

Comparative Antimicrobial Profiling of *Synedrella nodiflora* L. and *Spilanthes calva* DC. through Integrated *In Vitro*, *In Silico*, and Phytochemical Screening Approaches

**Md Anisul Islam¹, Sakib Chowdhury², Khurshida Jahan Suma³,
Mahathir Mohammad⁴, Md. Aslam Hossain⁵, Md. Jahirul Islam Mamun³,
Nusrat Jahan Moon⁶ and Safaet Alam⁷**

¹Department of Pharmacy, BGC Trust University, Bangladesh, Chittagong-4000, Bangladesh

²Quality Control Department, MedRx Life Science Ltd., Chittagong-4000, Bangladesh

³Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong 4331, Bangladesh

⁴Department of Chemistry, Chittagong University of Engineering & Technology, Chittagong 4349, Bangladesh

⁵Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka 1000, Bangladesh

⁶Department of Pharmacy, Daffodil International University, Birulia 1216, Dhaka, Bangladesh

⁷Chemical Research Division, BCSIR Dhaka Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh

(Received: September 12, 2025; Accepted: December 29, 2025; Published (web): January 28, 2026)

Abstract

The Asteraceae family includes numerous medicinal plants known for their broad-spectrum therapeutic properties, particularly antimicrobial activity. This study evaluates the phytochemical profiles and antimicrobial activity of methanol extracts from leaves of *Synedrella nodiflora* L. (MESN) and *Spilanthes calva* DC. (MESC), two Bangladeshi Asteraceae species, using *in vitro* disc diffusion assays and *in silico* docking, PASS prediction, and ADMET analysis. Phytochemical screening revealed glycosides, gums, flavonoids, and tannins in both (MESN also contained steroids); no alkaloids or reducing sugars were detected. Antimicrobial activity was evaluated via the disc diffusion method using 50 µg/disc extract concentrations. MESN demonstrated moderate antibacterial activity against *Staphylococcus aureus* (14.0 mm) and notable activity against *Shigella dysenteriae* (21.5 mm) and *Shigella sonnei* (23.5 mm). MESC exhibited broader and stronger antibacterial effects, with inhibition zones ranging from 13 mm to 30 mm across tested strains. In antifungal assays against seven pathogenic species, MESN showed significant activity against *Blastomyces dermatitidis* (22.0 mm) and *Microsporum* spp. (23.0 mm), while MESC displayed considerable inhibition against most fungi, except *Trichophyton* spp., with zones ranging from 7.5 mm to 24.0 mm. To complement *in vitro* findings, molecular docking, PASS prediction, and ADMET SAR analyses were conducted on commonly identified phytochemicals from these two plants to evaluate their binding affinities, predicted biological activities, and pharmacokinetic properties. These *in silico* analyses confirmed drug-likeness and binding affinities, supporting therapeutic potential against resistant pathogens. In conclusion, the study highlights the therapeutic promise of *S. nodiflora* and *S. calva* as sources of natural antibacterial and antifungal agents. The integration of phytochemical analysis, microbiological assays, and computational modeling underscores their potential for future drug development.

Key words: Antibacterial, antifungal, disc diffusion, *Synedrella nodiflora*, *Spilanthes calva*, molecular docking.

Introduction

For centuries, traditional remedies derived from medicinal plants have offered an accessible and effective way to treat various ailments, often with

fewer side effects (Mallik and Akhter, 2012). These plants, particularly from families like Asteraceae, are rich in secondary metabolites natural compounds with potent antimicrobial and therapeutic properties

Corresponding author: Safaet Alam; safaeet.du@gmail.com; Mobile: 01533078521

DOI: <https://doi.org/10.3329/bpj.v29i1.87385>

(Bessada *et al.*, 2015). In fact, a significant portion of modern pharmaceuticals originate from plant sources, and according to the World Health Organization (WHO), over 80% of the global population still relies on traditional medicine for their healthcare needs (Laelago *et al.*, 2016). Today, scientific advancements, including computational (*in silico*) methods, are accelerating the discovery of these vital phytochemicals, reinforcing their value in preventing and treating diseases (Alam *et al.*, 2025a).

Diseases can arise from both external threats, like infections from microorganisms, and internal issues, such as autoimmune disorders (Alam *et al.*, 2020). Many common illnesses are caused by microbes, the earliest form of life on Earth. However, a growing challenge in medicine is the rise of antibiotic resistance, where many bacteria no longer respond to conventional treatments. This critical situation drives the search for new, safe, and effective antimicrobial agents. Nature, particularly the vast chemistry of plants, offers a promising frontier for discovering these urgently needed compounds (Alam *et al.*, 2025b; Richi *et al.*, 2025a).

Athlete's foot, dandruff, and thrush are among the most prevalent infections in humans that are linked to fungi. Although they are superficial and generally harmless, fungi can potentially result in much more serious illnesses such as systemic candidosis and invasive aspergillosis, which have extremely high related fatality rates (Sullivan *et al.*, 2005). Many strains of both gram-positive and gram-negative bacteria have developed high levels of resistance, which increases the urgency of identifying novel, safe, and effective antimicrobial agents from plant sources (Richi *et al.*, 2025b; Muschietti *et al.*, 2005).

Computer-simulated screening allows for a detailed understanding of the pharmacological mechanisms of phytochemicals (Parasuraman, 2011). Molecular docking plays a crucial role in identifying binding sites on three-dimensional protein structures and analyzing physicochemical interactions, making it an essential tool in computer-aided drug design and development. By simulating how natural ligands

interact with target proteins, molecular docking aids in the rational design and preparation of new therapeutic compounds, enhancing the efficiency and accuracy of drug discovery processes (Hasib *et al.*, 2025; Emon *et al.*, 2021).

Plants belonging to the Asteraceae family have been found to contain around 1100 distinct acetylenes and biogenetically related compounds. The Asteraceae family is considered to be among the most evolved of all the Dicotyledonous based on its chemical composition and floral structure. Based on phytochemical screening, sesquiterpene lactones are the main secondary metabolites that give this plant family its antibacterial qualities (Nino *et al.*, 2006). Compounds having two or more triple bonds in their structures are known as natural polyacetylenes. Asteraceae family polyacetylene compounds exhibit a variety of activities, including cytotoxic, antibacterial, anti-inflammatory, neurotoxic, and phototoxic effects (Mohammad *et al.*, 2025a; Konovalov, 2014).

Within the Asteraceae family, sesquiterpene lactones and polyacetylene compounds are important secondary metabolites that contribute to antibacterial and antifungal effects (Alam *et al.*, 2024). These constituents make Asteraceae species attractive candidates for discovering new antimicrobial agents (Alam *et al.*, 2024). The plant *S. nodiflora* L. belongs to the Asteraceae family. For hundreds of years, people have utilized this herb for therapeutic purposes. In Ghana, the leaves are used as a laxative to induce hiccups and to cure epilepsy and discomfort. A decoction of the entire plant is also taken. *S. nodiflora* has been the focus of numerous biological and chemical studies due to its applications in traditional medicine (Zheleva-Dimitrova *et al.*, 2020). The plant has been widely used in Nigeria for addressing cardiac issues, promoting wound healing, and halting bleeding (Idu and Onyibe, 2007) along with In Malaysia and Indonesia, the plant has been utilized for treating headaches, earaches, and stomachaches, as well as serving as a liniment for rheumatism (Dalizel, 1973). It has been observed that the whole plant extract possesses strong central

analgesic and anti-inflammatory properties (Forestieri *et al.*, 1996).

