Correlation between the Maximum Length and the Weight of the Human Humerus Bone

*Haque SMA¹, Mehataz T², Afros F³, Mili DA⁴, Islam S⁵, Siddiquee T⁶, Tanzeem S⁷, Debnath D⁸, Ahmed M⁹, Sultana A¹⁰

Abstract

The humerus bone of the humans is frequently used in anatomical science, forensic medicine and anthropological studies. This cross-sectional, descriptive study was done on 100 (43 right and 57 left) fully ossified dry human humerus in the Department of Anatomy, Mymensingh Medical College, Bangladesh, between July 2021 to June 2022. A non-random, purposive sampling technique was adopted. The maximum length was determined by measuring the distance between the most superior point on the head of the humerus and the most distal point of the trochlea of the humerus. The length was measured with a metallic scale, while the weight of the humerus was measured using a digital weighing machine. The mean (±SD) maximum length of the right humerus was 304.139 (±17.652) mm, while the left humerus was 300.42 (±20.779) mm. The mean (±SD) weight of the right humerus was 91.069 (±26.944) gm and the left humerus was 93.965 (±32.227) gm. A positive correlation was observed between the maximum length and the weight of the human humerus through regression analysis (r=0.653 and r=0.824 on right and life side respectively). The differences were statistically significant on both sides (P<0.001).

Keywords: Human humerus, maximum length, weight

Introduction

The humerus is the bone of the arm. It is the longest and strongest bone of the upper limb.¹ It consists of three parts: upper end, lower end, and shaft. The upper end presents the five features: head, neck, greater tubercle, lesser tubercle, and intertubercular sulcus. The lower end presents the seven features: capitulum, trochlea, radial fossa, coronoid fossa, olecranon fossa, medial epicondyle, and lateral epicondyle. The shaft is a long part of bone extending between its upper

1. *Dr. Shah Md. Atiqul Haque, Lecturer, Department of Anatomy, Mymensingh Medical College, Mymensingh.
2. Dr. Tasnova Mehataz, Indoor Medical Officer, Department of Anaesthesiology, Community Based Medical College, Bangladesh (CBMC, B), Mymensingh.
3. Dr. Farzana Afros, Assistant Health Officer, Dhaka North City Corporation, Dhaka, Bangladesh.
4. Dr. Dilruba Afroze Mili, Lecturer, Department of Anatomy, Community Based Medical College, Bangladesh (CBMC, B), Mymensingh.
5. Dr. Shamima Islam, Lecturer, Department of Anatomy, Mymensingh Medical College, Mymensingh.
6. Dr. Tasnoma Siddiquee, Lecturer, Department of Anatomy, Mymensingh Medical College, Mymensingh.
7. Dr. Sabiha Tanzeem, Lecturer, Department of Anatomy, Mymensingh Medical College, Mymensingh.
8. Dr. Dhrubajit Debnath, Lecturer, Department of Anatomy, Mymensingh Medical College, Mymensingh.
9. Dr. Muntasir Ahmed, Assistant Professor, Department of Anatomy, Netrokona Medical College, Netrokona.
10. Dr. Arifa Sultana, M. Phil. (Thesis Part), Department of Anatomy, Mymensingh Medical College, Mymensingh.

Address of Correspondence:
Email: dr.rony13@gmail.com
and lower ends. Morphometric study of bones plays an important role in identifying unknown bodies, parts of bodies, or skeletal remains. Knowing the maximum length and weight of the human humerus is very important for anatomical science, forensic medicine, and anthropological studies and may help the investigators to define the identity of a skeleton in their practice. Moreover, those data also help anthropological and archaeological investigations by providing with the evidence to indicate the characteristic features of a population. To our knowledge, no study concerning morphometry of upper limb bones has been reported in our country. Hence, the importance of studying such morphometry and correlation carry immense prevails in our country.

Methods

This cross-sectional, descriptive type study was performed between July 2021 and June 2022 in the Department of Anatomy, Mymensingh Medical College, Bangladesh. Samples were collected from the same department. One hundred fully ossified dry human humerus (43 right and 57 left) were collected for this study. A non-random, purposive sampling technique was used for sample selection. The sample was excluded if the bones were unossified, developmentally abnormal, and broken even partially. Measurement of the maximum length and weight of the humerus was done in this study. The maximum length of the humerus was measured by a metallic scale. One blade of the scale was placed over the most superior point on the head of the humerus and another blade was placed below the most distal point of the trochlea of the humerus (Fig. 1). The length was expressed in mm. Then, a digital weighing machine was used to take the weight of the humerus. Specimen bones were placed upon the weighing machine and the reading was taken from the display and was recorded in grams (Fig. 2).

All the data were double-checked, compiled, and sorted properly. Data processing and data analysis was carried out using SPSS version 22.0 (Statistical Package for Social Science) for Windows. Pearson correlation was done to determine the relationship between those quantitative variables. All tests were two tailed and P<0.05 was considered statistically significant. Analyzed data were presented through histograms and scatter diagrams.

Results

The mean (±SD) maximum length of the humerus was 304.139 (± 17.652) mm and 300.42 (±20.779) mm on the right and left sides.
respectively. The maximum length of the right sided humerus ranged between 276 mm and 350 mm. More than 79% of samples were found within the range between 278 mm and 335 mm (Fig. 3).

The maximum length of the left humerus ranged between 260 mm and 349 mm. More than 75% of samples were within 285 mm and 332 mm in length (Fig. 4). The mean (±SD) weight of the humerus was 91.069 (± 26.944) gm and 93.965 (±32.227) gm on the right and left sides respectively. The weight of the right sided humerus ranged between 41 gm and 138 gm (Fig. 5). More than 81% of samples were found within 60 gm and 130 gm. The weight of the left humerus ranged between 32 gm and 163 gm. More than 77% of samples were within 62.50 gm and 150 gm (Fig. 6). Pearson correlation test showed a positive correlation between the maximum length and the weight of the humerus. It was observed that the weight of the humerus gradually increased with the length of the humerus on both sides. The regression line showed the positive correlation (on the right side, r=0.653, while on the left side, r=0.824). Both the differences were statistically significant (P<0.001) (Fig. 7 & 8).
Discussion

According to the present study, the mean (±SD) maximum length of the humerus was 304.139 (±17.652) mm on the right side and 300.42 (±20.779) mm on the left side. The mean value of right-sided humeri in the present study was very similar to the findings of the previous studies. However, the mean value of this right side was higher than the values reported in previous studies done in Indian population. In contrast, our mean value of the right side was lower than the value described by some other studies. The mean value of left-sided humeri in the present study was nearly similar to the value described by several studies. The mean value we found for the left side was higher than the values described by some of the previous studies done in India. In contrast, our mean value of the left side was lower than the value described by several studies. The mean value of the left side was nearly similar to the value described by several studies. The mean value we found for the left side was higher than the values described by some of the previous studies done in India. In contrast, our mean value of the left side was lower than the value described by several studies. The mean value we found for the left side was higher than the values described by some of the previous studies done in India.

Conclusion

Our data suggests a positive correlation between the maximum length and the weight of the human humerus, as observed in both sides. The weight of the humerus gradually increased with the length of the humerus on both sides. The results of the present study will provide data for further study to enrich the information pool on our population. However, further studies with larger samples and advanced application of CT/MRI scans on different ethnicities in our country are recommended.
References


