A comparative study of atorvastatin and rosuvastatin on lipid lowering efficacy in hyperlipidemic patients

Samia Haque Tonu, Zesmin Fauzia Dewan, Nargis Akhter and Sajal Krishna Banerjee

Abstract
The aim of the present study was to compare the lipid lowering effect of atorvastatin and rosuvastatin in patients (n=52) with hyperlipidemia. Patients were assigned to atorvastatin 10 mg or rosuvastatin 5 mg daily for 8 weeks. The blood was collected at baseline and after intervention to measure the serum lipid profile. The level of serum total cholesterol in both atorvastatin and rosuvastatin groups was significantly reduced after intervention (p<0.0001 and p<0.0001 respectively) but no statistically significant difference was observed between the serum LDL level. Intergroup difference was not significant (p=0.064 in atorvastatin group and p=0.0066 in rosuvastatin group). No significant difference was observed between the two groups (p=0.312). The serum LDL-C level was reduced significantly in both atorvastatin group (p<0.0001) and rosuvastatin group (p<0.0001). Again no statistically significant difference (p=0.749) was observed between the two groups. No significant change was observed in the serum HDL level. Intergroup difference was not significant (p=0.721). The present study indicates that both atorvastatin and rosuvastatin improve the lipid profile but no significant change was observed between the two groups.

Introduction
Hyperlipidemia is an abnormal elevation of serum lipid levels in the blood which culminate in the development of atherosclerosis. Atherosclerosis is a chronic disease of arterial wall and may give rise to myocardial infarction, ischemic stroke and peripheral vascular disease as its aftermath. Globally, one-third of ischemic heart disease is attributable to high cholesterol level, which is estimated to cause 2.6 million death and 29.7 million disabilities. Hydroxymethyl glutaryl coenzyme-A (HMG Co-A) reductase inhibitor drugs (statins) are quite effective in treating dyslipidemia and therefore, are widely used for prevention and treatment of cardiovascular diseases. By reducing the synthesis of mevalonate, the immediate product of HMG-CoA, statins inhibit the synthesis of cholesterol. Several drugs are included within the statin group, among them atorvastatin and now-a-days rosuvastatin is widely used.

The present study was planned to compare the lipid lowering efficacy of the newer emerging and promising statin rosuvastatin with the existing commonly used statin atorvastatin in patients with dyslipidemia so as to guide the present treatment strategies.

Materials and Methods
An 8-week, randomized, open trial was conducted by recruiting the patients from the Outpatient Department of Cardiology. Eligible patients were randomized to receive once daily dose of 10 mg atorvastatin or 5 mg rosuvastatin for 8 weeks.

The study population comprised 52 hyperlipidemic patients, both male and female, aged 20-75 years. Eligibility criteria for randomized treatment included the fasting LDL-C level >160 mg/dL and fasting triglyceride level >400 mg/dL. Patients were treated by other lipid lowering drugs, history of smoking, alcohol intake and hyper-sensitivity on any member of the statin group of drugs, taking anti-inflammatory medications, anti-oxidant vitamins (vitamin A, C, E), anticoagulant or antiplatelet drugs, impaired liver and renal function, having serious infections or terminal illness, pregnant women and nursing mother were not enrolled. Baseline measurements

Keywords: Atorvastatin; Hyperlipidemia; Rosuvastatin
included the levels of serum total cholesterol, triglyceride, low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) with follow-up measurements after 8 weeks. With all aseptic precaution, 5 mL of blood was collected by venipuncture from the antecubital vein and kept it in 1 x 5 mL K₂EDTA (anticoagulant) containing test tube. The plasma was separated by centrifugation (3,500 rpm for 10 min) and stored at labeled Eppendorf tube by micropipette, then stored at -20°C in a refrigerator until analysis. Drugs were advised to take at night before meal. Regularity of drug intake was ensured over telephone and from the patient’s compliance sheet. Patients were asked to report any adverse effect of the medication given during the period of study. Patients was strictly advised to take fat restricted diet.

Statistical analysis

Data were processed and recorded in the Microsoft Excel Worksheet. The quantitative variables were expressed as mean ± SD. Differences in mean values between groups were assessed by using the two tailed paired and unpaired student’s t-test. The quantitative variables were expressed as mean ± SD. Differences in mean values between groups were assessed by using the two tailed paired and unpaired student’s t-test. The p value <0.05 was considered statistically significant.

Results

Table I shows the baseline demographic characteristic of all hyperlipidemic patients. There were in total 21 males and 31 females. Considering demographic characteristics, there was no significant difference between the atorvastatin and rosuvastatin-treated groups.

Before administration of atorvastatin and rosuvastatin, the serum cholesterol level (mean ± SD) in the respective group was 257.5 ± 21.8 mg/dL and 262.5 ± 38.7 mg/dL. After 8 weeks of drug administration, the same parameter was found to be 161.6 ± 39.6 mg/dL in atorvastatin group and 154.6 ± 35.5 mg/dL in rosuvastatin group (Table II). This change was statistically significant (p<0.00001 and p<0.00001 respectively) but after intervention no statistically significant difference was found in between the two groups (p=0.503, Table II). The mean decrease (%) in serum cholesterol in the atorvastatin-treated group was 37.2% and in rosuvastatin-treated group was 41.1% (Table II).

At baseline, the serum triglyceride level (mean ± SD) in atorvastatin and rosuvastatin-treated groups was 131.8 ± 16.4 and 135.2 ± 20.8 mg/dL. After 8 weeks of drug administration, the serum triglyceride level was found to be 81.5 ± 9.9 and 85.8 ± 11.7 mg/dL in atorvastatin and rosuvastatin group respectively (Table II). This change was statistically significant (p=0.046 and 0.006 respectively). No statistically significant difference was found after intervention in between the groups (p=0.312; Table II). The mean decrease (%) in serum triglyceride in the atorvastatin treated group was 17.1% and in rosuvastatin treated group was 26.8% (Table II).