S. calva DC, a member of the Asteraceae family, is also referred to as paracress in English and marhatitiga in Bengali. It is a 60-centimeter-tall annual herb. Stimulant, sialogogue, and local anesthetic properties are present in the roots, flower heads, and entire aerial section. Flower tincture helps with throat infections, tongue paralysis, and toothaches (Ali *et al.*, 2011). This plant is widely recognized for its ability to boost immunity (Rai *et al.*, 2001), anti-aging abilities and treats several gum and dental conditions, including pyorrhea (Rai *et al.*, 2004), also used to treat liver diseases, rheumatism, scabies, scurvy, and gum disease (Jayaraj *et al.*, 2014).

Although *S. calva* DC and *S. nodiflora* (L.) are commonly utilized for the biological activity listed above, no comprehensive data on the plants' antibacterial and antifungal properties has been published yet. Our current study aims to assess the plants' antibacterial and antifungal properties and provide a scientific report on their traditional use in treating diseases, which could eventually lead to the creation of novel antibiotics.

Materials and Methods

Apparatus and reagents

Laminar air flow unit (Model: LCB-1202H, Korea), Hot plate (JHP-815/JHP-825), Micropipette (Diapette: 10-100), Water bath (China), Petri dish (70, 90 & 120mm in diameter), Screw-cap test tubes, Nutrient agar medium, Electric balance (AUY120; Japan), Incubator (XMT-78, China), Autoclave (YX-280A, China), Filter paper discs (5mm in diameter), Inoculating loop, Standard antibiotic discs (Amoxicillin), Griseofulvin.

Collection of samples

In March 2023, during the day, the chosen plant's part (Leaves) of *S. nodiflora* and *S. calva*, were collected from the University of Chittagong campus and identified by a certified taxonomist of the Department of Botany of the University of

Chittagong. The herbarium kept voucher specimens of the samples that were gathered for future use.

Preparation of crude extracts

The plant pieces that were gathered were sorted from any unwanted materials. Aerial parts of the plant were then chopped into tiny bits and stored for 15 days in a dry, open area that was shaded. Then, using a grinder, the plant components were reduced to a coarse powder. The two samples' powders were kept dry, dark, and refrigerated until analysis started. Accurately weighed each sample's 300 grams of powdered material in a sterile, amber glass container with a flat bottom and soaked in 2500 milliliters of 99.9% methanol (MW: 46.07 g/mol, MERCK). The containers and their contents were sealed and stored for seven days while being shaken constantly. The whole combination was filtered through a piece of clean white cotton cloth. After using a rotary evaporator to concentrate the methanol extracts of the two plants under investigation, the samples were then allowed to dry at room temperature. It produced a dark and concentrated mass which was known as an methonolic crude extract (Mallik and Akhter, 2012; Alam *et al.*, 2024).

Phytochemical tests

The extract was qualitatively analyzed for the presence of several chemical groups, such as alkaloids, glycosides, steroids, carbohydrates, tannins, flavonoids, and saponins (Hossen *et al.*, 2022; Shandhi *et al.*, 2024; Mallik and Akhter, 2012).

Screening for antibacterial activity

Disc diffusion method

The methanol extracts of *S. nodiflora* and *S. calva* were evaluated for antibacterial activity using the disc diffusion method. Amoxicillin (50 ug/disc) was used as reference standard. (Ali *et al.*, 2011) (Kondo *et al.*, 2010). Both Gm (+) and Gm (-) species were chosen to examine the antibacterial activity. The isolates *Salmonella typhi*, *Shigella dysenteriae*, *Vibrio cholerae*, *Shigella sonnei*, *Salmonella paratyphi*, *Escherichia coli*, *Staphylococcus aureus*,

Bacillus cereus, *Bacillus subtilis*, and *Salmonella megaterium* were selected for assessment based on their Gm (+) and Gm (-). The Faculty of Pharmacy at Southern University in Bangladesh provided all of the species.

Screening for antifungal activity

Fungal culture

The antifungal activity was examined by using seven fungus species. The species include *Pityrosporum ovale*, *Trichophyton spp.*, *Microsporum spp.*, *Aspergillus niger*, *Blastomyces dermatitidis*, *Candida albicans*, and *Cryptococcus neoformans*. The Southern University of Bangladesh's Faculty of Pharmacy provided all of the species. Every test strain was kept at 4°C in culture media (Mallik and Akhter, 2012).

Preparation of test samples

The test samples were prepared by dissolving the extracts in methanol, with a concentration of 50 µg/disc. Using a micropipette, 10 µl of the methanol extract was applied to each disc. To ensure complete evaporation of the solvent, the discs were incubated under the conditions mentioned earlier (Ali et al., 2011) (Mallik and Akhter, 2012).

Placement of disks, diffusion, and incubation

The discs (both the samples and the standards) were carefully placed at the center of the agar gels using sterile forceps to ensure complete contact with the surface of the previously inoculated medium. The plates were then inverted and stored in a refrigerator at 4°C for approximately 24 hours. During this period, the test materials diffused into a significant area of the medium. Finally, the plates were incubated at 37°C for 24 hours to assess the antibacterial and antifungal activity (Mallik and Akhter, 2012).

In silico study

Validation of the ligands

At first, the common compounds identified through GC-MS protocol from *S. nodiflora* and *S. calva* plant extracts were taken from previous

literature (Adesanwo et al., 2019)(Begum et al., 2008). The compounds include Octadecene (PID: 8217), Methyl hexadecanoate (PID: 8181), 1-docosene (PID: 74138), Methyl-9,12,15-octadecatrienoate (PID: 5367462) of MESN, and Caryophyllene Oxide (PID: 1742210), Caryophyllene (PID: 5281515), Limonene (PID: 22311), Myrcene (PID: 31253) of MESC. We retrieved the structures of the compounds from the PubChem database. These compounds are shown in Figure 3. The ligands were considered for in depth computer-aided molecular docking study. The compounds were then evaluated for drug potential using Lipinski's rule of five on the SwissADME web server (Hossain et al., 2025).

Protein preparation

The RCSB protein data bank provided the crystal structures for the target proteins, which included bacterial enoyl-ACP reductase (FabI) inhibitors (PDB: 1LX6), benzamide FtsZ Inhibitor (PDB ID: 8HTB), 14-alpha-demethylase (PDB: 5FRB), and nucleoside diphosphokinase (PDB: 6K3H). Kurumbail et al. (Kurumbail et al., 1996) supplied information that was utilized to determine the enzyme's active location. Swiss-PdbViewer and BIOVIA Discovery Studio 4.5 were used to remove water, cofactors, and heteroatoms throughout the preparation procedure. Following the addition of hydrogen atoms, protein reduction was carried out using PyRx and the MMFF94 force field. The target protein was stored in PDB format for docking studies (Mohammad et al., 2025a).

Molecular docking and post-docking analysis

AutoDock 4.2 and PyRx 0.3 (<http://pyrx.scripps.edu>) were used for the docking operations (accessed July 31, 2021). (Kondo et al., 2010). The docking findings were evaluated using PyMOL. These tools can assist in identifying if a particular kind of contact, such as a hydrogen bond, π - π interaction, or cation- π interaction, constitutes ligand binding. PyMOL was used to collect additional information on ligand-receptor interactions (Mohammad et al., 2025b) (Mohammad et al., 2025c).

