

Coronary Endarterectomy with off Pump Coronary Artery Bypass Surgery- A Review

Redoy Ranjan¹, Dipannita Adhikary², Heemel Saha², Sanjoy Kumar Saha³, Sabita Mandal⁴, Asit Baran Adhikary¹

¹Department of Cardiac Surgery, BSMMU, Dhaka, ⁲Al Helal Specialized Hospital, Dhaka, ³Department of Cardiac Anesthesia, BSMMU, Dhaka, ⁴Department of Community Medicine, Shaheed Suhrawardy Medical College, Dhaka

Abstract:

Coronary endarterectomy is first described as an alternative surgical procedure for myocardial revascularization against diffuse coronary artery disease by Baily et al. in 1956. Coronary endarterectomy provides complete surgical revascularization of the myocardium in diffuse and calcified coronary arteries with adequate blood flow to distal part of occluded arteries, thus improving ventricular function. However, the initial outcomes of coronary endarterectomy were not satisfactory but now-a-days different studies have shown that coronary endarterectomy with coronary artery bypass grafting can be done safely with acceptable morbidity and mortality. Moreover, the graft patency rate on angiographic evaluation is also good following coronary endarterectomy. So, it's time to reevaluate this old techniques, and reanalysis the current outcomes of coronary endarterectomy and readdress its indication in diffuse coronary artery disease.

(Cardiovasc. j. 2017; 10(1): 84-90)

Address of correspondence: Dr. Redoy Ranjan, Department of Cardiac Surgery, BSMMU, Dhaka, Bangladesh. Email: redoy_ranjan@yahoo.com

Key words:

Coronary endarterectomy, Coronary artery disease, Coronary artery bypass.
indications of coronary endarterectomy were limited to patients with diffuse coronary artery disease.1,17 Since then, several study have shown that the complete myocardial revascularization of coronary artery disease by CABG with CE can be done safely and it enhanced the post-operative outcomes by improving myocardial function.18-20

Definition and types of Coronary Endarterectomy

Coronary Endarterectomy is a surgical procedure involving the removal of atheromatous plaque, and isolating the outer media and adventitia layers of artery and reestablishing the blood flow to the distal part of to the coronary artery (Figure-1). A conclusive decision to do endarterectomy of a vessel is made per-operatively and depends on technical contemplations. Coronary endarterectomy was considered when no sufficient segment of a vessel, providing blood supply to viable muscle with reversible ischemia, was appropriate for grafting. Endarterectomy of the unhealthy vessel was just performed when the artery was totally or almost impeded with severely calcified plaques and long segment stenosis that extends distally. There are two various approaches to perform coronary endarterectomy: Open method and Close method. But till now, it is unclear which the perfect procedure is.21 But there is a common practice between these two strategies to remove atherosclerotic plaque that is an arteriotomy is the basic principle in both methods.17

How to perform CE?

In open methods, a longitudinal incision for coronary arteriotomy is performed distal to the atheromatous plaque and extracted the atheroma from vessel,21 followed by reconstruction of endarterectomized site with on lay patch either with Internal thoracic artery or a saphenous venous patch.22,23 However, a longitudinally opened saphenous vein can be used to repair the arteriotomy and thereafter the left internal mammary artery can be anastomosed with the vein patch.5 Note that, this open method is time consuming but the atheromatous plaque is extracted under direct vision, so the openings of the distal end of the LAD and side branches can be checked directly. Furthermore, it can be settled to secure the distal portion of artery following an intimal dissection of the coronary artery happens.2

In the close method, coronary endarterectomies were performed manually by slow sustain and continuous traction of atheroma trailed by reproduction with anastomosis with pre-planned graft.2,23 Two synchronous arteriotomy can be used for coronary endarterectomy to make the framework rapid and reduce ischemic time.24 The close method is shorter in duration and the graft anastomosis is easier than open method.25 But the rate of snowplow effect is more in LAD following closed method as inadequate endarterectomy is more possible.26 Despite delicate balance of traction force, closed endarterectomy may have associated with intimal flap on distal part of endarterectomized vessel. Accordingly, obstacle of the lumen may happen distally as a result of a dissection or thrombus.2,24

