model F-value was obtained 449.49 which 
implies that the model is significant.                    

An R2 of 0.9988 and highly significant p-value of 
the model (<0.05) further indicate the 
predictability of the developed BBD model. The 
lack of fit p-value for the model was 0.1989 
indicates that lack of fit is not significant as 
compared to the pure error. Therefore, the model is 
well fitted to the experimental data and mean 
square of the lack of fit value is relevant to the 
inherent system errors. The p-value of the 
estimated coefficients of X1, X2, X3, X1X2, X1X3 
and X1

2 are smaller than 0.05. So these model 
terms are significant. Other model terms with p-
value greater than 0.1 are insignificant. Adeq. 
Precision is a signal to noise ratio. It evaluates the 
range of the predicted propane conversion values 
relative to the average prediction errors. A ratio 
greater than 4 is desirable. Adeq. Precision ratio of 
61.109 indicates an adequate signal.  

 

 
Table 3 ANOVA results for quadratic model of propane conversion by BBD 

Source  Sum of squares  Degree of freedom  Mean square  F-value  p- Value 
Model 

X1 
X2 
X3 

X1X2 
X1X3 
X2X3 
X1

2 
X2

2 
X3

2 
Residual 

Lack of fit 
Pure error 

Total 

 1901.54 
1579.22 

79.38 
21.13 
19.80 
7.56 
0.42 

192.52 
1.603E-003 

0.11 
2.38 
2.05 
0.33 

1903.92 

 9 
1 
1 
1 
1 
1 
1 
1 
1 
1 
5 
3 
2 

14 

 211.28 
1579.22 

79.38 
21.13 
19.80 
7.56 
0.42 

192.52 
1.603E-003 

0.11 
0.48 
0.68 
0.16 

 449.49 
3322.34 
167.00 
44.44 
41.66 
15.91 
0.89 

405.02 
3.371E-003 

0.23 
 

4.18 

 <0.0001 
<0.0001 
<0.0001 
0.0011 
0.0013 
0.0104 
0.3891 

<0.0001 
0.9559 
0.6541 

 
0.1989 

 

R2=0.9988, R2
adj=0.9965, R2

pred=0.9824, Std. Dev.=0.69, Mean=13.99, C.V.%=4.93, Adeq Precision=61.109 

A major tool for checking whether the fit is 
reasonable is residual analysis using diagnostic 
plots. All the diagnostic plots of propane 
conversion BBD model have been shown in figure 
1. Typically the standard deviations of residuals in 
a sample change significantly from one data point 
to another even if the standard deviations of the 
errors have the same value. In addition, the 
residuals magnitude depends on the units of the 
measurement. Thus making it difficult to use the 

residual as a way to detecting unusually predicted 
values without first studentizing.  

Studentized residual is quotient obtained by 
dividing a residual on the estimate of residual 
standard deviation. All the observations are 
included in the process of estimating the variance. 
But it is desirable to measure the ith residual when 
the fitted regression is based on all observations 
excluding the ith response. If the former estimate is 
used the residual is said to be internally 

https://en.wikipedia.org/wiki/Data_point�
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studentized. If the latter is used, then it is used to 
be externally studentized [25].  

The normal probability plot of residuals (shown in 
figure 1(a)) follows a straight line which satisfies 
the normal distribution of residuals. The normal 
distribution of the residuals suggests that the error 
terms are indeed normally distributed. The 
internally studentized residuals versus predicted 
values of propane conversion are shown in figure 
1(b). All data points of internally studentized 
residuals have been dispersed in random pattern 

which indicates that the variance of original 
observations is equal for all values of response. 
Therefore, no apparent problems with the response 
were observed. Always internally and externally 
studentized residuals should lie in the range of -3.5 
to +3.5 [26]. Unusual observations lead to 
studentized residuals out of the considered 
interval. In figures 1(b) and 1(c), the values of the 
internally as well as externally studentized 
residuals of propane conversion are within the 
desired range indicate the adequacy of the fitted 
model.  