PASS prediction

To ascertain the potential biological effects of the selected compounds, the PASS prediction was analyzed using the PASS online tools (<http://www.pharmaexpert.ru/passonline/predict.php>). Between 0.000 and 1.000, the values of Pi and Pa varied. A chemical is considered to have biological potential when its Pa value is higher than its Pi value. On the other hand, $Pa > 0.7$ denotes high medicinal activities, $0.5 < Pa < 0.7$ denotes intermediate

therapeutic potentials, and $Pa < 0.5$ denotes poor pharmaceutical activity (Mohammad et al., 2025d).

Results and Discussion

Phytochemical screening

This study aimed to confirm the presence or absence of preliminary phytochemicals. The results from various group tests performed on the selected plants, *S. nodiflora* L and *S. calva* DC, are presented in Table 3.

Table 3. Phytochemical analysis of the methanolic extract of *S. nodiflora* L and *S. calva* DC.

Phytochemicals	<i>Synedrella nodiflora</i> L	<i>Spilanthes calva</i> DC
Alkaloids	-	-
Glycosides	+	+
Steroids	+	-
Gums	+	+
Flavonoids	+	+
Reducing sugars	-	-
Tannins	+	+

+ = Presence, - = Absence.

Screening for antibacterial activity

Disc diffusion method

The antibacterial effectiveness of the test agents was assessed by their ability to inhibit bacterial growth, forming a clear zone of inhibition around the discs. After incubation, the diameter of these inhibition zones was measured in millimeters using a transparent scale, providing insights into the antimicrobial efficacy of the agents. The results are summarized in Table 4. Gram-negative bacteria were susceptible to the antibacterial activity of both MESN and MESC. With a 23.5 mm inhibitory zone against *S. sonnei*, MESN specifically shown moderate activity. With inhibition zones of 28 mm and 30 mm against *V. cholerae* and *S. paratyphi*, respectively, the extract MESC demonstrated more antibacterial activity than the common antibiotic amoxicillin. The results indicate that the efficacy of the common antibiotic amoxicillin and the plant extracts differed according on the type of bacterium that was tested.

In Silico study

ADME/T analysis

The phytochemical structures of the MESN and MESC compounds were illustrated in Figure 3 using ChemDraw Ultra 12.0. According to the study, all of the chemicals are orally bioavailable and comply with Lipinski's guidelines. The eight chemicals of MESN and MESC's toxicological characteristics are also predicted using the online *admetSAR* server (http://lmmd.ecust.edu.cn/admet_sar2/) (Table 6).

Molecular Docking Analysis

Each activity's overall docking score is displayed in table 7. For each activity, the top compound of MESN and MESC's docking score and interaction analysis are displayed in table 8 and figures. 4-7, along with the reference medication for appropriate protein targets.

Table 4. *In vitro* antibacterial activity of *S. nodiflora* and *S. calva*.

Bacterial strains		Zone of inhibition in mm		
		MESN	MESC	Amoxicillin (standard)
Gram-positive species	<i>B. subtilis</i>	10	16	32
	<i>B. megaterium</i>	8	14	31
	<i>B. cereus</i>	9	15	30
	<i>S. aureus</i>	14	17	28
Gram negative species	<i>P. aeruginosa</i>	14	24	30
	<i>E. coli</i>	15	25	32
	<i>S. dysenteriae</i>	21.5	28	31
	<i>S. sonnei</i>	23.5	13	25
	<i>S. typhi</i>	R	14	31
	<i>V. cholerae</i>	9	28	29
	<i>S. paratyphi</i>	R	30	32

R= Resistant / No growth.

Screening for antifungal activity**Table 5.** *In vitro* antifungal activity of *S. nodiflora* and *S. calva*.

Fungal strains		Zone of inhibition in mm		
		MESN	MESC	Griseofulvin (standard)
	<i>Aspergillus niger</i>	R	7.5	27
	<i>Blastomyces dermatidis</i>	22	24	29
	<i>Candida albicans</i>	R	16	26
	<i>Pityrosporum ovale</i>	15	20	22.5
	<i>Trichophyton spp.</i>	R	R	29
	<i>Microsporum spp.</i>	23	24	28
	<i>Cryptococcus neoformans</i>	15	21	26

R = Resistant / No growth.

Table 6. ADME/T Analysis of Reported phytochemicals of MESN and MESC. MW=Molecular Weight, HBA= Hydrogen Bond Acceptor, HBD= Hydrogen Bond Donor, nRB= Number of Rotational Bonds, TPSA= Topological Polar Surface Area, AOT= Acute Oral Toxicity, HIA= Human Intestinal Absorption, B.S.= Bioavailability Score, BBB= Blood Brain Barrier, NAT = Not Ames Toxic, and NC= Not Carcinogenic.

Plant extract	Compound name	Lipinski rules				Lipinski's Violation ≤ 1	Veber's rules			Toxicity parameters				
		MW (g/mol) <500	HBA <5	HBD ≤ 5	Log p ≤ 5		n RB ≤ 10	TPSA ≤ 140	Ames Toxicity	Carcino-gens	AOT	HIA	B.S.	BBB
<i>S.nodiflora</i>	Octadecene	252.486	0	0	7.0438	1	15	0.00 Å ²	NAT	C	III	90.834	0.55	0.987
	Methyl hexadecanoate	270.45	2	0	5.6407	1	14	26.30 Å ²	NAT	C	III	92.335	0.55	0.749
	1-docosene	308.5	0	0	8.6042	1	19	0.00 Å ²	NAT	NC	III	89.46	0.55	1.06
	Methyl-9,12,15-octadecatrienoate	292.4	2	0	5.7489	1	13	26.3 Å ²	NAT	C	III	95.633	0.55	0.801
<i>S.calva</i>	Caryophyllene Oxide	220.356	1	0	3.9634	0	0	12.53 Å ²	NAT	NC	III	95.421	0.55	0.654
	Caryophyllene	204.357	0	0	4.7252	1	0	0.00 Å ²	NAT	NC	III	97.302	0.55	0.52
	Limonene	136.238	0	0	3.3089	0	1	0.00 Å ²	NAT	NC	III	98.042	0.55	0.557
	Myrcene	136.238	0	0	3.475	0	4	0.00 Å ²	NAT	C	III	97.594	0.55	0.68

