

Inferior Vena Cava Collapsibility as a Predictor of Mortality in Patients Admitted with Severe Acute Decompensated Heart Failure

*Akhtaruzzaman M¹, Ahamed MU², Arafat MA³, Haq AI⁴, Hasan MJ⁵, Manju AM⁶, Haque A⁷

Abstract

Severe acute decompensated heart failure (ADHF) has a high mortality risk. Reliable, early prognostic tools are crucial. The predictive value of inferior vena cava (IVC) collapsibility, a non-invasive measure of volume status, for in-hospital mortality in specific populations, especially in resource-limited settings, requires further validation. Our objective was to evaluate whether bedside ultrasonographic assessment of IVC collapsibility index (IVC-CI) at admission is a significant predictor of in-hospital mortality among patients with severe ADHF. A prospective cohort study was conducted at Bangladesh Medical College Hospital from January 2024 to June 2025. Using purposive sampling, 80 consecutive patients admitted with severe ADHF were enrolled. IVC-CI was measured via transthoracic echocardiography within 24 hours of admission. Data were analyzed using SPSS version 23.0, employing receiver operating characteristic (ROC) curve analysis to determine the optimal IVC-CI cutoff and multivariate logistic regression to identify independent predictors of mortality. Among 80 enrolled patients, in-hospital mortality was 31.3% (25/80). Non-survivors had a significantly lower mean IVC-CI ($28.4\% \pm 9.1$ vs. $52.7\% \pm 12.3$, $p<0.001$). An IVC-CI $\leq 35\%$ was the optimal cutoff (AUC 0.91) for predicting mortality, with 84% sensitivity and 89% specificity. In multivariate analysis, IVC-CI $\leq 35\%$ was a strong independent predictor of mortality (adjusted OR 15.4, 95% CI: 4.8–49.2, $p<0.001$). A reduced IVC collapsibility index ($\leq 35\%$) at admission is a potent, independent predictor of in-hospital mortality in severe acute decompensated heart failure. Bedside IVC assessment is a valuable, non-invasive tool for early risk stratification in this high-risk population.

CBMJ 2026 January: vol. 15 no. 01 P:233-239

Keywords: Acute decompensated heart failure, Echocardiography, Inferior vena cava collapsibility, Mortality, Predictor

Introduction

Heart failure (HF) represents a global pandemic, affecting over 64 million individuals worldwide, and is associated with substantial morbidity, mortality, and healthcare expenditures.¹ Acute decompensated heart failure (ADHF), characterized by the rapid onset or worsening of signs and symptoms, is the leading cause of hospitalization in adults over 65 years of age.² Despite advances in pharmacotherapy and device-based treatments, ADHF admissions portend a grim prognosis, with in-hospital mortality rates ranging from 4% to 7% in international registries and notably higher in severe cases or low-resource settings.^{3,4} This high mortality underscores the critical need for simple, rapid, and reliable prognostic tools at the point of care to facilitate early identification of high-risk patients and guide intensive management strategies. Current risk stratification in ADHF often relies on a combination of clinical scoring systems, biomarker assays (like B-type natriuretic peptide,

1. *Dr. Muhammed Akhtaruzzaman, Associate Professor, Department of Cardiology, Bangladesh Medical College Hospital, Dhaka.
2. Dr. Monir Uddin Ahamed, Associate Professor, Department of Radiology and Imaging, National Institute of Ophthalmology and Hospital (NIO&H), Dhaka.
3. Dr. Mohammad Ali Arafat, Assistant Professor, Department of Urology, Bangladesh Medical College Hospital, Dhaka.
4. Dr. Arman Ibne Haq, Associate Professor, Department of Psychiatry, Bangladesh Medical College Hospital, Dhaka.
5. Prof. Dr. Mahmud Javed Hasan, Professor & Head, Department of Nephrology, Community Based Medical College Bangladesh.
6. Dr. Ashek Mahmud Manju, Assistant Professor, Department of Cardiology, International Medical College, Dhaka.
7. Dr. Amdadul Haque, Associate Professor, Department of Cardiology, Community Based Medical College Bangladesh.