  
 

 
 

Figure 1 Diagnostic plots of propane conversion modeling using BBD 

(a) (b) 

(c) 
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The effects of input variables; temperature, GHSV 
and (O2)/(C3H8) ratio on the propane conversion 
have been shown as a 3D response surface in 
figure 2. All of the experimental data collected in 
this work are consistent with the previous 
observations and conclusions reported in the 
literature [12, 27, 28]. It can be seen in figure 2 
that temperature has great influence on propane 
conversion. The ANOVA analysis (table 3) has 
also shown that temperature is significant. The 
propane conversion increased from 4.1% at 380 °C 
and GHSV=33.3 mL min-1 gcat

-1 to 36.3% at 500 
°C and GHSV=33.3 mL min-1 gcat

-1. Propane is a 
saturated hydrocarbon and higher temperature is 
required for propane activation.  

Thereby propane conversion increases as the 
reaction temperature is elevated. Increasing the 
GHSV leads to the reduction in the propane 
conversion. Since the exposure time of the propane 
and catalyst becomes shorter. However, space 
velocity is more effective at higher temperatures.  

 

Figure 2 shows that higher oxygen concentration is 
desirable for propane activation and propane 
conversion elevates with the increasing 
(O2)/(C3H8) ratio. Similar to this work, Novakova 
et al. [28] and Widi et al. [27] have also reported 
that the effect of oxygen concentration on the 
propane disappearance is in the order of 0.26 and 
0.24 respectively. 

Acrylic acid selectivity 

The quadratic predictive BBD model of the acrylic 
acid selectivity based on the coded factor is given 
as equation 10. Where X1, X2 and X3 are the coded 
input factors: temperature, space velocity and 
(O2)/(C3H8) ratio, respectively. The ANOVA 
results are also shown in table 4.  

2
3

2
2

2
1

3231213

21

32.727.689.10
25.023.142.171.0

74.407.1133.39(%)y selectivitAA

XXX
XXXXXXX
XX

−−−

+−+−
+−=

             (10) 

  

 

Figure 2 The effects of interaction between input variables on propane conversion as 3D response surface 
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Table 4 ANOVA results for quadratic model of AA selectivity by BBD 

Source  Sum of squares  Degree of freedom  Mean square  F-value  p- Value 
Model 

X1 
X2 
X3 

X1X2 
X1X3 
X2X3 
X1

2 
X2

2 
X3

2 
Residual 

Lack of fit 
Pure error 

Total 

 

1865.22 
981.25 
179.55 
4.06 
8.12 
6.00 
0.25 

438.01 
145.00 
197.66 
25.70 
23.03 
2.67 

1890.92 

 

9 
1 
1 
1 
1 
1 
1 
1 
1 
1 
5 
3 
2 

14 

 

207.25 
981.25 
179.55 
4.06 
8.12 
6.00 
0.25 

438.01 
145.00 
197.66 
5.14 
7.68 
1.33 

 

40.32 
190.91 
34.93 
0.79 
1.58 
1.17 

0.049 
85.22 
28.21 
38.46 

 
5.76 

 

0.0004 
<0.0001 
0.0020 
0.4148 
0.2642 
0.3292 
0.8342 
0.0003 
0.0032 
0.0016 

 
0.1515 

 

R2=0.9864, R2
adj=0.9619, R2

pred=0.8019, Std. Dev.=2.17, Mean=26.28, C.V.%=8.63, Adeq Precision=18.581 

The highly significant p-value of the model 
indicates the adequacy of the BBD model for 
acrylic acid selectivity. The lack of fit p-value of 
the model was 0.1515. There is a 15.15% chance 
that a “lack of fit F-value” this large could happen 
due to the noise. Therefore, the model predictions 
are well fitted to the experimental data. The R2

pred 
of 0.8019 is in reasonable agreement with R2

adj of 
0.9619. Adeq. Precision was obtained 18.581 
which is greater than 4 required to support 
statistical prediction fitness. The p-value of the 
estimated coefficients of X1, X2, X1

2, X2
2 and X3

2 

are smaller than 0.05. So these model terms are 
significant. Other model terms are insignificant. 

All the diagnostic plots of acrylic acid selectivity 
BBD model have been shown in figure 3 to 
evaluate the validation of the regression. The 
normal distribution of the response has been 
checked by normal probability plot versus 
studentized residuals (figure 3(a)). It can be seen 
that all the normal probability of residuals was 
near the straight line suggest that no problems with 
the normality of experimental data were existed. 
Random dispersion of studentized residuals vs. 
predicted acrylic acid selectivity has been 
demonstrated in figure 3(b). Also internally as well 
as externally studentized residuals fall into the 
desired range of -3.5 to 3.5 (figures 3(b) and 3(c)).  