However, regardless of the way that the open endarterectomy takes extra time; the chance of intimal flap formation is less and subsequently preventing residual obstruction. So that, some author used the open technique for coronary endarterectomy, the quality is guaranteed.17 Nishi et al. observe the outcome of both closed and open methods endarterectomy and finds that open method endarterectomy is superior to closed one.22 Patients who experienced open method endarterectomy had a lower perioperative morbidity and mortality. Perhaps, this group of patients have significant long term outcome.

The five-year survival rate was 74\% in closed endarterectomy group but 90.7\% in open method group. Also 85.2\% patients of open method group are free from angina in compare to closed method where only 76.6\% patients were from angina on subsequent follow up. So that, though open method
is time consuming but the outcome is the better than closed one. To ensure complete expulsion of the distal atheroma, the atheromatous plaque carefully inspected for a smooth distal taper end (Figure-2). In addition, back flow of blood from the distal vessel following extraction of the atheroma is a consoling indication of adequate removal atheromatous plaque and that is special feature in OPCABG endarterectomy.

Fig-2: Distal taper end (arrow marked) indicate complete removal of atheromatous plaque.

What are the Operative Criteria for CE?
Coronary endarterectomy (CE) is performed when the coronary vessel is extremely affected by atherosclerotic process, so that conventional CABG is insufficient to provide adequate myocardial revascularization. Also, neither immature atherosclerotic plaques nor extensive calcification are contraindications to procure a delightful anastomosis after coronary endarterectomy. However, CE provides more collateral circulation via side branches in case of diffuse CAD. Perhaps, if an anastomosis is performed in calcified vessel, embolization of atheromatous plaque may happen. So in presence of diffuse atherosclerosis with calcification of coronary artery, CE is required to provide good distal run off in diseased coronary artery. Shapira et al. stated that preoperative coronary angiographic findings like irregular thickening with diffuse string like appearance and lumen less than 1mm in diameter can constitute signs for endarterectomy. However, a conclusive decision to perform endarterectomy is made per-operatively when the above criteria are noted. Trehan and Mishra are accounted the essential indications for coronary endarterectomy:

I. Multiple lesions in a coronary artery.
II. Diffusely disease coronary artery with calcified plaque.
III. Long segment of lesion.
IV. Disruption of the plaque during coronary anastomosis.
V. Occlusion of the main artery and its branches.

Postoperative Anticoagulation therapy
Following coronary endarterectomy, in absence of endothelium, coagulation cascade become activated because sub-endothelium exposed to circulation. So that, after coronary endarterectomy, routine Heparin infusion is prescribed to prevent thrombosis in graft or native tissue in the early post-operative period followed by oral warfarin for next 6 months. Perhaps, combination of antiplatelet and anticoagulation is also required. Till date, there is no standard anticoagulation regimen after coronary endarterectomy exists. Postoperatively, intravenous heparin, 75 mg combination of Aspirin with Clopidogrel, and warfarin are used. Heparin is continued until desired warfarin effect achieved that is INR (International normalized ratio) is 1.5 to 2.5. After 3-6 months, use of warfarin is suspended for Clopidogrel and Ecosprin.

Prognosis of CE in diffuse CAD
In CAD, inadequate myocardial revascularization has been appeared to be a standout amongst the most critical components that influences perioperative outcome, ventricular function, early and late mortality. However, LAD endarterectomy is thought to be higher hazardous than other territory, and in this way, it might be stayed away
Coronary Endarterectomy with off Pump Coronary Artery Bypass Surgery

Redoy Ranjan et al.