Address of Correspondence:

Email: drpalash336@gmail.com

BNP), and echocardiographic assessment of left ventricular systolic function.⁵ However, these tools have limitations. Biomarker levels can be influenced by age, renal function, and body mass index, while echocardiographic ejection fraction (EF) may not fully reflect the acute hemodynamic burden, particularly in heart failure with preserved EF (HFpEF).^{6,7} Central to the pathophysiology of ADHF is systemic venous congestion, a key driver of symptoms and organ dysfunction, which often precedes a decline in cardiac output.⁸ Consequently, direct assessment of volume status has emerged as a pivotal component in the evaluation and prognostication of ADHF. The inferior vena cava (IVC) diameter and its respiratory collapsibility, assessed via bedside ultrasonography, have become established as non-invasive, real-time surrogates for right atrial pressure and intravascular volume status.⁹ A plethoric, non-collapsible IVC suggests elevated central venous pressure and volume overload. Recent evidence has solidified the role of IVC parameters in diagnosing ADHF in the emergency department, demonstrating good sensitivity and specificity.¹⁰ Beyond diagnosis, there is growing interest in the prognostic utility of IVC assessment. Studies indicate that a less collapsible IVC at admission is associated with worse outcomes, including prolonged hospitalization and increased diuretic requirements.¹¹ Nevertheless, the specific value of the IVC collapsibility index (IVC-CI) as an independent predictor of in-hospital mortality, particularly in patients presenting with severe ADHF, remains less definitively characterized. Existing studies show heterogeneity in patient populations, IVC measurement protocols, and defined endpoints.¹² Furthermore, there is a conspicuous lack of data from South Asian populations, where the epidemiology, comorbidities, and healthcare resources for HF management may differ significantly from Western cohorts.¹³ This gap is critical, as validated, low-cost,

bedside tools are especially valuable in resource-constrained environments. Therefore, this study was designed to address this evidence gap by prospectively evaluating the hypothesis that a low IVC-CI at admission is a powerful and independent predictor of in-hospital mortality in a cohort of patients admitted with severe ADHF in a tertiary care hospital in Bangladesh.

Methods

This prospective cohort study was conducted at the Department of Cardiology, Bangladesh Medical College Hospital, Dhaka, from January 2024 to June 2025. A purposive sample of 80 adult patients consecutively admitted with a primary diagnosis of severe acute decompensated heart failure (ADHF) was enrolled. The study population included patients with either acute decompensation of chronic heart failure or new-onset ADHF, who presented with severe symptoms corresponding to New York Heart Association (NYHA) functional class III or IV.

Inclusion criteria: Patients were included if they met the Framingham criteria for ADHF, presented with NYHA class III or IV symptoms, and had an elevated N-terminal pro-B-type natriuretic peptide (NT-proBNP) level $> 1800 \text{ pg/mL}$ or BNP $> 400 \text{ pg/mL}$. Written informed consent was obtained from all participants or their legal guardians.

Exclusion criteria: Individuals with primary pulmonary, hepatic, or renal disease-causing decompensation, chronic obstructive pulmonary disease with significant cor pulmonale, significant tricuspid regurgitation, known inferior vena cava (IVC) anomaly, pericardial constriction, or who were mechanically ventilated at admission were excluded.

Study procedure: Within 24 hours of admission, a comprehensive transthoracic echocardiography was performed for all enrolled patients. Conventional two-dimensional echocardiography was carried out using

a standardized machine (Versana Active, General Electric Vingmed Ultrasound, Norway) equipped with a 2.5 MHz transducer. Left ventricular ejection fraction (LVEF) was determined by the biplane Simpson's method. Subsequently, a focused assessment of the inferior vena cava was conducted. The IVC diameter was measured in M-mode approximately 2 cm from the right atrial junction during quiet breathing and deep inspiration. The IVC collapsibility index (IVC-CI) was calculated using the standard formula: [(Maximum diameter – Minimum diameter) / Maximum diameter] × 100%. Statistical analysis was performed using IBM SPSS version 23.0. Continuous variables were compared using Student's t-test or the Mann-Whitney U test, as appropriate. A receiver operating characteristic (ROC) curve analysis was employed to determine the optimal IVC-CI cutoff value for predicting mortality. Multivariate logistic regression, adjusted for key clinical covariates (including LVEF and natriuretic peptide levels), was used to identify independent predictors of the primary outcome. A p-value < 0.05 was considered statistically significant.