The effects of input variables; temperature, GHSV 
and (O2)/(C3H8) ratio on the acrylic acid selectivity 
have been shown as a 3D response surface in 

figure 4. As the temperature is elevated, the acrylic 
acid selectivity attains a slight maximum value and 
then reduces strongly by further increasing in the 
reaction temperature. Oh et al. [11] have also 
reported a maximum in acrylic acid selectivity at 
400°C as temperature is increasing from 370 to 
520°C. Acrylic acid is more reactive component 
than propane. Therefore, increasing reaction 
temperature would accelerate the deep oxidation of 
acrylic acid to COx.  

It can be seen that semi-spherical response surface 
of acrylic acid selectivity, interestingly, passes 
through a maximum as GHSV increases from 33.3 
mL min-1gcat

-1 to 66.7 mL min-1gcat
-1. Reaction 

pathway in the selective oxidation of propane over 
different catalysts has been investigated widely 
[27, 28, 29-31]. A reaction network for propane 
oxidation over MoVSbNbO catalyst has been 
proposed by Novakova et al. [28] and shown in 
scheme 1. It can be seen that first propane is 
dehydrogenated to propylene which is oxidized to 
acrylic acid through acrole in as intermediate. 
Decline acrylic acid selectivity with increase in 
GHSV from 50 mL min-1gcat

-1 to 66.7 mL min-1gcat
-

1 (figure 4) also confirms that acrylic acid is not a 
primary product. With decreasing contact time of 
the components with catalyst, part of the propylene 
leaves the reactor without chance of being 
oxidized to acrylic acid. So selectivity to acrylic 
acid decreases when GHSV is in the range of 50 
mL min-1gcat

-1 to 66.7 mL min-1gcat
-1. 
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Figure 3 Diagnostic plots of acrylic acid selectivity modeling using BBD 

 
ANOVA analysis shown in table 4 indicates that 
(O2)/(C3H8) ratio is not a significant variable in 
acrylic acid selectivity. Based on the well 
documented literature [22, 32, 33], the selective 
oxidation of propane is believed to proceed 
through Mars-Van Krevelen (MVK) mechanism. 
In the MVK mechanism, hydrocarbon reacts with 
lattice oxygen to form products followed by re-
oxidation of reduced sites by gas phase oxygen. 
Grasselli et al. [33] have suggested that re-
oxidation of reduced sites is a fast reaction as 
compared to their reduction by hydrocarbons 
conversions. So lattice oxygen is always available 
and oxygen concentration has negligible effects on 
acrylic acid selectivity.  

COx selectivity 

The quadratic predictive BBD model of the COx 
selectivity based on the coded factor is given as 
equation 11. Where X1, X2 and X3 are the coded 
input factors: temperature, space velocity and 
(O2)/(C3H8) ratio, respectively. The ANOVA 
results are also shown in table 5.  

2
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2
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2
1
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Figure 4 The effects of interaction between input variables on acrylic acid selectivity as 3D response surface 

 

Scheme 1 Proposed reaction networks for propane oxidation over MoVSbNbO catalysts [18] 
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Table 5ANOVA results for quadratic model of COx selectivity by BBD 

Source  Sum of squares  Degree of freedom  Mean square  F-value  p- Value 
Model 

X1 
X2 
X3 

X1X2 
X1X3 
X2X3 
X1

2 
X2

2 
X3

2 
Residual 

Lack of fit 
Pure error 

Total 

 

8080.70 
6127.24 
909.51 
26.28 
8.70 
2.40 
1.96 

320.49 
496.12 
339.69 
41.51 
38.78 
2.73 

8122.21 

 

9 
1 
1 
1 
1 
1 
1 
1 
1 
1 
5 
3 
2 

14 

 

897.86 
6127.24 
909.51 
26.28 
8.70 
2.40 
1.96 

320.49 
496.12 
339.69 
8.30 
12.93 
1.36 

 

108.15 
738.06 
109.56 
3.17 
1.05 
0.29 
0.24 

38.61 
59.76 
40.92 

 
9.48 

 

<0.0001 
<0.0001 
0.0001 
0.1353 
0.3529 
0.6137 
0.6476 
0.0016 
0.0006 
0.0014 

 
0.0969 

 

R2=0.9949, R2
adj=0.9857, R2

pred=0.9228, Std. Dev.=2.88, Mean=49.73, C.V.%=5.79, Adeq Precision=32.592 

  
 

 

 

Figure 5 The effects of interaction between input variables on COx selectivity as 3D response surface

The model p-value of <0.0001 indicates that the 
model is highly significant. The R2 value was 

obtained 0.9949 which implies the prediction 
capability of developed BBD model for COx 



12                                                                                                     Chemical Engineering Research Bulletin 21(2019) 1-19 
 

selectivity. Adeq. Precision was found greater than 
4. Therefore the experimental data can support the 
statistical analysis to evaluate the prediction range 
of COx selectivity function in relation to different 
errors. The lack of fit p-value was found to be 
0.0969 (not significant). So the mean square of the 
lack of fit is due to the random inherent system 
errors and the developed BBD model is well fitted 
to the experimental data. X1, X2, X1

2, X2
2and 

X3
2terms are significant. Other model terms are 

insignificant. 

All the diagnostic plots of COx selectivity BBD 
model have been shown in supplementary data in 
order to validate the developed model. All the 
criteria about the residuals have been met e.g. the 
residuals were normally distributed, the internally 
as well as externally studentized residuals were 
randomly dispersed and also limited in the desired 
range. So it can be concluded that the developed 
model for COx selectivity were fitted to the 
experimental data reasonably. 

The effects of input variables; temperature, GHSV 
and (O2)/(C3H8) ratio on the acrylic acid selectivity 
have been shown in figure 5 as a 3D response 
surface. Figure 5 shows that temperature has great 
effect on COx selectivity. As the temperature 
elevates from 380°C to 500°C, the COx selectivity 

increases severely. Propane, propylene, AA and 
other intermediates have more activity at higher 
temperatures, so increasing temperature would 
accelerate the over-oxidation. 

Elevating space velocity from 33.3 mL min-1gcat
-1 

to.50 mL min-1gcat
-1 which is accompanied by 

shortening contact time leaded to decreasing COx 
selectivity (figure 5). However by increasing 
further in GHSV level to greater extent than 50 
mL min-1gcat

-1, COx selectivity does not change 
much. 

Acrylic acid selectivity response surface shows 
(figure 4) an increasing trend with increase in 
(O2)/(C3H8) ratio from 1 to stoichiometric ratio of 
2. With further increase in oxygen concentration, 
acrylic acid selectivity declines. Figure 5 
illustrates that higher oxygen concentration 
promotes the deep oxidation of materials which 
accompanied by increasing COx selectivity. Widi 
et al. [27] and Ramos et al. [32] have also reported 
that oxygen reaction order in propane selective 
oxidation to AA and acrolein is close to zero. 
While, the oxygen reaction order in total oxidation 
(non-selective reaction) is obtained greater. All of 
these observations confirm that lower oxygen 
concentration conducts the reaction in the desired 
selective path. 

Figure 6 Selection of appropriate hidden neurons at the least MSE 

 

  

0

0.005

0.01

0.015

0.02

0.025

1 2 3 4 5 6 7 8 9 10 11 12 13 14

M
SE

Number of hidden neurons



Chemical Engineering Research Bulletin 21(2019) 1-19             13 
 

3.2. Proposed ANN model 

The normalized experimental data were arranged 
into an input matrix [P] and a target matrix [T]. In 
order to avoid over-fitting, the experimental data 
were divided randomly in to three data sets for 
training, testing and validation [19]. From 15 
experimental data, 80%, 10% and 10% were used 
for training, testing and validation, respectively. A 
multilayer feed forward back propagation ANN 
with tangent sigmoid transfer function (tansig) at 
the hidden layer and a linear transfer function 
(purelin) at the output layer was implemented. 
There are a number of different parameters that 
impact on the ANN prediction capability and must 
be decided in the designing phase. The number of 
hidden layers, the number of neurons per layer and 
the learning rate are among these parameters. 
Based on the well documented literature [19], 
network performance is stable with 0.01 learning 
rate. Too many hidden neurons can lead to the 
system that is over-specified and unable for 
generalization. In addition with increase in hidden 
neurons, ANN complexity and time required for 
training increase [34]. On the other hand, too few 
hidden neurons can reduce the accuracy of ANN. 
The optimum number of hidden layers as well as 
the optimum number of hidden neurons was 
determined based on the minimum value of the 
obtained MSE of the validation set. 

In this work, one hidden layer configuration with 
different number of neurons between 1 and 14 was 
applied for training of the network and the MSE 
between the normalized predicted and 
experimental value of propane conversion, AA and 
COx selectivities were computed. Obtained MSE 
in the training process as a function of the hidden 
neurons has been shown in figure 6. 

Figure 6 indicates that the lowest MSE (0.00304) 
occurred when 8 hidden neurons were selected. 
Therefore, the ANN model with 1 hidden layer 
and 8 hidden neurons was chosen as the most 
suitable model to predict experimental data. In this 
design, the test set MSE and the validation set 
MSE had similar features. Therefore over-fitting 

had not been happened. Figure 7 illustrates the 
architecture of the proposed ANN and transfer 
function type between the input-hidden layer and 
that between hidden-output layer. In the figure 8, 
the normalized experimental values of propane 
conversion, AA and COx selectivities have been 
compared with its corresponding predicted values 
using the proposed ANN model. Figure 8 shows 
that high values of R were obtained for the 
training, validation, test and all predicted sets 
(0.9937, 0.9991, 0.9996 and 0.9938, respectively). 
These high values of R suggest that the proposed 
ANN model can well predict catalytic performance 
in propane selective oxidation over 
Mo1V0.3Te0.23Nb0.12Ox. The weight and bias 
matrices for the proposed ANN model obtained 
after training are shown in equations 12 to 15. 
Where W1 is the connection weights between input 
and hidden layer neurons, W2 is the connection 
weights between hidden and output layer, B1 is the 
bias for the hidden layer and B2 is the bias for the 
output layer.  

3.3.  BBD Model validation using optimum 
condition 

The numerical optimization analysis was 
performed by desirability approach function. The 
optimization criteria were selected at the range 
option for all input variables (temperature, GHSV 
and (O2)/(C3H8) ratio), maximum, maximum and 
minimum for propane conversion, AA selectivity 
and COx selectivity, respectively. The optimum 
values of the operating conditions were subjected 
to the developed BBD model and the outputs were 
calculated using equations 9 to 11. To evaluate the 
prediction, an experiment was carried out at the 
optimum conditions. The experimental values and 
the BBD optimum results have been compared in 
table 6. It can be seen in table 6 that there is good 
agreement between experimental and BBD 
predicted results. Therefore the validity of the 
BBD model in determining the optimum 
conditions for propane selective oxidation to AA 
over Mo1V0.3Te0.23Nb0.12Ox catalyst has been 
confirmed. 
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Figure 7 Proposed ANN architecture 

 

































−−
−
−−−
−−

−
−

−−
−−−

=

1151.00236.22392.0
0052.13780.35851.0
4499.00078.00267.3
4832.22427.25756.0

3280.06732.03317.3
2269.23642.05647.1
2603.03724.01958.1
2619.30042.04248.1

1W                                           (12) 

















−−
−−−−−−
−

=
3933.01177.00963.00940.02947.02184.07469.04585.0

7481.00659.05419.00329.01805.05192.02305.14875.0
0240.00345.03157.00471.02884.03017.09736.02365.0

2W   

                                         

                                                              (13) 



Chemical Engineering Research Bulletin 21(2019) 1-19             15 
 

 

Figure 8 Correlation between ANN predicted outputs and target values of normalized propane conversion, AA selectivity 
and COx selectivity 

Table 6 BBD model validation using optimum condition 

Run Temp (°C) GHSV 
(mL/(mingcat)) 

(O2)/(C3H8) 
Propane conversion 

(%) 
 

AA selectivity (%) 
 

COx selectivity (%) 

Exp BBD Error Exp BBD Error Exp BBD Error 
1 461.7 51.9 2.1 15.2 15.51 -0.02 32 34.4 -0.07 44 42.8 0.03 
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3.4. Comparison between BBD and ANN models 

In this section, the capability of the BBD and ANN 
models to predict experimental data is evaluated 

for two data sets: 1) The experimental data that 
were used for development of the models (DoE 
data). 2) The experimental data did not exist in the 
training process of the models (Unseen data). The 
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performance of ANN and BBD models in response 
predictions were compared based on (R2) and 
MAE demonstrated in equations 16 and 17.  
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Where Yi,e, Yi,p, Ye and N are experimental data, 
corresponding predicted data, mean value of 
experimental data and total number of 
experimental data, respectively.  

BBD ANN 

 
 

 
 

  
Figure 9 Comparison between experimental and predicted values by BBD and ANN for DoE data set 

The obtained values of R2 and MAE for DoE data 
set are shown in table 7. The results of table 7 
indicate the predictability of both models due to 
the values of R2, which are very close to 1, and 
small values of MAE. However BBD model is 
more efficient in predicting propane conversion, 
the developed ANN model showed a clear 

preference over BBD in AA and COx selectivity 
predictions.  In addition, the parity plots for ANN 
and BBD predicted against experimental values of 
DoE data set are shown in figure 9. It can be seen 
in figure9 that there is good agreement between 
experimental and predicted data. The DoE data 
points are distributed around the diagonal line very 
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closely. In the case of unseen data set, the separate 
experimental data (7 runs), which were not used to 
train the models, were selected. The operating 
conditions of each run (temperature, GHSV and 
(O2)/(C3H8) ratio) were subjected to the developed 
ANN and BBD models in order to obtain predicted 
propane conversion, AA and COx selectivity. The 
operating conditions, predicted and actual value of 
responses, R2 and MAE for unseen data are given 

in table 8. According to table 8 the developed 
ANN model has more predictive capability as 
compared to BBD. This has confirmed the distinct 
generalization capacity of ANN over RSM. The 
better performance of ANN is related to its ability 
to correlate the nonlinearity of the systems. While 
the RSM is limited to provide a second order 
polynomial.  
 

Table 7 Unseen data set for developed models with statistical analysis 

Run  Temp 
(°C) 

GHSV  
(mL/(mingcat) 

(O2)/(C3H8) Propane conversion 
(%) 

AA selectivity (%) COx selectivity (%) 

exp ANN BBD exp ANN BBD exp ANN BBD 
1 
2 
3 
4 
5 
6 
7 
R2 

MAE 

380 
440 
500 
380 
380 
440 
440 

66.7 
50 
50 

33.3 
33.3 
33.3 
50 

1 
3 
2 
1 
3 
2 
1 

2 
8.9 
30 
3.8 
5.2 
14 
9 

1.82 
11.20 
31.04 

4.2 
4.8 

14.58 
4.78 

0.957 
1.366 

2.54 
11.8 
31.3 
3.72 
4.90 

13.20 
8.57 

0.980 
0.877 

32.3 
28 

12.5 
30 

31.5 
23 

33.2 

32.17 
29.77 
11.74 
30.08 
30.51 
22.89 
35.82 
0.972 
0.944 

28.47 
31.3 
17.37 
22.33 
22.87 
28.32 
32.72 
0.346 
5.026 

21.7 
41 

78.7 
37.9 
44.5 
63.5 
42.9 

21.95 
41.65 
81.60 
38.45 
43.78 
62.83 
39.77 
0.990 
1.420 

24.33 
44.37 
69.96 
47.21 
50.67 
55.22 
40.75 
0.788 
6.686 

4. Conclusion 

The aim of this study is investigation the 
possibility of developing BBD and ANN models 
for prediction the catalytic performance of 
Mo1V0.3Te0.23Nb0.12Ox catalyst in propane selective 
oxidation to AA. For this purpose, 15 experimental 
runs were designed based on the BBD to 
determine the effects of three variables; i.e. 
temperature, space velocity and (O2)/(C3H8) ratio 
on the three responses; i.e. propane conversion, 
AA selectivity and COx selectivity. Three 
quadratic regression equations were developed in 
order to demonstrate the relationship between 
input variables on the responses. The significance 
of each factor and their interactions on the 
responses were examined by ANOVA. In addition 
an ANN model was also developed and 

trained using the designed experimental data. R2 of 
0.9987 and 0.9722 for propane conversion, 0.9862 
and 0.9821 for AA selectivity, 0.9952 and 0.9960 
for COx selectivity obtained by developed BBD 
and ANN models respectively implied the 
acceptable adjustment of the both models. The 
prediction capability of developed BBD and ANN  

 

models were also examined by a new data set in 
which the ANN priority is prominent in 
comparison with BBD. The optimum conditions; 
temperature of 461.7 °C, GHSV of 51.9 mL(min 
gcat)-1, (O2)/(C3H8) ratio of 2.1, with the aim of 
maximizing propane conversion, maximizing AA 
selectivity and minimizing COx selectivity, were 
specified. Catalytic performance obtained 
experimentally under optimal conditions was in 
close agreement by that of BBD model predicted. 
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