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Abstract: Real-time optimization (RTO) has attracted considerable interest among researchers and industries for 

being able to optimise the plant economics such as product efficiency, product quality and process safety in the 

wake of increasing global competitions. The success of RTO depends much on the quality of model being used in 

the optimisation. The present study was carried out to explore the use of artificial neural network (ANN) to 

improve the quality of the model being used in the modified two step (MTS) technique. The MTS is a real-time 

optimising control algorithm of the modifier adaptation scheme which is used to determine the optimum steady-

state control set-points. The proposed new version of MTS technique will be using process model based on ANN. 

A laboratory scale process of a two continuous stirred tank heat exchanger in series (2CSTHEs) is used as a case 

study. The multilayer feed forward ANN architecture 4-10-6 with linear function was used to model the 2CSTHEs 

and then integrates into the MTS technique, the resulted algorithm will be known as Iterative Neural Network 

Modified Two Step (INNMTS) technique. Simulation studies were conducted to test the performance of the 

INNMTS technique on the 2CSTHEs process. The results show that the overall value for the coefficient of 

determination(𝑅2)is equal to one, which indicates adequacy of the model proposed for the prediction of the 

behavior of 2CSTHEs system. When NN model of 2CSTHEs is applied to the INNMTS technique, the model-plant 

mismatch is greatly reduced to almost zero, which indicates by significant reduction in the number of iterations to 

5which requires by INNMTS compared to 16 iterations by the MTS technique to converge to optimal real solution. 

Keywords:Real-time optimisation, Artificial neural network, Modified two step technique, Process modelling. 

Introduction 

In large-scale industrial processes for determining 

optimal operating conditions are typically addressed by 

process control activities which are organised in the 

form of a hierarchy with required functions at the 

lower levels and desired, but optimal, functions at the 

higher levels. During plant operation, the optimum 

operating conditions is recalculated on the regular 

basis at control level activity known as real-time 

optimisation (RTO).
1
 In a large-scale plant the 

implementation of RTO has proved to be profitable.
2,3,4

 

RTO drives operating condition towards the actual 

plant optimum in spite of model mismatch by adjusting 

selected optimization variables using measurement 

data. Problems face in RTO arise due to the inability to 

develop and adopt accurate models and the following 

are three different strategies which have been 

classified on how measurements are used to 

compensate the model uncertainty: model-parameter 

adaptation, modifier adaptation and input 

adaptation.
5
All of these strategies have certain 

drawbacks and limitations. In particular, the model-

parameter works well if the model structure is 

correctly developed and also reliably estimate the 

parameters from the available data. While, the 

modifier adaptation scheme can handle considerable 

plant-model mismatch by applying empirical bias and 

gradient-corrections to the objective and constraint 

functions in the iterative optimization procedure. In the 

case of the third strategies, direct input adaptation 

turns the optimization problem into a feedback control 

problem and implements optimality via tracking of 

appropriate control variables. The scheme achieves 

optimality despite the presence of uncertainty by using 

plant measurements but in practice to estimate the 

process gradients from noisy measurement data is one 

of the major challenges.
6,7

 In this study, we explored a 

new scheme for the modifier adaptation strategy that 

employs a better efficient process model constructed 

from ANN. ANN offers a new way of modelling 

nonlinear, uncertain and unknown complex system 

without requiring any explicit knowledge about the 

input-output relationship. It has more attractive 

advantages in which it can approximate any 

continuous or nonlinear function by using certain 

network configuration.
8
 ANN is widely accepted as a 

technique that is able to deal with non-linear problem, 
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and once trained can perform prediction and 

generalization at high speed.
9
 Some of the recent 

studies carried out on the application of ANN models 

with the RTO strategies have demonstrated the 

potential of these strategies in determine optimal 

operating conditions for large-scale processes.
10,11,12

 

The objective of this study is to explore the effect of 

the neural network process model application on the 

modified two step (MTS) technique
13

 for overcoming 

the problem of plant-model mismatch. The MTS is a 

control algorithm that employs the adaptive modifier 

scheme for determining the optimal control set-points. 