At baseline, the serum HDL-C levels in the respective groups was 69.7 ± 9.5 and 66.8 ± 8.7 mg/dL. After 8 weeks of drug administration, the same parameter was found to be 39.4 ± 9.6 and 41.1 ± 7.8 mg/dL in atorvastatin group and 39.6 mg/dL in atorvastatin group respectively (Table II). This change was statistically significant (p=0.00001 and 0.00001 respectively) but again no significant difference was found between the groups after intervention (p= 0.749; Table II). The mean decrease (%) in serum HDL-C in the atorvastatin treated group was 50.0% and in rosuvastatin treated group was 52.7% (Table II).

At baseline, the serum LDL-C level (mean ± SD) in atorvastatin and rosuvastatin-treated groups was 178.2 ± 20.0 and 181.6 ± 32.1 mg/dL. After 8 weeks of drug administration, the same parameter was found to be 178.2 ± 20.0 and 181.6 ± 32.1 mg/dL in atorvastatin and rosuvastatin group respectively (Table II). This change was statistically significant (p=0.721; Table II). The mean decrease (%) in serum LDL-C in the atorvastatin treated group was 0.696 respectively). Again no significant difference was found in between the groups after intervention (p=0.990 and 0.005 respectively). No statistically significant difference was found after intervention in between the groups (p=0.749; Table II). The mean decrease (%) in serum LDL-C in the atorvastatin treated group was 17.1% and in rosuvastatin treated group was 26.8% (Table II).

Both atorvastatin and rosuvastatin were well tolerated by patients of the present study. Two
patients in the atorvastatin group complained of abdominal discomfort and headache and one patient in the rosuvastatin group complained of constipation. No serious adverse effect was seen in both the groups that needed dose adjustment or withdrawal of the drug.

Discussion

Data from the VOYAGER meta-analysis suggested that each rosuvastatin dose is equivalent to dose 3-3.5 time higher for atorvastatin regarding reduction of LDL-C. This would indicates that 5 mg rosuvastatin equivalent to 15-20 mg of atorvastatin.

The present study has observed the beneficial effects of atorvastatin and rosuvastatin on serum lipid profile. Both of them significantly reduced the serum total cholesterol, triglyceride and LDL-C levels significantly after drug treatment, which was according to previous research findings. A 12-week study shows with both rosuvastatin (5 mg) and rosuvastatin (10 mg) significantly reduced the total cholesterol and LDL-C compared with atorvastatin (10 mg)-treated patients. Another study of 8-week treatment with rosuvastatin (10 mg) significantly decreased the triglyceride and LDL-C to a better extent as compared to that of atorvastatin (10 mg). This would suggests that 5 mg dose of rosuvastatin may be inadequate for the significant improvement of lipid profile compared to 10 mg atorvastatin. In present study, no significant elevations were noticed regarding HDL-C levels. Inspite, small reduction of HDL-C level was observed in both the groups. This bears resemblance with one previous study using atorvastatin and rosuvastatin, which shows mild reduction of serum HDL-C level after 4 weeks of treatment. A similar study has demonstrated the decreased HDL-C level in the initial 6 weeks followed by increased level of HDL-C after 16 weeks of intervention. Although no clear explanation is available at the moment regarding this decrease in HDL-C level of the present study, it could be expected that perhaps a longer time period than 8 weeks would have been required to effectively demonstrate the effects of the statins upon serum HDL-C level.

Conclusion

Both atorvastatin and rosuvastatin have effectively improved the lipid profile in hyperlipidemic patients. No significant change is observed between the two groups, although considering percentage changes of effects produce by the rosuvastatin appears better.

Ethical Issue

This protocol was approved by the Institution Review Board of BSMMU (No. BSMMU/2016/8307 dated 13-08-2016). This study was also registered in ClinicalTrial.gov and study ID number was NCT02979704. The informed written consent was obtained from all the participants before starting the study.

Table II

<table>
<thead>
<tr>
<th>Variables (mg/dL)</th>
<th>Atorvastatin group (n = 27)</th>
<th>Rosuvastatin group (n = 25)</th>
<th>p<sub>p</sub> value</th>
<th>p<sub>b</sub> value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td>After</td>
<td>% Change</td>
<td>Before</td>
<td>After</td>
</tr>
<tr>
<td>Total cholesterol</td>
<td>257.5 ± 21.8</td>
<td>161.6 ± 39.6</td>
<td><0.00001</td>
<td>262.5 ± 38.7</td>
</tr>
<tr>
<td>Triglyceride</td>
<td>199.7 ± 80.7<sup>a</sup></td>
<td>165.6 ± 75.5</td>
<td>0.046</td>
<td>198.9 ± 56.0</td>
</tr>
<tr>
<td>LDL-C</td>
<td>178.2 ± 20.0</td>
<td>89.1 ± 35.1</td>
<td><0.00001</td>
<td>181.6 ± 32.1</td>
</tr>
<tr>
<td>HDL-C</td>
<td>39.4 ± 9.6</td>
<td>39.4 ± 11.5</td>
<td>0.990</td>
<td>41.1 ± 7.8</td>
</tr>
</tbody>
</table>

n = Number of patients in each group, values are expressed as mean ± SD, before = at baseline, after = after intervention, data was analyzed by using, p value <0.05 = Statistically significant, p = in each group as compared to baseline (paired t-test), p_b = inter group comparison at baseline (unpaired t-test), p_b = inter group comparison after intervention (unpaired t-test)
References