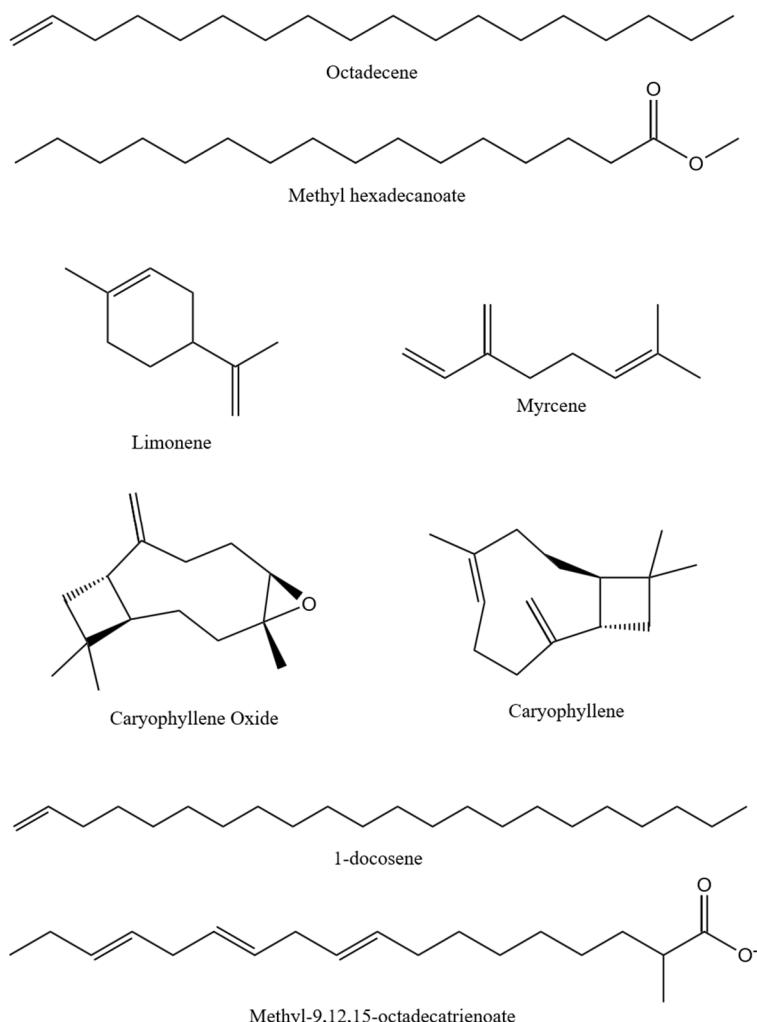


Figure 3. Phytochemical structures of MESN and MESC compounds.

Table 7. Binding scores of the reported compounds from the MESN and MESC for antibacterial and antifungal activity, respectively.

Sample	Compounds	PubChem CID	Docking Score (Kcal/mol)			
			Antibacterial		Antifungal	
			1lx6	8htb	5frb	6k3h
MESN	Octadecene	8217	-5.2	-5.7	-5.5	-4.3
	Methyl hexadecanoate	8181	-4.8	-5.7	-5.5	-4.7
	1-docosene	74138	-5	-6.4	-6.3	-4.7
	Methyl-9,12,15-octadecatrienoate	5367462	-5.4	-6.5	-6.4	-5.4
MESC	Caryophyllene oxide	1742210	-6.3	-6.5	-8.5	-5.4
	Caryophyllene	5281515	-6.3	-6.4	-8.6	-5.4
	Limonene	22311	-5.7	-6	-6.3	-4.6
	Myrcene	31253	-5.1	-6	-5.5	-4.4
Standards	Amoxicillin	33613	-8.2	-7.7	---	---
	Griseofulvin	441140	---	---	-7.8	-5.6

Table 8. MESN and MESC's reported compounds *in silico* binding affinity and non-bonding interaction for antibacterial and antifungal properties, respectively.

Section Number	Receptor	Compound	Binding affinity (kcal/mol)	Bond type	Amino acids
1	1lx6	Methyl-9,12,15-octadecatrienoate (MESN)	-4.8	Carbon hydrogen bond	ILE92, LEU144
				Pi-Sigma	TYR146
				Alkyl	ALA189 (2), ILE192, ILE20, LEU144 (2)
				Pi-Alkyl	TYR146 (2), TYR156 (2)
				Pi-Sigma	TYR146
		Caryophyllene (MESC)	-6.3	Alkyl	ALA189, ILE20, ILE192
				Pi-Alkyl	TYR146 (2), TYR156
				Conventional hydrogen bond	ALA21, LYS163 (2), GLY13,
		Amoxicillin (Standard)	-8.2	Hydrogen bond	SER19, SER91
				Pi-Pi Stacked	TYR146
				Alkyl	ALA189
				Alkyl	ILE20
				Alkyl	VAL203, VAL297, VAL307, LEU200, MET226, ILE311
2	8htb	Methyl-9,12,15-octadecatrienoate (MESN)	-6.5	Alkyl	VAL189 (2), PRO248 (4), LEU249 (3), LEU250 (2), ILE172
				Alkyl	ASN263, THR265, ASN299 (2), THR309, VAL203
		Caryophyllene Oxide (MESC)	-7.7	Conventional Hydrogen Bond	ASP199, LEU200
				Amide Pi-Stacked	LEU200, VAL203, VAL297
				Pi-Alkyl	ILE373 (2), LEU503 (2), LEU125, ILE376
3	5frb	Methyl-9,12,15-octadecatrienoate (MESN)	-6.4	Alkyl	TYR122 (3), PHE130, PHE229, PHE234, PHE504 (2)
				Pi-Alkyl	LEU503 (5), ILE377, ILE373
		Caryophyllene (MESC)	-8.6	Alkyl	TYR122, PHE229, PHE234, PHE504, HIS374
				Pi-Alkyl	ALA307, ILE373, LEU503
				Alkyl	PHE504, ILE373
5	6k3h	Methyl-9,12,15-octadecatrienoate (MESN)	-5.4	Conventional hydrogen bond	LYS11 (2), ARG104 (2), ASN114, GLY118
				Carbon hydrogen bond	GLY118, THR93
				Alkyl	VAL111, LEU63, LEU54 (3)
				Pi-Alkyl	TYR51, PHE59
		Caryophyllene (MESC)	-5.4	Alkyl	LEU54, VAL111 (2)
				Pi-Alkyl	TYR51, PHE59, HIS117
				Conventional hydrogen bond	LYS11, ASN114 (2)
		Griseofulvin (Standard)	-5.6	Carbon hydrogen bond	CYS116
				Alkyl	LEU54, LEU63
				Pi-Alkyl	PHE59, HIS117 (2)

Pass prediction

Eight carefully selected compounds from MESN and MESC were assessed for their antibacterial and antifungal potential using the PASS online tool. The results showed that compounds with notable

molecular activity had Pa (probability of activity) values higher than Pi (probability of inactivity), indicating a strong likelihood of biological activity (Table 9).