It also belongs to a class of algorithm known as 

Integrated System Optimisation and Parameter 

Estimation (ISOPE). This algorithm has attractive 

features compared to other algorithms in which it is 

able to generate a series of set-points converging to the 

real plant optimal solution in spite of uncertainty in the 

process model and disturbance estimates.
14

The 

proposed new version of MTS technique will be using 

process model based on ANN which will be known as 

Iterative Neural Network Modified Two Step 

(INNMTS) technique 

Materials and Methods 

The RTO is a model based upper-level optimization 

system that is operated iteratively in closed loop and 

provides set-points to the lower-level regulatory 

control system in order to maintain the process 

operation as close as possible to the economic 

optimum.
7,15

 In this section, 2CSTHEs as depicted in 

Figure 1, and it is used as a case study to test the 

performance of the Iterative Neural Network Modified 

Two Step (INNMTS) technique.
16

 Figure 1 also shows 

the feedback control configuration for the 2CSTHEs 

process at regulating level. The feedback control 

objectives of the 2CSTHEs control systems are to 

maintain the temperature and level of the fluid in both 

tanks at their targeted values.Table 1 shows the 

variables used in the modeling equations of 2CSTHEs 

process. 

 

Figure 1: 2CSTHEs process layout with feedback 

control configuration. 

Table 1: Variables used in the 2CSTHEs system. 

 

Variables  

Description 

 

Unit 

Tank 1 Tank 2 

f1 f2 Flowrate input m
3
/min 

f2 f3 Flowrate output m
3
/min 

T0 T1 Input temperature ⁰C 

 f4 Recycle stream m
3
/min 

 T2 Outlet temperature ⁰C 

h1 h2 Water level m 

fst1 fst2 Steam Flowrate m
3
/min 

Tst1 Tst2 Steam temperature ⁰C 

D1 D2 Tank diameter m 

A1 A2 Tank area m
2 

AC1 AC2 Coil surface area m
2 

 

The dynamic mathematical models of the 2CSTHEs 

based on the conservation of heat and mass principle 

are as follows: 
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The following are steady-state equations of the 
2CSTHEs which have been adjusted to form the 
mathematical expression suitable to be used in the 
Optimizing Control Problem (OCP) in the supervisory 
control layer at RTO: 
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cUA

pc

cUA





 2

2and1
1  The input and output 

data was generated from the steady-state open loop 

model of the 2CSTHEs as shown in Figure 2 which is 

the Simulink data generation block for 2CSTHEs 

process. Data generation is implemented using the 

MATLAB Simulink software. The parameter values 

used in the simulation are shown in Table 2. 

Table 2: Values of parameters and constants used in 

data generating. 

 

Variables Value Unit 

T0 30 ⁰C 

f1 0.012 m
3
/min 

f2 0.015 m
3
/min 

A1 1.767 m
2 

A2 1.767 m
2
 

g 9.8 m/s
2
 

CM 0.504 kJ/kg.K 

Cp 4.187 kJ/kg.K 

UAc1 12.52 kJ/kg.m
3

 

UAc2 98.21 kJ/kg.m
3

 

  1000 kg/m
3

 

 

Simulink block diagrams of the open loop process 

models for tank 1 and 2 of the 2CSTHEs are built 

according to the Eqs. (7) to (12) and they are as shown 

in Figures 3 and 4, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2: Simulink data generation block of 2CSTHE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Simulink Model of tank 1 of 2CSTHEs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: Simulink Model of tank 2 of 2CSTHEs. 

 
The data generating block was run to generate the 
process data. Data collected is taken as real process 
data, and is used for system identification of the 
2CSTHEs, where the data is supplied in the training of 
the network. In the simulation, 5000 data sets were 
generated for the 2CSTHEs system at steady-state 
condition. 

 

Neural network model of the 2CSTHEs 
 

Neurons are processing units in an ANN where a set of 

neurons grouped together in layers which inter-relate 

with others by parameter called weights and these 

weights are used to model complex relationships 

between inputs and outputs by adjusted their values. 

The neural network consists of three layers: The first 

layer is the inlet layer which receives input data, the 

second layer may made up of one or more layers 

known as „hidden‟ layer and the third layer is the 

output layer which propagates the information from 

network back to the outside as predicted output. Each 

neuron in the hidden layer carries out a weighted 

addition of its inputs and then applies its transfer 

function to pass on the information from the input 

layer to the hidden layer. The response from the 

neurons in the hidden layer acts as input to the neurons 

in the output layer, producing the weighted sum and 

applying another transfer function.
17
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Figure 5 shows a typical three layered neural network 

structurewhere 𝑦(𝑘) is the final output of the network, 

𝑋(𝑟) is input value of the network, J is the neuron 

number in the hidden layer, IW are the weights in the 

input-hidden layer, b1 are the biases in the hidden 

layer. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: A typical three layered neural network 

structure. 

 

LW are the weights in the hidden output layer, R is the 

input-neuron number and b2 is the biases in the output 

layer. Two types of neural network models were 

considered to predict the output with respect to the 

generated data, the first type is where the hidden layers 

applied differentiable transfer function in the form of 

the hyperbolic tangent sigmoid (TANSIG) and linear 

transfer function (PURELIN) was used in the output 

layer and whilst in the second type the linear transfer 

function was used for both hidden layer and output 

layer to predict the outputs with respect to the 

generated data. A general neural network model with 

)(XtF  in the hidden layer and )(XpF in the output 

layer is given by Eq. 13: 
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where )(XF  is the transfer function that is used to the 

normalized output values from the neurons. These 

TANSIG and PURELIN functions can be defined as   

XX

XX

ee

ee
XF








)(  and XXF )( , respectively. The 

ANN models for the 2CSTHEs at steady-state were 

developed using the multilayer feed-forward network 

or MLFFN. In this study the second NN model of 

2CSTHEs, which in the linear form, was chosen to be 

applied to the proposed INNMTS algorithm at the 
RTO level because it is more favorable in the 

prediction of 2CSTHEs outputs.
18

 The training of 

MLFFN, a number of parameters of the network need 

to be determined, like the number of hidden layers in 

the network, number of neurons in the hidden layer, 

and distribution of data between training, validation, 

and testing of network. In the study, the main methods 

used to determine the performance of the ANN models 

are the mean squared error, MSE and coefficient of 

determination, , and they were calculated as 

follows 
19

:  
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where  

e

iy the average experimental value 

p

iy the predicted value,  

e

i
y the experimental value,  

nthe number of experiments.  

 

The best performance of the ANN architecture is 

determined by the lowest MSE and the maximum 

coefficient of determination 
2R  that defines the 

integrity of the experimental data.
20

 In the training of 

neural network the Levenberg-Marquardt back-

propagation (LM) training algorithm was used. For the 

training algorithm, optimum structure of ANN model 

is determined, according to the lowest MSE value. The 

network training was carried out using the MATLAB 

Neural Network Toolbox.  

 

Optimizing control problem of 2CSTHEs 
 

The Optimization Control Problem (OCP) for the 

process plant can be mathematically formulated as: 
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mT

n Ryyyy  ],.,,[ 21       output vectors 

R
m

R
n

RQ x: is a given performance map, 

m
R

n
RF :

*
 is the real process input-output map 

and
p

R
m

xR
n

RG : is the process inequality 

constraint map. The maps Q and G are assumed to be 

known exactly.Introducing a process model and 

formulate another optimization problem (OCP1): 
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mmn

N RxRRF :  is the model input-output 

mapping which is only an approximation to real output 

process and   is the model parameter vector. It is 

assumed that the map (.)*F is not known exactly. The 

2CSTHEs is a process consists of two subsystems 

which can be depicted in the block diagram as shown 

in Figure 6. 

 

 
 

Figure 6: The sub-system block diagram for 

2CSTHEs. 

The Optimizing Control Problem (OCP) for the 

2CSTHEs can be described as follows: 

 

The objective function: 
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The real process output: 
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The neural network output process model: 

 

)21(22 BANy   



























23

22

21

13

12

11

Ny
Ny
Ny
Ny
Ny
Ny

Ny  





















































































J

j

R

r
bjbrXrjIWRjLW

J

j

R

r
bjbrXrjIWRjLW

J

j

R

r
bjbrXrjIWRjLW

J

j

R

r
bjbrXrjIWRjLW

J

j

R

r
bjbrXrjIWRjLW

J

j

R

r
bjbrXrjIWRjLW

A

1 1 )6(2)])(1)(),((),6([

1 1 )5(2)])(1)(),((),5([

1 1 )4(2)])(1)(),((),4([

1 1 )3(2)])(1)(),((),3([

1 1 )2(2)])(1)(),((),2([

1 1 )1(2)])(1)(),((),1([

2

 

 

 

 

 

 

 

 

  

 

Y11 

Y12 

Y13 

Y21 

Y22 

Y23 

Set-points Set-points 

Tank Heater 1 Tank Heater 2 



Chemical Engineering Research Bulletin 19(2017) 129-138 

©Bangladesh Uni.of Engg.&Tech 134 
     
 

 

where
)(r

X is the input into the network, R is the 

number of input variables and J is the neuron number 

in the hidden layer. The equivalent representation of

ijy , ijc   and 
)(r

X  to the variables in the 2CSTHEs 

are shown in Table 3.  

 

Table 3: Variables representation. 

Parameter Symbol Represent 

Output flow rate from tank 

1 
f2 y11 

Output temperature from 

tank 1 
Tst1 y12 

Steam flow rate from tank 

1 
w1 y13 

Output flow rate from tank 

2 
f3 y21 

Temperature output from 

tank 2 
Tst2 y22 

Steam flow rate from tank 

2 
w2 y23 

Height of tank 1 h1,    c11, X1
 

Height of tank 2 h2 c21, X2 

Temperature of tank 1 T1 c12, X3 

Temperature of tank 1 T2, c22, X4 

 

Parameter estimation: 
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The parameter estimations are added to NN model of 

the process for the purpose of performing parameter 

estimation task which takes in to account the model-

plant miss-match. The values of the parameters that 

used in optimization are tabulated in Table 4. 

 

 

 

 
 

Table 4: Value of parameter that used in optimization. 
 

Parameter Value 

Water cost, $w (RM/kg) 2.07x10
-3 

Steam cost, $s (RM/kJ) 2.79x10
-5 

Source: Jabatan Bekalan Air (JBA) - Water Malaysia 

2015, Hamada boiler 2008.  

 

INNMTS technique 
 

In this study, a new version of MTS algorithm is 

developed by integrating MTS technique with neural 

network process model (Eq. 21) which will be known 

as INNMTS technique. The INNMTS is applied in the 

RTO control level to recalculate the optimum steady-

state set points for obtaining the current optimum 

operating conditions for the 2CSTHEs process. The 

proposed algorithm can be implemented as follows, 

for given initial control set-point Cv 0
and the 

initial estimate for
0 : 

i. Enter 
kv to the actual process and the output of 

)(*

kvF  measured. Determine 
k by solving:  
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ii. Solve the modified optimization problem (Eq. 24) to 

obtain 

k

c
^

 and associated Langrange multipliers, 
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If 
k

k

vc 
^

 and 
k

k^

   the iteration is 

terminated. Otherwise, updates 
kv and 

k  as 

follows: 

)25()
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Results and Discussion 

Extensive simulation studies have been performed on 

the 2CSTHEs for evaluating the effectiveness of the 

proposed INNMTS algorithm. The NN model of 

2CSTHEs was developed from a set of 5,000 of input-

output data of the process generated. The ANN model 

of 2CSTHEs is trained using 2and,1,2,1 TThh as 

inputs into the network to predict 

2
and

23112
w

st
T,f,w,

st
T,f  as the outputs from the 

network. The optimal and stable data distribution was 

determined to be when using 85% of the data for 

training, 10% for validation and 5% for testing.  

 

The data distribution obtained is trained using 

Levenberg-Marquardt (LM) training function to 

obtain the optimal NN structure. Linear transfer 

function is used since it more favorable in predicting 

output of the new random input. During training, the 

weights and biases are changed in order to minimize 

the error between the outputs values and the data.The 

training process is carried out by comparing the 

output from the network to the target outputs from the 

given data.Figure 7 shows the neural network 

performance for the MSE value between training, 

validation and testing data for 2CSTHEs. 

 

Figure 7: The MSE between training, validation and 

testing for 2CSTHEs. 

Figure 8 shows the coefficient of determination 𝑅2 

between target value and output value for the 

2CSTHEs. An overall value 𝑅2 equal to one indicates 

adequacy of the model proposed for the prediction of 

the behavior of 2CSTHEs system. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: R
2
 between target value and output for 

2CSTHEs. 

 

Figure 9 shows the optimal ANN configuration 

obtained for the linear model with MLFFN (4-10-6) 

structure. The best fitting training data acquired with 

optimal network structure is integrated into INNMTS 

to be used to determine the optimal set-points of 

2CSTHEs by minimizing the OCP1 of the 2CSTHEs 

process. 

 

Figure 9: Diagram of optimal ANN configuration 

 

The real optimal solutions of 2CSTHEs as shown in 

Table 5, were determined in order to determine the 
effectiveness of the proposed algorithm. The optimal 
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values for and are obtained. While keeping the 

variables which represented by  

respectively, at constant values of 1.5 m. 

 

Table 5: The real optimal solutions of 2CSTHEs. 

Parameters Value 

c11 1.5 m 

c12 1.5 m 

c21 500𝐶 

c22 80𝑜𝐶 

  Real Objective function 11.0535 

 

The INNMTS technique was simulated on 2CSTHEs 

with error tolerance of 0.0005 and under various 

conditions where step change )( v  varies from values 

of 0.1 to 0.9 and penalty coefficient from values of 0 to 

1. Table 6 shows the simulation results of iteration 

number versus step change coupled with penalty 

coefficient obtained for the INNMTS technique.The 

simulation results show that the least number of 

iteration is obtained with step change at 0.6 and 

penalty coefficient values from 0 to 0.5. 

 

Table 6: INNMTS technique with linear function 

results for 2CSTHEs. 

 
𝜀𝑣 

𝜌 Objective 

Function 

0 0.1 0.2 0.3 0.4 0.5  

0.1 - - - - - - - 

0.2 46 46 46 46 46 46 11.0648 

0.3 - 34 30 50 63 93 0.0000 

0.4 21 21 21 21 21 21 11.0650 

0.5 - - - - - - - 

0.6 5 5 5 5 5 5 11.0550 

0.7 10 10 10 10 10 10 11.0657 

0.8 8 8 8 8 8 8 11.0660 

0.9 6 6 6 6 6 6 11.0661 

1.0 2 2 2 2 2 2 11.0665 

 

Result from Table 7 also indicates that the objective 

function obtained is also the most closest to the real 

objective function value which required 5 iterations 

only to get the optimum set-points which about one 

third less compared to that of the MTS technique 

which converges to optimum set-points with 16 

iterations.
18

INNMTS was able to reduce number of 

iterations, because the NN model output equations 

employed in INNMTS have much better accuracy 

compared to the model output equations used in MTS 

technique which based on trial and error basis. 
 

 

Table 7: Comparison for MTS and INNMTS 

techniques. 

Parameter MTS INNMTS 

Suitable step value 0.5 0.6 

Final objective function 11.0535 11.0539 

Accuracy optimization 0.0018% 0.0018% 

Iteration needed 16 5 

 

Figure 9 shows the values of the objective functions 

verses iteration numbers for both MTS and INNMTS 

during the simulations period. Figure 10 shows the 

movement of set points toward the optimum set point 

values verses the number of iterations. As the iteration 

number progresses, the two set-points 2212 and cc

whichare moving slowly toward the optimum values 

and lastly it stopped when the tolerance error for the 

optimum set points has been achieved 

 

Figure 9: Value of objective function versus iteration 

number. 

Figure 10: Set point values versus the number of 

iterations. 

12
c 22c

21and11 cc 2and1 hh
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Figure 11: Values of parameter estimation, 𝜶, for two 

of the output models. 

Figure 11 shows that the two-parameter estimation 

values for INNMTS are significantly less than that of 

MTS, and which indicates that the model-plant 

mismatch is greatly reduced in INNMTS compared to 

MTS which explained the reason why the number of 

iterations required by INNMTS significantly less than 

that required by MTS technique. 

Conclusion 

Mathematical model for 2CSTHEs has been developed 

using the first principle which use to represent the real 

process plant. Simulink models for real process plant 

were constructed and used for generating input-output 

plant data. ANN model of the process was developed 

and trained using generated data and the most suitable 

ANN model structure determined is used in the 

optimization problem at the RTO. The multilayer feed 

forward network architecture 4-10-6 with linear 

function used in both the hidden and the ouput layers 

was found to be efficient enough to model the 

2CSTHEs and used in the INNMST technique. 

Simulation results show that the INNMTS technique 

has successfully improved the performance of MTS by 

reducing the number of iteration required to one third 

and also able to reduce significantly the model-plant 

mismatch.  
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