In a study, Djalilian et al. shows only 9% of their patients got angina at 46±19 months follow up, though Gill et al. observed intermittent angina in 15% of their patients at a mean follow-up of 36±16 months.\(^8\),\(^10\) Post-operative acute myocardial infarction (MI) due to acute graft occlusion is a noteworthy complication following CE with an incidence rate of 1.5% to 19%.\(^10\) The occurrence of post-operative MI in our patients is 3.5%. Naseri et al. revealed a higher postoperative MI rate of 6.8% after OPCABG with CE in completely blocked or more than >50% stenosis.\(^20\) But in another study, Vohra et al. observed that postoperative MI rate following OPCABG with coronary endarterectomy is 4.3% and 10% recurrence rate of angina following OPCABG with coronary endarterectomy.\(^18\) However, Christakis et al. observed 35% recurrence rate of angina at 5 years follow up in their study, which is significantly higher than our study.\(^30\) This distinction in recurrence of side effects might be because of the especially extreme nature of the coronary disease or to inadequate revascularization accomplished.

In another study, Takahashi et al. observed the mortality rate is zero percent in a small study of CE with OPCABG and conversion of procedure to on-pump CABG rate is 8.33%. Post-operative morbidity was very minimum with no perioperative stroke or MI. Reoperation rate was 16.66% due to excessive bleeding and post-operative new onset atrial fibrillation rate also 16.66%. One patient developed respiratory complications who require tracheostomy. Postoperative mean follow-up period was 24 ± 19 months; revealed neither early nor mid-term myocardial ischemia.\(^25\) Naseri et al. likewise demonstrated that the intubation time, ICU stay, and the length of hospitalization was not exactly same between on pump CABG with coronary endarterectomy (CE) and after OPCABG with CE.\(^20\) Besides, in spite of the fact that the duration of ventilation was comparative in our review and that of Eryilmaz et al. the length of hospitalization was higher in the last arrangement.\(^19\)

Nishi et al. studied 127 patients with diffuse CAD who experienced CE with CABG in the year of 1994 to 2003.\(^22\) This audit endorsed that coronary endarterectomy is related to an acceptable operator risk as mortality rate was 4.7%, however only 3% patients experienced perioperative MI. Infection was
found in six cases, six patients required re-operation for excess bleeding, and only two patients have had TIA. Furthermore, intra-aortic balloon pump was required 17% patients and late mortality rate was 15.75. Finally, Livesay et al. observed long term benefits following CE in their study over a period of 14 years includes a large study group about 27,095 patients. Of whom 12.4% patients experienced CE and they observed that 10 year’s survival rate was 68% which is very close to only CABG group 74%.12

Although multi-vessel endarterectomy has been described but single vessel especially LAD endarterectomy is preferred as adequate stabilization of LAD is easier, can be easily visible throughout its full length and less mobilization of heart is required to achieve CE during OPCABG.31 However, Erdil et al. shows that clinical and angiographic findings is excellent following right coronary endarterectomy and no additional mortality or morbidity is associated with CABG following RCA endarterectomy in relation to non-endarterectomized RCA during CABG.32 However, early mortality rate is accounted to be higher after LAD endarterectomy and in patients experiencing endarterectomy of more than one coronary artery.9 The frequency of early mortality after CE with OPCABG of 2%-15%.31 However, long term graft patency rate following CE is 40%-81.5% and single CE carries better result than multiple endarterectomy.10,22,33 By the way, postoperative MI rate also high following multiple CE, no matter which artery is incorporated.33

Here, we present in detail with the outcomes of a couple of surveys of coronary endarterectomy due to diffuse CAD (Table-I).

Table-I

Experience of Coronary endarterectomy (CE) by different surgeons.