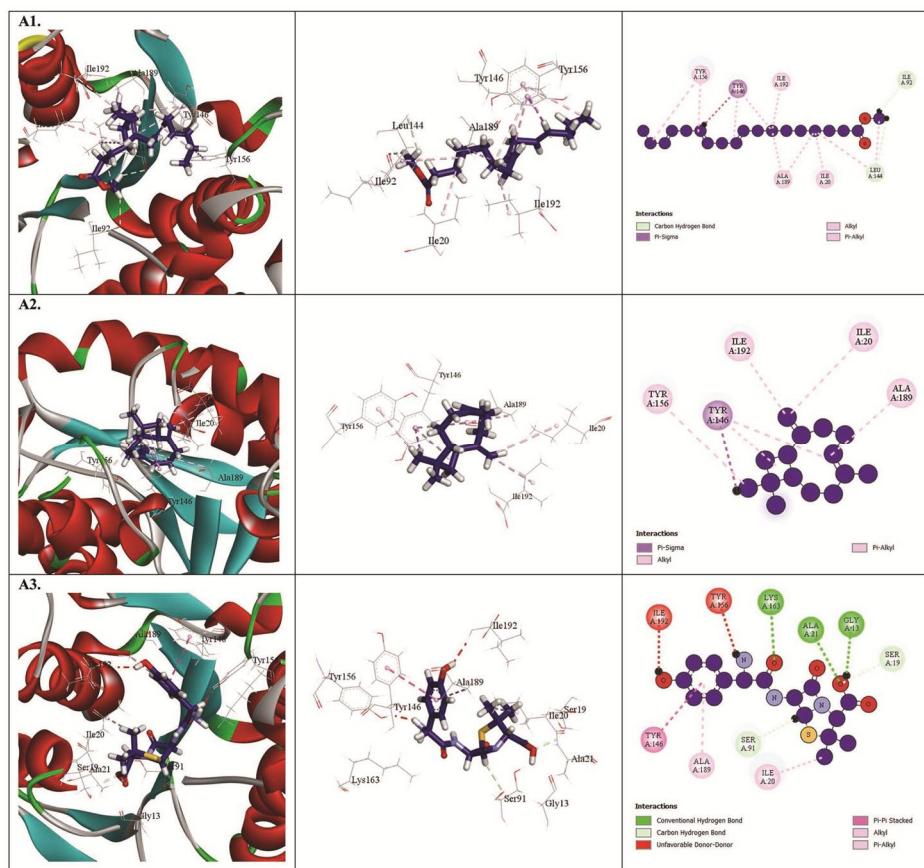


Figure 4. Molecular Docking Interactions of Compounds against bacterial enoyl-ACP reductase (FabI) inhibitors (PDB: 1lx6): A1. Methyl-9,12,15-octadecatrienoate (MESN) A2. Caryophyllene (MESC) A3. Amoxicillin (Standard).

Table 9. Pass Prediction analysis of biologically active compounds of MESN and MESC.

Sample	Compound name	Biological activity			
		Antibacterial		Antifungal	
		Pa	Pi	Pa	Pi
MESN	Octadecene	0.353	0.042	0.535	0.025
	Methyl hexadecanoate	0.263	0.076	0.424	0.045
	1-docosene	0.353	0.042	0.535	0.025
	Methyl-9,12,15-octadecatrienoate	0.315	0.055	0.517	0.028
MESC	Caryophyllene oxide	0.532	0.014	0.647	0.014
	Caryophyllene	0.437	0.023	0.582	0.020
	Limonene	0.405	0.029	0.582	0.020
	Myrcene	0.398	0.030	0.584	0.020

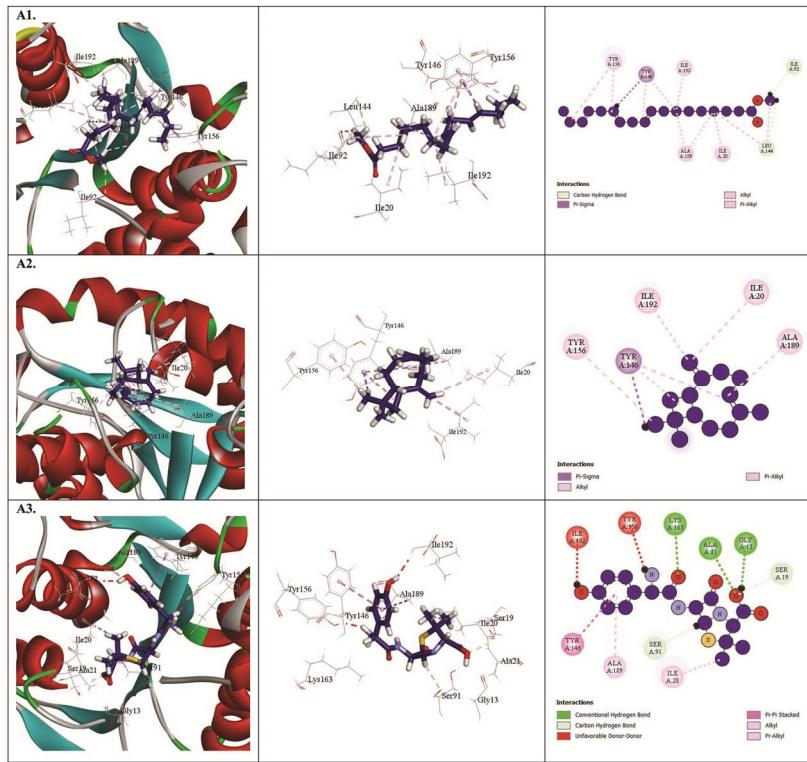


Figure 4. Molecular Docking interactions of compounds against bacterial enoyl-ACP reductase (FabI) inhibitors (PDB: 1lx6): A1. Methyl-9,12,15-octadecatrienoate (MESN) A2. Caryophyllene (MESC) A3. Amoxicillin (Standard).

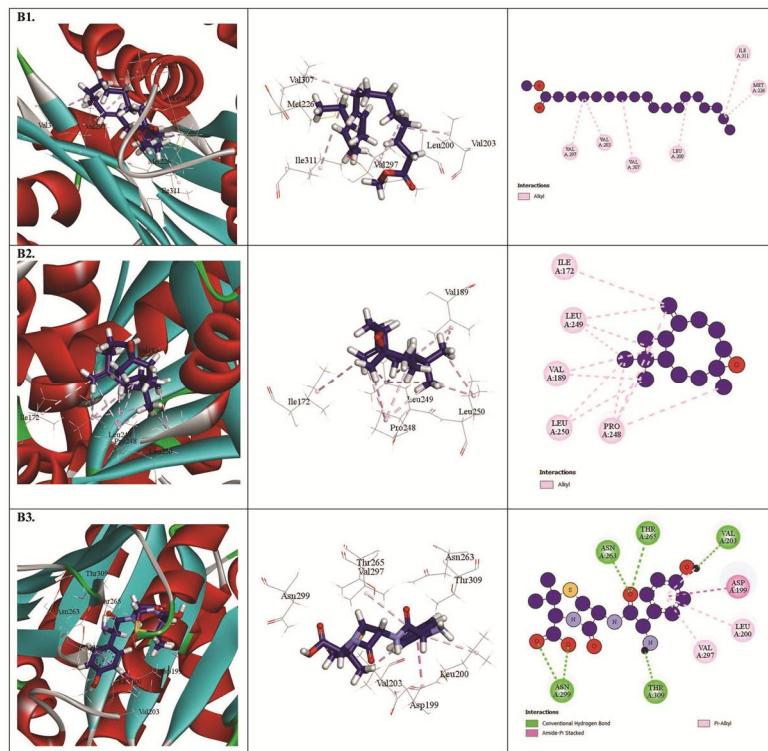


Figure 5: Molecular Docking interactions of compounds against benzamide FtsZ inhibitor (PDB: 8htb): B1. methyl-9,12,15-octadecatrienoate (MESN) B2. Caryophyllene Oxide (MESC) B3. Amoxicillin (Standard).

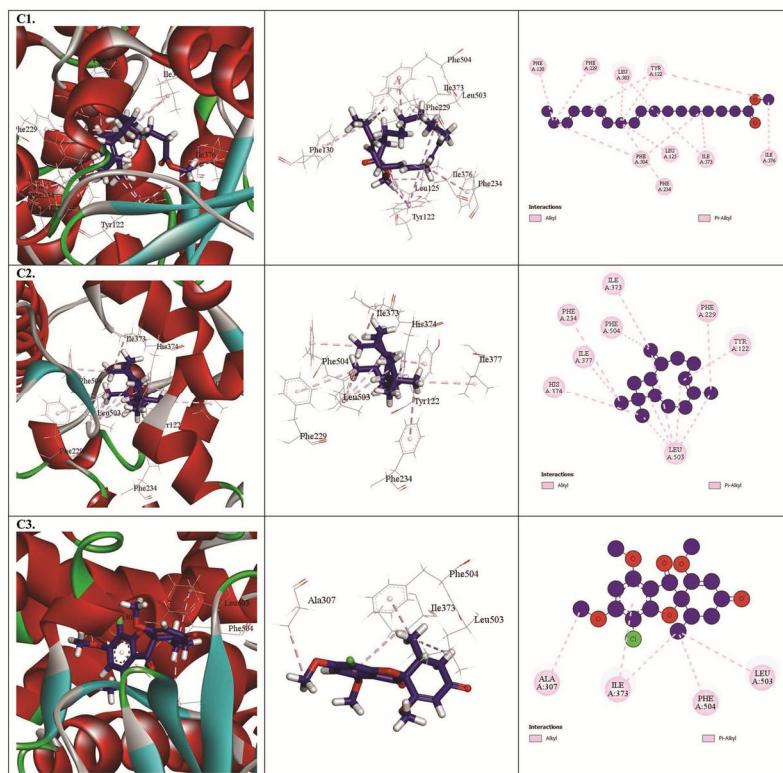


Figure 6: Molecular Docking Interactions of Compounds against 14-alpha-demethylase (PDB: 5frb): C1. Methyl-9,12,15-octadecatrienoate (MESN) C2. Caryophyllene (MESC C3. Griseofulvin (Standard).

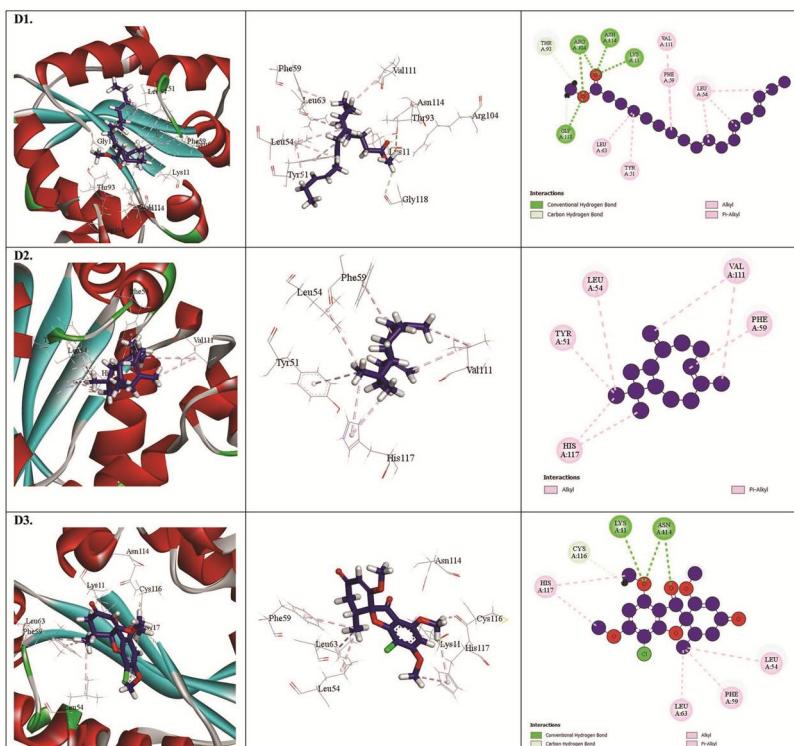


Figure 7: Molecular Docking Interactions of Compounds against Nucleoside Diphosphokinase (PDB: 6k3h): D1. Methyl-9,12,15-octadecatrienoate (MESN) D2. Caryophyllene (MESC) D3. Griseofulvin (Standard).

Due to the depletion of natural resources and related issues, certain nations have recently required the use of natural resources for a variety of reasons, despite notable advances in technology and medicine (Ertürk, 2006). It is estimated that approximately two-thirds of medications are derived from plants. This has led to the emergence of a new field of study known as phytopharmacology, which focuses on exploring plant-derived compounds that are effective in treating specific chronic diseases and has sparked growing interest in herbal medicines (Zishan *et al.*, 2023). Similar to many other countries, people in Bangladesh collect and utilize plants with known health benefits to treat various ailments. This study examined the phytochemical properties as well as the antimicrobial efficacy of methanolic extracts from *S. nodiflora* and *S. calva* against bacteria and fungi.

To determine whether phytoconstituents are present in plants and to forecast their possible therapeutic advantages, phytochemical screening is a useful technique (Pant *et al.*, 2017). Numerous of these phytoconstituents, including terpenoids, flavonoids, and alkaloids, are secondary metabolites recognized to have therapeutic uses (Batiha *et al.*, 2020). This investigation identified the presence of numerous secondary metabolites, which significantly enhanced the bioactivity of methanolic leaf extracts from *S. nodiflora* and *S. calva* using phytochemical analysis. For example, tannins, which have astringent effects that cause tissue to tighten, are used in a variety of medicinal applications, including anti-cancer, hypoglycemic, and antioxidant therapies (Rajasekaran *et al.*, 2021). Another class of chemicals, triterpenes, are known to have anti-inflammatory and anti-tumor properties (Renda *et al.*, 2022). Due to their diverse actions, alkaloids serve as a broad range of pharmacological tools in the therapeutic field. They exhibit various effects, including antihypertensive (e.g., reserpine), antipyretic (e.g., quinine), anticancer (e.g., vincristine), antiasthmatic (e.g., ephedrine), analgesic (e.g., morphine), and antihyperglycemic (e.g., piperine) properties (Ashrafi *et al.*, 2023).

Furthermore, heart-related disorders can be effectively treated with glycosides, especially cardiac glycosides (Fatema *et al.*, 2024).

Eleven bacterial strains were evaluated using the disc diffusion method, and the methanolic extracts of *S. nodiflora* and *S. calva* showed moderate antibacterial activity. Direct comparison of the two extracts indicates that MESC generally produced larger inhibition zones and affected a broader spectrum of bacteria than MESN, suggesting that *S. calva* may be more suitable as a source of broad-spectrum antibacterial leads, whereas *S. nodiflora* shows more selective activity against certain gram-negative pathogens such as *Shigella* spp.

Meanwhile, the antibacterial activity of these extracts may be attributed to the presence of bioactive compounds such as phenols, flavonoids, alkaloids, glycosides, and tannins, which are known for their antimicrobial properties. However, these findings are based on crude methanolic extracts at a single disc concentration, and minimum inhibitory or fungicidal concentrations were not determined, which limits direct comparison with standard antibiotics and clinical relevance (Hossain *et al.*, 2023).

The antifungal properties of two extracts were evaluated against various fungal species. Flavonoids have been reported to have antifungal properties (Al Aboody and Mickymaray, 2020). Both extracts have flavonoids, which may be the cause of their antifungal attributes, according to phytochemical screening. However, further studies are necessary to isolate and purify the active compounds and confirm their antifungal efficacy. The different response patterns, with MESN showing stronger effects against *Blastomyces dermatitidis* and *Microsporum* spp. and MESC inhibiting a wider range of fungi but not *Trichophyton* spp., indicate that these extracts may be useful for different types of fungal infections rather than as universal antifungal agents.

Molecular docking studies are widely used to predict ligand-target interactions and enhance the understanding of the bioactivities of natural products.

These studies also provide valuable insights into potential binding mechanisms within protein active sites. In this research, molecular docking was employed to clarify and support the observed biological activities, helping to interpret their underlying pharmacological effects (Mohammad *et al.*, 2025c). A total of 8 compounds from *S. nodiflora* (MESN) and *S. calva* (MESC) were selected for a more detailed analysis. These compounds were docked against four target proteins: bacterial enoyl-ACP reductase (FabI) inhibitors (PDB: 1LX6) and benzamide FtsZ inhibitor (PDB ID: 8HTB) for antibacterial activity, as well as 14-alpha-demethylase (PDB: 5FRB) and nucleoside diphosphokinase (PDB: 6K3H) for antifungal activity. The compounds from the extracts MESN and MESC showed notable binding toward FabI. These findings suggest that these compounds have promising antibacterial potential through their ability to inhibit essential bacterial enzymes and proteins involved in cell wall synthesis and fatty acid biosynthesis. Nonetheless, docking and PASS prediction provide only theoretical support; experimental confirmation with purified compounds and in vivo models is required before any therapeutic application can be proposed. This study investigated potential antifungal compounds by screening them against two key target proteins: 14-alpha-demethylase (PDB: 5FRB) and nucleoside diphosphokinase (PDB: 6K3H). These results suggest that these compounds have considerable antifungal activity by targeting essential enzymes involved in fungal cell function and survival. This approach enables the identification of promising bioactive molecules with potential therapeutic applications in combating bacterial and fungal infections.

Conclusion

In the present study, methanolic extracts of *S. nodiflora* (MESN) and *S. calva* (MESC) leaves were found to contain a variety of phytochemicals that likely contribute to their therapeutic potential. MESN exhibited mild antibacterial activity against Gram-positive bacteria, while showing significant activity

against Gram-negative bacteria. In contrast, MESC demonstrated notable antibacterial effects against all tested bacterial strains. Both MESN and MESC displayed significant antifungal activity against most of the fungal species evaluated. Additionally, Methyl-9,12,15-octadecatrienoate of *S. nodiflora* and Caryophyllene of *S. calva* showed significant binding affinity in the molecular docking study. Further research is necessary to identify the active compounds and assess the *in vivo* antibacterial and antifungal activities of these plant extracts.

Conflict of interest

The authors declare that they have no competing interests.

Funding

None

Data availability statement

Data will be available upon request.

References

- Adesanwo, J. K., Egbomeade, C. O., Moronkola, D. O. and Akinpelu, D. A. 2019. Chemical, toxicity and antibacterial studies on methanol extracts of *Melanthera scandens*, *Ageratum conyzoides*, *Aspilia africana* and *Synedrella nodiflora*. *J. Explor. Res. Pharmacol.* **4**, 1-7.
- Al Aboody, M. S. and Mickymaray, S. 2020. Anti-fungal efficacy and mechanisms of flavonoids. *Antibiotics*. **9**, 45.
- Alam, S., Chowdhury, M. N. R., Hossain, M. A., Richi, F. T., Emon, N. U., Mohammad, M., Ahmed, N. and Taher, M. A. 2025b. Antifungal potentials of Asian plants: ethnobotanical insights and phytochemical investigations. *Chem. Biodivers.* **22**, e202402867.
- Alam, S., Emon, N. U., Shahriar, S., Richi, F. T., Haque, M. R., Islam, M. N., Sakib, S. A. and Ganguly, A. 2020. Pharmacological and computer-aided studies provide new insights into *Millettia peguensis* Ali (Fabaceae). *Saudi Pharm. J.* **28**, 1777-1790.
- Alam, S., Richi, F. T., Akter, B., Hossain, M. H., Rony, S. R., Hridoy, A., Mohammad, M., Khanum, S., Hasib, M. S. and Jahan, F. 2025a. An integrated investigation on taro vegetable (*Colocasia gigantea* Hook. f.) to ascertain its ethnomedicinal importance: insights into prospective phytochemicals regulating analgesic, antidiabetic, and cytotoxic actions. *Food Chem. Adv.* **9**, 101099.

Alam, S., Richi, F. T., Hasnat, H., Ahmed, F., Emon, N. U., Uddin, M. J., Rana, G. M., Wang, S., Yeasmin, M. S., Ahmed, N. U. and Khan, M. S. 2024. Chemico-pharmacological evaluations of the dwarf elephant ear (*Colocasia affinis* Schott) plant metabolites and extracts: health benefits from vegetable source. *Front. Pharmacol.* **15**, 1428341.

Ali, M. S., Islam, M. S., Rahman, M. M., Islam, M. R., Islam, M. E. and Islam, M. R. 2011. Antibacterial and cytotoxic activity of methanol extract of *Spilanthes calva* (DC) leaves. *Int. J. Pharm. Sci. Res.* **2**, 1707-1711.

Ashrafi, S., Alam, S., Sultana, A., Raj, A., Emon, N. U., Richi, F. T., Sharmin, T., Moon, M., Park, M. N. and Kim, B. 2023. Papaverine: a miraculous alkaloid from opium and its multimedicinal application. *Molecules* **28**, 3149.

Batiha, G. E.-S., Beshbishi, A. M., Alkazmi, L., Adeyemi, O. S., Nadwa, E., Rashwan, E., El-Mleeh, A. and Igarashi, I. 2020. Gas chromatography-mass spectrometry analysis, phytochemical screening and antiprotozoal effects of methanolic *Viola tricolor* and acetonnic *Laurus nobilis* extracts. *BMC Complement. Med. Ther.* **20**, 87.

Begum, J., Bhuiyan, M. N. I. and Chowdhury, J. U. 2008. Essential oil from inflorescence of *Spilanthes calva* DC. *Bangladesh J. Bot.* **37**, 217-218.

Bessada, S. M. F., Barreira, J. C. M. and Oliveira, M. B. P. 2015. Asteraceae species with prominent bioactivity and potential applications: a review. *Ind. Crops Prod.* **76**, 604-615.

Dalziel, J. M. 1973. The useful plants of west tropical Africa. Crown agent for overseas government and administrations: London, 129-130.

Emon, N. U., Alam, S., Rudra, S., Riya, S. R., Paul, A., Hossen, S. M. M., Kulsum, U. and Ganguly, A. 2021. Antidepressant, anxiolytic, antipyretic and thrombolytic profiling of methanol extract of *Piper nigrum*. *Food Sci. Nutr.* **9**, 833-846.

Ertürk, Ö. 2006. Antibacterial and antifungal activity of ethanolic extracts from eleven spice plants. *Biologia* **61**, 275-278.

Fatema, K., Mia, Md. A. R., Nipun, T. S. and Hossen, S. M. M. 2024. Phytochemical profiling and pharmacological evaluation of methanolic leaf extract of *C. digyna*. *Food Sci. Nutr.* **12**, 10231-10241.

Forestieri, A. M., Monforte, M. T., Ragusa, S., Trovato, A. and Iauk, L. 1996. Antiinflammatory, analgesic and antipyretic activity in rodents of plant extracts used in African medicine. *Phytother. Res.* **10**, 100-106.

Hasib, M. S., Richi, F. T., Alam, S., Bari, M. S., Rashid, M. A. and Hossain, M. A. 2025. Isolation, structure elucidation, and bioactivity evaluation of secondary metabolites from *Vachellia farnesiana* (L.) Wight & Arn. *Chem. Biodivers.* **22**, e00553.

Hossain, M. R., Alam, R., Chung, H.-J., Eva, T. A., Kabir, M. F., Mamurat, H., Hong, S.-T., Hafiz, M. A. and Hossen, S. M. 2023. In vivo, in vitro and in silico study of *Cucurbita moschata* flower extract. *Molecules* **28**, 6573.

Hossain, S., Rabbi, S. A. H., Mamun, M. J. I., Masum, M. A. A., Suma, K. J., Rasel, M. H., Hasan, M. A., Mohammad, M. and Hossain, D. 2025. Antioxidant, anti-inflammatory and neuropharmacological potential of *Syngonium podophyllum* flower methanolic extract. *Chem. Biodivers.* **22**, e202500425.

Hossen, S. M. M., Hossain, M. S., Yusuf, A. T. M., Chaudhary, P., Emon, N. U. and Janmeda, P. 2022. Profiling of phytochemical and antioxidant activity of wild mushrooms. *Food Sci. Nutr.* **10**, 88-102.

Idu, M. and Onyibe, H. I. 2007. Medicinal plants of Edo State, Nigeria. *Res. J. Med. Plant.* **1**, 32-41.

Jayaraj, P., Mathew, B., Parimaladevi, B., Ramani, V. A. and Govindarajan, R. 2014. Isolation of a bioactive flavonoid from *Spilanthes calva* DC. *Biomed. Prev. Nutr.* **4**, 481-484.

Kondo, S., Sattaponpan, C., Phongpaichit, S., Srijan, A. and Itharat, A. 2010. Antibacterial activity of Thai medicinal plants *Pikutbenjakul*. *J. Med. Assoc. Thai.* **93**, S131-S135.

Konovalov, D. A. 2014. Polyacetylene compounds of plants of the Asteraceae family. *Pharm. Chem. J.* **48**, 613-631.

Kurumbail, R. G., Stevens, A. M., Gierse, J. K., McDonald, J. J., Stegeman, R. A., Pak, J. Y., Gildehaus, D., Iyashiro, J. M., Penning, T. D. and Seibert, K. 1996. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. *Nature* **384**, 644-648.

Laelago, T., Yohannes, T. and Lemango, F. 2016. Prevalence of herbal medicine use among pregnant women attending antenatal care in southern Ethiopia. *Arch. Public Health* **74**, 7.

Mallik, J. and Akhter, R. 2012. Phytochemical screening and in vitro evaluation of reducing power, cytotoxicity and antifungal activities of *Cucumis sativus*. *Int. J. Pharm. Biol. Arch.* **3**, 555-560.

Mohammad, M., Islam, M. A., Mamun, M. J. I., Rasel, M. H., Masum, M. A. A., Rabbi, S. A. H., Khalil, I., Ali, M. L. and Hossen, S. M. 2025a. Methanolic extract of edible *Lasia spinosa* rhizome. *J. Herbs Spices Med. Plants* **31**, 381-406.

Mohammad, M., Mamun, M. J. I., Khatun, M. M., Rasel, M. H., Masum, M. A. A., Suma, K. J., Haque, M. R., Rabbi, S. A. H., Hossain, M. H. and Hasnat, H. 2025b. Multifaceted exploration of *Shirakiopsis indica* fruit. *Drugs Drug Candidates* **4**, 31.

Mohammad, M., Rasel, M. H., Richi, F. T., Mamun, M. J. I., Ekram, M. E. H., Rabbi, S. A. H., Hossain, S., Hasan, M. A., Sarker, M. F. and Alam, S. 2025c. Neuropharmacological, cytotoxic, and anthelmintic potentials of *Lasia spinosa* (L.) Thwaites rhizome: in vivo, in vitro, and computational approach. *Pharmacol. Res. Nat. Prod.* **7**, 100254.

Mohammad, M., Rasel, M. H., Richi, F. T., Mamun, M. J. I., Ekram, M. E. H., Rabbi, S. A. H., Hossain, S., Hasan, M. A., Sarker, M. F. and Alam, S. 2025d. Neuropharmacological, cytotoxic and anthelmintic potentials of *Lasia spinosa* rhizome. *Pharmacol. Res. Nat. Prod.* **7**, 100254.

Muschietti, L., Derita, M., Sülsen, V., de Dios Muñoz, J., Ferraro, G., Zacchino, S. and Martino, V. 2005. In vitro antifungal assay of traditional Argentine medicinal plants. *J. Ethnopharmacol.* **102**, 233-238.

Nino, J., Narvaez, D. M., Mosquera, O. M. and Correa, Y. M. 2006. Antibacterial, antifungal and cytotoxic activities of Asteraceae and Rubiaceae plants. *Braz. J. Microbiol.* **37**, 566-570.

Pant, D. R., Pant, N. D., Yadav, U. N. and Khanal, D. P. 2017. Phytochemical screening and pharmacological activities of *Pterocarpus marsupium*. *J. Intercult. Ethnopharmacol.* **6**, 170.

Parasuraman, S. 2011. Prediction of activity spectra for substances. *J. Pharmacol. Pharmacother.* **2**, 52.

Rai, M. K., Varma, A. and Pandey, A. K. 2004. Antifungal potential of *Spilanthes calva*. *Mycoses.* **47**, 479-481.

Rai, M., Acharya, D., Singh, A. and Varma, A. 2001. Growth responses of *Spilanthes calva* and *Withania somnifera*. *Mycorrhiza.* **11**, 123-128.

Rajasekaran, S., Rajasekar, N. and Sivanantham, A. 2021. Therapeutic potential of plant-derived tannins. *J. Nutr. Biochem.* **94**, 108632.

Renda, G., Gökkaya, İ. and Şöhretoğlu, D. 2022. Immunomodulatory properties of triterpenes. *Phytochem. Rev.* **21**, 537-563.

Richi, F.T., Taher, M.A., Sumaiya, S.H., Shompa, S.A., Mohammad, M., Hasnat, H., Rahman, M.M. and Alam, S. 2025a. Chemico-pharmacological Evaluation of *Ficus benjamina* L.(Weeping Fig) Leaf Extracts: GC-MS/MS Profiling, Pharmacological Screening, and Computer-Aided Approaches. *Pharmacol. Res. Nat. Prod.* **10**, 100473.

Richi, F. T., Alam, S., Ahmed, F. and Al Hossain, A. M. 2025b. *Excoecaria agallocha* L.: bridging ethnopharmacology and therapeutic promises of a healing mangrove. *J. Ethnopharmacol.* **356**, 120762-62.

Shandhi, S. P., Richi, F. T., Alam, S., Ahamed, K. U., Emon, N. U., Ahmed, N., Shao, C., Wang, S., Geng, P. and Al Mamun, A. 2024. Isolation, structure elucidation, and bioactivity evaluation of two alkaloids from *Piper chaba* H. stem: a traditional medicinal spice and its chemico-pharmacological aspects. *Food Sci. Nutr.* **12**, 10680-10698.

Sullivan, D., Moran, G. and Coleman, D. 2005. Fungal diseases of humans. *Fungi Biol. Appl.* **6**, 171-190.

Zheleva-Dimitrova, D., Sinan, K. I., Etienne, O. K., Zengin, G., Gevrenova, R., Mahomedally, M. F., Lobine, D. and Mollica, A. 2020. Chemical composition and biological properties of *Synedrella nodiflora*. *Process Biochem.* **96**, 202-212.

Zishan, S. A., Uddin, M. M., Mohammad, M., Uddin, M. E., Azad, S. M., Naima, J. and Ibban, S. S. 2023. Pharmacological properties of *Brassaiopsis hainla* leaves. *Asian J. Res. Bot.* **9**, 15-28.