Results

During the study period, a total of 80 patients with severe acute decompensated heart failure were enrolled and completed follow-up. The overall in-hospital mortality rate was 31.3% (25 patients), while 55 patients (68.8%) survived to discharge. The mean age of the overall cohort was 66.4 ± 10.8 years, with a male predominance (62.5%). Hypertension (82.5%) and ischemic heart disease (65.0%) were the most prevalent comorbidities. No significant differences were found between survivors and non-survivors regarding age, sex distribution, or the prevalence of major comorbidities such as hypertension, diabetes, or ischemic heart disease. Significant differences

emerged in key clinical and investigative parameters. Non-survivors presented with a significantly higher mean heart rate (112.4 ± 14.2 bpm vs. 98.7 ± 12.1 bpm; $p<0.001$) and lower mean systolic blood pressure (98.3 ± 11.5 mmHg vs. 112.8 ± 13.4 mmHg; $p<0.001$). Renal function was markedly worse in non-survivors, evidenced by a higher mean serum creatinine (1.92 ± 0.51 mg/dL vs. 1.41 ± 0.38 mg/dL; $p<0.001$). Echocardiographic parameters also differed; while left ventricular ejection fraction was comparable between groups (34.5% vs. 35.8%; $p=0.572$), non-survivors had a significantly larger mean IVC maximum diameter (2.51 ± 0.32 cm vs. 1.98 ± 0.29 cm; $p<0.001$) and, critically, a markedly lower mean IVC collapsibility index ($28.4 \pm 9.1\%$ vs. $52.7 \pm 12.3\%$; $p<0.001$). An ROC curve analysis was performed to determine the optimal prognostic cutoff for IVC-CI. The area under the curve (AUC) was 0.912 (95% CI: 0.850–0.974), indicating excellent discriminatory power. The maximum Youden index identified an IVC-CI of $\leq 35\%$ as the optimal cutoff, yielding a sensitivity of 84.0%, specificity of 89.1%, positive predictive value of 80.8%, and negative predictive value of 91.1%. The proportion of patients with an IVC-CI $\leq 35\%$ was 84.0% (21/25) in the non-survivor group compared to only 10.9% (6/55) in the survivor group, a difference that was highly statistically significant ($p<0.001$). To isolate the independent effect of IVC-CI, a multivariate logistic regression model was constructed, adjusting for age, systolic blood pressure, serum creatinine, and ejection fraction. In this model, an IVC-CI $\leq 35\%$ emerged as the strongest independent predictor of in-hospital mortality, with an adjusted odds ratio of 15.42 (95% CI: 4.83–49.24; $p<0.001$). A secondary analysis revealed that a composite of IVC-CI $\leq 35\%$ and serum creatinine >1.5 mg/dL was associated with the highest mortality risk (58.3%).

Table 1: Baseline characteristics of the study population

Characteristic	Value
Age (years), Mean \pm SD	66.4 \pm 10.8
Male Sex, n (%)	50 (62.5%)
Comorbidities, n (%)	
Hypertension	66 (82.5%)
Diabetes mellitus	38 (47.5%)
Ischemic heart disease	52 (65.0%)
Chronic kidney disease	15 (18.8%)
Vital Signs, Mean \pm SD	
Heart rate (bpm)	102.8 \pm 14.0
Systolic BP (mmHg)	108.4 \pm 14.5
Laboratory & Echo, Mean \pm SD	
Serum creatinine (mg/dL)	1.57 \pm 0.48
LV Ejection fraction (%)	35.4 \pm 8.2

Table 2: Comparison of survivors and non-survivors

Parameter	Survivors	Non-survivors	p-value
	(n=55)	(n=25)	
Demographics			
Age (years), Mean \pm SD	65.8 \pm 11.2	67.8 \pm 10.0	0.441
Male, n (%)	33 (60.0%)	17 (68.0%)	0.497
Comorbidities, n (%)			
Hypertension	44 (80.0%)	22 (88.0%)	0.537
Ischemic heart disease	34 (61.8%)	18 (72.0%)	0.377
Clinical parameters, Mean \pm SD			
Heart rate (bpm)	98.7 \pm 12.1	112.4 \pm 14.2	<0.001
Systolic BP (mmHg)	112.8 \pm 13.4	98.3 \pm 11.5	<0.001
Serum creatinine (mg/dL)	1.41 \pm 0.38	1.92 \pm 0.51	<0.001
Echocardiographic, Mean \pm SD			
LV Ejection fraction (%)	35.8 \pm 8.5	34.5 \pm 7.6	0.572
IVC Max diameter (cm)	1.98 \pm 0.29	2.51 \pm 0.32	<0.001
IVC Collapsibility index (%)	52.7 \pm 12.3	28.4 \pm 9.1	<0.001

Data presented as Mean \pm SD or n (%); p-values from independent t-test or Chi-square test

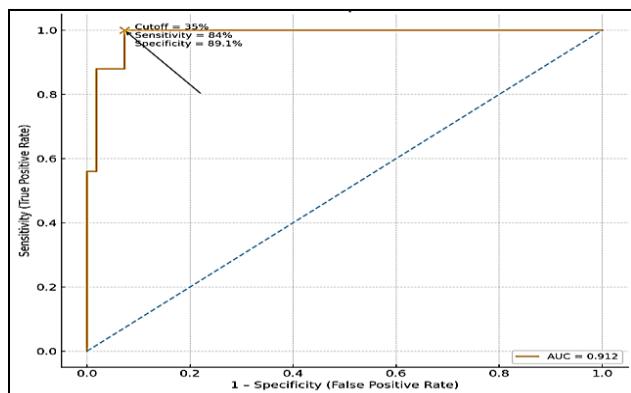
Table 3: Diagnostic performance of IVC-CI for predicting mortality

Metric	Value
Area Under Curve (AUC)	0.912
95% Confidence Interval	0.850 – 0.974
Optimal Cutoff (IVC-CI)	\leq 35%
Sensitivity	84.0%
Specificity	89.1%
Positive Predictive Value	80.8%
Negative Predictive Value	91.1%

Table 4: Distribution and association of IVC-CI \leq 35% with mortality

Group	IVC-CI \leq 35%	IVC-CI $>$ 35%	p-value
	n (%)	n (%)	
Non-Survivors (n=25)	21 (84.0%)	4 (16.0%)	<0.001
	6 (10.9%)	49 (89.1%)	

Chi-square test applied


Table 5: Multivariate logistic regression for predictors of in-hospital mortality

Predictor	Adjusted OR	95% CI	p-value
IVC-CI \leq 35%	15.42	4.83 – 49.24	<0.001
Age >70 years	1.78	0.58 – 5.44	0.314
Systolic BP <100 mmHg	2.95	0.92 – 9.45	0.069
Serum creatinine >1.5 mg/dL	3.21	1.02 – 10.12	0.046
LVEF <35%	1.22	0.40 – 3.71	0.727

Model adjusted for all variables listed

Table 6: Mortality rate by IVC-CI and renal function profile

Profile	n	In-hospital mortality, n (%)
IVC-CI ≤35% & Creatinine >1.5 mg/dL	2 4	14 (58.3%)
IVC-CI ≤35% & Creatinine ≤1.5 mg/dL	3	0 (0.0%)
IVC-CI >35% & Creatinine >1.5 mg/dL	1 5	3 (20.0%)
IVC-CI >35% & Creatinine ≤1.5 mg/dL	3 8	1 (2.6%)

Figure 1: Receiver Operating Characteristic (ROC) curve of the inferior vena cava collapsibility index for predicting in-hospital mortality in severe acute decompensated heart failure

Discussion

This prospective cohort study demonstrates that a reduced inferior vena cava collapsibility index (IVC-CI) at admission is a powerful and independent predictor of in-hospital mortality among patients with severe acute decompensated heart failure (ADHF) in a Bangladeshi population. The key finding—that an IVC-CI of ≤35% was associated with a more than 15-fold increased risk of death after multivariable adjustment—underscores the critical prognostic value of assessing systemic venous congestion at the bedside. The observed overall mortality rate of 31.3% aligns with, though is at the higher end of, the

spectrum reported in other studies focusing on severe ADHF cohorts, reflecting the critically ill nature of our purposively selected NYHA class IV population.^{3,14}

The baseline characteristics of our cohort, dominated by hypertension and ischemic heart disease, are consistent with the prevalent etiology of heart failure in South Asia.¹³ The lack of significant difference in age, sex, or left ventricular ejection fraction between survivors and non-survivors reinforces the concept that traditional demographic and systolic function parameters are insufficient for acute risk stratification in severe decompensation.^{6,7} Instead, markers of hemodynamic compromise and end-organ perfusion, such as tachycardia, hypotension, and worsening renal function, were significantly associated with mortality, consistent with established pathophysiology.^{8,15} Our study provides robust, quantitative evidence supporting the prognostic role of IVC assessment. The highly significant difference in mean IVC-CI between survivors (52.7%) and non-survivors (28.4%) and the excellent discriminatory power of the ROC curve (AUC 0.912) are compelling. These findings corroborate and extend previous work. A meta-analysis by Alqahtani *et al.* (2020) concluded that a less collapsible IVC was associated with adverse outcomes in acute HF, though pooled analyses included heterogeneous endpoints like readmission and combined mortality.¹² Our study specifically isolates in-hospital mortality as the endpoint in a severe, prospectively defined cohort. The optimal cutoff of ≤35% is clinically intuitive and aligns with echocardiographic guidelines defining an IVC-CI of <50% as suggestive of elevated right atrial pressure.⁹ The high specificity (89.1%) and negative predictive value (91.1%) are particularly notable, suggesting that an IVC-CI >35% can identify a lower-risk subgroup even among severely symptomatic patients. The multivariate analysis confirming

IVC-CI $\leq 35\%$ as the strongest independent predictor, with an adjusted odds ratio of 15.42, solidifies its role beyond a mere association with other markers of shock or renal dysfunction. This independence suggests that IVC collapsibility encapsulates a unique aspect of the hemodynamic insult—likely the severity and chronicity of systemic venous congestion—which directly contributes to progressive organ failure and death.^{8,16} The synergy observed with renal impairment (serum creatinine > 1.5 mg/dL), resulting in a mortality rate of 58.3%, highlights the vicious cycle of the cardiorenal syndrome and identifies a subgroup at extreme risk.¹⁷ The strengths of this study include its prospective design, strict clinical definition of severe ADHF, and standardized echocardiographic protocol. However, limitations must be acknowledged. The single-center design and modest sample size, though adequate for the primary analysis, may limit generalizability. Purposive sampling introduces selection bias toward the most severe cases, which explains the high mortality but may not reflect the broader ADHF population. IVC measurements, while performed per protocol, are operator-dependent and influenced by respiration, though this reflects real-world practice.¹⁸ We did not account for the specific inotrope or vasodilator therapies administered, which could influence outcomes. This study validates bedside IVC collapsibility assessment as a simple, rapid, and highly effective tool for early risk stratification in severe ADHF. An IVC-CI of $\leq 35\%$ at admission is a potent indicator of a high risk of in-hospital death, independent of other clinical factors. Integrating this readily available ultrasonographic parameter into the initial evaluation can help clinicians identify patients who require the most intensive monitoring and aggressive therapeutic intervention, potentially improving resource allocation and clinical decision-

making, especially in resource-constrained settings.¹⁹

Limitations

This single-center study had a modest sample size and used purposive sampling of severe cases, which may limit generalizability. IVC measurements, while protocolized, are operator-dependent. The influence of specific therapeutic interventions on outcomes was not analyzed, representing a potential confounder.

Conclusion

In patients with severe acute decompensated heart failure, an inferior vena cava collapsibility index (IVC-CI) of $\leq 35\%$ at admission is a strong, independent predictor of in-hospital mortality. This simple, bedside ultrasonographic parameter provides critical prognostic information beyond traditional clinical and echocardiographic markers. Incorporating IVC-CI assessment into the initial evaluation can enhance early risk stratification, aiding in the timely identification of high-risk patients for more intensive management.

Recommendation

We recommend integrating bedside IVC-CI assessment into the standard initial evaluation of severe ADHF for early mortality risk stratification. Future multicenter studies with larger cohorts should validate this cutoff and explore its impact on guiding therapy and improving outcomes.

References

1. Collaborators, *Global Burden of Disease*. "Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017." (2018).

2. Sattler, Elisabeth LP, et al. "American Heart Association EPI| Lifestyle Scientific Sessions: 2022 Meeting Highlights." (2023): e028695.
3. Crespo-Leiro, Maria G., et al. "European Society of Cardiology Heart Failure Long-Term Registry (ESC-HF-LT): 1-year follow-up outcomes and differences across regions." *Eur J Heart Fail* 19.3 (2017): 438.
4. Triposkiadis, Filippos, et al. "The continuous heart failure spectrum: moving beyond an ejection fraction classification." *European Heart Journal* 40.26 (2019): 2155-2163.
5. Mehta, Jinit K., et al. "Role of Renin Angiotensin System in the Pathophysiology of Coronary Heart Disease: Advancements in Diagnosis, Therapy and Preventive Strategies." *The Renin Angiotensin System in Cardiovascular Disease*. Cham: Springer International Publishing, 2023. 211-235.
6. Ibrahim, Nasrien E., and James L. Januzzi Jr. "Beyond natriuretic peptides for diagnosis and management of heart failure." *Clinical Chemistry* 63.1 (2017): 211-222.
7. Heidenreich, Paul A. "2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines (vol 145, pg e895, 2022)." *Circulation* 147.14 (2023): E674-E674.
8. Mullens, Wilfried, et al. "Importance of venous congestion for worsening of renal function in advanced decompensated heart failure." *Journal of the American College of Cardiology* 53.7 (2009): 589-596.
9. Kaptein, Matthew J., and Elaine M. Kaptein. "Inferior vena cava collapsibility index: clinical validation and application for assessment of relative intravascular volume." *Advances in Chronic Kidney Disease* 28.3 (2021): 218-226.
10. Martindale, Jennifer L., et al. "Diagnosing acute heart failure in the emergency department: a systematic review and meta-analysis." *Academic emergency medicine* 23.3 (2016): 223-242.
11. Kaptein, Elaine M., and Matthew J. Kaptein. "Inferior vena cava ultrasound and other techniques for assessment of intravascular and extravascular volume: an update." *Clinical Kidney Journal* 16.11 (2023): 1861-1877.
12. Argaiz, Eduardo R., et al. "Fluid management in acute kidney injury: from evaluating fluid responsiveness towards assessment of fluid tolerance." *European Heart Journal: Acute Cardiovascular Care* 11.10 (2022): 786-793.
13. D HUFFMAN, M. A. R. K., and Dorairaj Prabhakaran. "Heart failure: epidemiology and prevention in India." *The National medical journal of India* 23.5 (2010): 283.
14. Castella, B., et al. "Modulation Of The Immune Microenviroment In Multiple Myeloma Patients Treated With Daratumumab-Based Therapy: Tumor Cell-Extrinsic Effects Of Daratumumab Treatment." *HAEMATOLOGICA* (2020): 35-35.
15. Harjola, Veli-Pekka, et al. "Organ dysfunction, injury and failure in acute heart failure: from pathophysiology to diagnosis and management. A review on behalf of the Acute Heart Failure Committee of the Heart Failure Association (HFA) of the European Society of Cardiology (ESC)." *European journal of heart failure* 19.7 (2017): 821-836.
16. Verbrugge, Frederik H., et al. "The kidney in congestive heart failure: are natriuresis, sodium, and diuretics really the good, the bad and the ugly?." *European Journal of Heart Failure* 16.2 (2014): 133-142.
17. Ronco, Claudio, Antonio Bellasi, and Luca Di Lullo. "Cardiorenal syndrome: an overview." *Advances in chronic kidney disease* 25.5 (2018): 382-390.
18. Diaz-Gomez, Jose L., Paul H. Mayo, and Seth J. Koenig. "Point-of-care ultrasonography." *New England Journal of Medicine* 385.17 (2021): 1593-1602.
19. Ambrosy, Andrew P., et al. "The global health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized heart failure registries." *Journal of the American College of Cardiology* 63.12 (2014): 1123-1133.