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>CE%</th>
<th>LCA% (%)</th>
<th>RCA% (%)</th>
<th>Perioperative MI</th>
<th>Early Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooley et al. 1971</td>
<td>38%</td>
<td>?</td>
<td>?</td>
<td>7.7%</td>
<td></td>
</tr>
<tr>
<td>Qureshi et al. 1985</td>
<td>42%</td>
<td>?</td>
<td>72%</td>
<td>12%</td>
<td>4%</td>
</tr>
<tr>
<td>Livesay et al. 1986</td>
<td>12.4%</td>
<td>?</td>
<td>83%</td>
<td>5.4%</td>
<td>4.4%</td>
</tr>
<tr>
<td>Fundaro et al. 1987</td>
<td>100%</td>
<td>72.2% (LAD)</td>
<td>27.2%</td>
<td>5.6%</td>
<td>0%</td>
</tr>
<tr>
<td>Brenowitz et al. 1988</td>
<td>50%</td>
<td>?</td>
<td>51.7%</td>
<td>10%</td>
<td>8.3%</td>
</tr>
<tr>
<td>Shapira et al. 1988</td>
<td>100%</td>
<td>100% (LAD)</td>
<td>27.0%</td>
<td>2.7%</td>
<td>2.7%</td>
</tr>
<tr>
<td>Trehan et al. 1993</td>
<td>12.4%</td>
<td>?</td>
<td>62.9%</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Salerno et al. 1994</td>
<td>3.9%</td>
<td>?</td>
<td>61.8%</td>
<td>9%</td>
<td>4.5%</td>
</tr>
<tr>
<td>Gill et al. 1998</td>
<td>21.9%</td>
<td>?</td>
<td>?</td>
<td>21.6%</td>
<td>4%</td>
</tr>
<tr>
<td>Asimakopolous et al. 1999</td>
<td>4.1%</td>
<td>?</td>
<td>51.5%</td>
<td>5.4%</td>
<td>3.6%</td>
</tr>
<tr>
<td>Tyszka et al. 2003</td>
<td>11.5%</td>
<td>?</td>
<td>21.0%</td>
<td>3.12%</td>
<td>3.12%</td>
</tr>
<tr>
<td>Nishi et al. 2005</td>
<td>100%</td>
<td>55.9% (LAD), 55.9% (LAD), 13.7% (LCX), 5.5% (D)</td>
<td>41.7%</td>
<td>?</td>
<td>4.7%</td>
</tr>
<tr>
<td>Vohra et al. 2006</td>
<td>10.2%</td>
<td>17% (LAD), 1.43% (OM)</td>
<td>81%</td>
<td>4.3%</td>
<td>2.85%</td>
</tr>
<tr>
<td>Takanashi et al. 2008</td>
<td>100%</td>
<td>100% (LAD)</td>
<td>?</td>
<td>12.2%</td>
<td>2.7%</td>
</tr>
<tr>
<td>Schmitto et al. 2009</td>
<td>100%</td>
<td>50% (LAD), 52.8% (LAD)</td>
<td>2.9%</td>
<td>4.8%</td>
<td></td>
</tr>
<tr>
<td>Takahashi et al. 2013</td>
<td>100%</td>
<td>100% (LAD)</td>
<td>?</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Alreshidan et al. 2014</td>
<td>20.0%</td>
<td>52.6% (LAD), 18.4% (OM), 3% (D)</td>
<td>2.6%</td>
<td>7.9%</td>
<td></td>
</tr>
<tr>
<td>Note: CE-Coronary endarterectomy, LCA-Left coronary artery, LAD-Left anterior descending artery, OM-Obtuse marginal artery, D-Diagonal artery, RCA-Right coronary artery, PDA-Posterior descending artery.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusion:
Despite the higher risk group, coronary endarterectomy is attainable and accomplishes surgical revascularization in a patient with diffuse coronary artery disease when there is no other alternative for sufficient myocardial revascularization. However, coronary endarterectomy is not an alternative to CABG, but an adjunctive to CABG in treating diffuse calcified CAD.

Conflict of Interest - None.

References:

