Predictors of Duration and Demand of Oxygen Therapy in Hospitalized RT-PCR Positive COVID-19 Patients


1Department of Medicine, Chattagram International Medical College, Chattogram, 2Department of Medicine, Chittagong Medical College, Chattogram, 3Evercare Hospital Chattogram, 4Parkview Hospital Limited, Chattogram, 5Department of Dermatology, Chattagram International Medical College, Chattogram, 6Department of Neuromedicine, Chattagram International Medical College, Chattogram, 7Department of Cardiology, Chattagram International Medical College, Chattogram, Bangladesh

Abstract

Background: Among many unexplored and challenging areas of COVID-19, pathophysiology of hypoxia and its management requires special attention for the physicians. The current study aimed to find the predictors of duration and demand of oxygen therapy in RT-PCR positive, hospitalized, COVID-19 patients.

Methods: It was a prospective, multicentered, observational study conducted at Chattagram International Medical College (Isolation Ward, CIMC), Chattogram Medical College (COVID Red Zone) and Parkview Hospital Limited (COVID-19 Ward) from January to June 2021 on hospitalised, RT-PCR positive cases of COVID-19 patients of 18 yrs or above who required supplemental oxygen therapy and gave informed consent to be included in the study. All the participants underwent chest HRCT on initial presentation.

Results: In this study, 85 consecutive patients of confirmed COVID-19 were recruited under the study. Patients required oxygen for a median duration of 6 days and median value of the maximum oxygen requirement was 7 L/min with a range between 1-100 l/min. In patients with no co-morbidity, one co-morbidity and more than one comorbidity, the median duration of oxygen therapy were 4.5 (3.0-7.8) hours and 7.0 (5.0-14.3) hours respectively. Multiple regression was run to predict maximum oxygen duration and maximum oxygen required for the patients from gender, age, smoking pattern, number of comorbidity and HRCT severity score; only total number of comorbidity and HRCT severity score added statistically significantly to the prediction, p < 0.05.

Conclusion: The results of the study might be helpful in triage of COVID-19 patients, planning as well as clinical decision making.

Keywords: Oxygen therapy, duration and demand, hospitalized COVID-19 patients.

Introduction

Coronavirus disease 2019 (COVID-19) is a potentially fatal infection caused by the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The COVID-19 pandemic has been much more than a health crisis, creating tragic and devastating milestones in each sector with huge loss as well as long-standing impacts. Among many unexplored and challenging areas of COVID-19, pathophysiology of hypoxia and its management requires special attention for the physicians. The cut-off value of target oxygen requirement for COVID-19 is still a mystery and it varies from patient to patient. However, a target SpO2 of 92% to 96% seems logical, some indirect evidence from patients without COVID-19 suggested that an SpO2 of <92% or >96% might be harmful. Initially oxygen was considered a low-cost, life saving therapy for COVID-19; however, inadequate availability of oxygen in face of rapidly expanding epidemic created the limitations in management of critical patients. Due to SARS-CoV-2 mediated
pathophysiological events partially explained by shunt or ventilation-perfusion mismatching, some of the patients were predicted to require a higher level of care with supplemental oxygen therapy in hospitals or intensive care units.\textsuperscript{10,11}

A non-contrast High resolution CT (HRCT) chest imaging plays a pivotal and essential role in the early disease detection. Multiple studies have explored the pulmonary involvement on the chest CT images using both visual and software quantitative assessments.\textsuperscript{12-14}

The COVID-19 was first identified in China on December 2019; it was declared to be a pandemic by world health organization on March 11, 2020.\textsuperscript{15} In Bangladesh, the first case of coronavirus was identified on March 8, 2020 and as of December 2021, a total of 513510 cases were identified with 28072 deaths.\textsuperscript{16} In poor resource setting, a measurement of duration of supplemental oxygen and its predictors might help in identifying the high risk patients who would need prolonged oxygen support; it would also assist in deciding on building infra-structure as well as need-based distribution of hospital resources.\textsuperscript{17-20} The current prospective, multi-centred study aimed to find the association between duration and demand of oxygen therapy with co-morbidities and chest HRCT findings of confirmed COVID-19 patients.

**Materials and Methods**

It was a prospective, multicentered, observational study conducted at Chattagram International Medical College (Isolation Ward, CIMC), Chattogram Medical College (COVID Red Zone) and Parkview Hospital Limited (COVID-19 Ward) from January to June 2021. The objective of the study was to find out the predictors of duration and demand of oxygen therapy in hospitalized, RT-PCR positive COVID-19 cases. This study included hospitalized, RT-PCR positive cases of COVID-19 patients of 18 years or above who required supplemental oxygen therapy and gave informed consent to be included in the study. Pregnancy, present or past history of pulmonary tuberculosis and lung malignancy were excluded from the study. As per operational definition in this study, supplemental oxygen requirement was defined when oxygen saturation (Sp02) was $>93\%$ in room air. Sample size was calculated 85.

\[
n = \frac{(Z_{\alpha} + Z_{\beta})^2}{C^2} + 3
\]

\[
C = 0.5 \times \ln \left[ \frac{1 + r}{1 - r} \right]
\]

Where,

$Z_{\alpha}$ = $Z$- value of standard normal distribution for a level of confidence

$Z_{\beta}$ = $Z$- value of standard normal distribution at a given power

$r$ = correlation coefficient between HRCT severity score and maximum level of oxygen requirement

Here, the calculated sample size came out 85.

So, 85 consecutive patients of confirmed COVID-19 in the participating centers who fulfilled the inclusion criteria were recruited under the study. The members of study team observed the patients to note the demographic information, co-morbidity, chest HRCT findings, maximum requirement of supplemental oxygen, oxygen delivery device and duration of oxygen therapy; the case record form was filled in accordingly. All the participants underwent chest HRCT on initial presentation using SIEMENS SOMATOM PERSPECTIVE 128 SLICES CT-SCAN machine. During the scan, patients were placed in a supine position with single breath held on inspiration. Scanning parameters were scan direction (craniocaudally), tube voltage (130KV), tube current (100MA) slice collimation (64 $\times$ 0.625 mm), width (52 $\times$ 512 mm), pitch (1), rotation time (1s, 0.6s, 0.48s), scan length (60.00 – 1300.00 s). Two radiologists with more than 5 years of experience evaluated the images to determine the percentage of lung opacification, severity score, number of lobes affected and predominant radiological findings in each patient. In the case record form, the investigator also noted the day of symptom on the day of doing HRCT test. The case record forms were completed and signed after the patient got off supplemental oxygen or discharged from hospital with supplemental oxygen or died while with supplemental oxygen. After completion of all 85 case record forms, data entry, processing and analysis were performed by SPSS version 23.
Results
Among 85 participants, age of the patients ranged from 20 to 85 years with a mean age of 58.7±15.4 years. Around half of the patients (50.6%) were in the geriatric age group. Male were slightly more than female (55.4% and 44.7%). Duration and demand of oxygen therapy in the studied patients are presented in Table I.

Table I: Duration and demand of oxygen therapy of the patients (n=85)

<table>
<thead>
<tr>
<th>Duration of oxygen therapy, days</th>
<th>Median (IQR)</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum requirement of Oxygen (L/min)</td>
<td>6.0 (4.0-11.0)</td>
<td>1-26</td>
</tr>
<tr>
<td>Oxygen Delivery Device</td>
<td>Median (IQR)</td>
<td>Range</td>
</tr>
<tr>
<td>Nasal prong</td>
<td>7 (3.8-15.0)</td>
<td>1-100</td>
</tr>
<tr>
<td>Face mask</td>
<td>41 (48.2)</td>
<td>27 (31.8)</td>
</tr>
<tr>
<td>HFNC</td>
<td>16 (18.8)</td>
<td></td>
</tr>
<tr>
<td>NIPPV</td>
<td>1 (1.2)</td>
<td></td>
</tr>
</tbody>
</table>

| Discharged with supplemental oxygen | 2 (2.4) |
| Died with supplemental oxygen | 7 (8.2) |

Data were expressed as frequency (%) if not mentioned otherwise.
It depicted that, patients required oxygen for a median duration of 6 days and median value of the maximum oxygen requirement was 7 L/min with a range between 1-100 l/min. Out of 85 patients, 7 (8.2%) patients expired in hospital and another 2 (2.4%) patients were discharged along with oxygen at home. Median (IQR) duration of oxygen therapy in patients with no comorbidity was 3.0 (3.0-4.0) hours. In patients with one and more than one comorbidity the corresponding values were 4.5 (3.0-7.8) hours and 7.0 (5.0-14.3) hours respectively. These differences were statistically significant (Figure 1).

There was a significant positive correlation between total percentage of lung involvement in HRCT and maximum oxygen requirement \( (r=0.466, p <0.001) \). (Figure 3).

A multiple regression was run to predict duration of oxygen therapy required by the patients from gender, age, smoking pattern, number of comorbidity and HRCT score. These variables statistically significantly predicted duration of oxygen therapy required by the patients, \( F(5, 79) = 8.804, p < 0.001, R^2 = 0.337 \). However, out of five variables only total number of comorbidity and HRCT severity score added statistically significantly to the prediction, \( p < 0.05 \). (Table II).

A multiple regression was run to predict maximum oxygen required for the patients from gender, age, smoking pattern, number of comorbidity and HRCT score. These variables statistically significantly predicted maximum oxygen therapy required by the patients, \( F (5, 79) = 8.456, p <0 .001, R^2 = 0.351 \). However, out of five variables only total number of comorbidity and HRCT severity score added statistically significantly to the prediction, \( p <0 .05 \). (Table III)

**Figure 1:** Relation between comorbidity pattern and duration of oxygen therapy

**Figure 2:** Correlation between total percentage of lung opacification in HRCT and duration of oxygen therapy

**Figure 3:** Correlation between total percentage of lung opacification in HRCT and maximum oxygen requirement
Discussion
This study analyzed the data collected from RT-PCR positive COVID-19 patients of 18 years or above who required supplemental oxygen; the sample was representative from one government medical college hospital, one non-government medical college hospital and one private hospital of Chattogram, Bangladesh. The median of duration and maximum requirement of oxygen were higher in patients suffering from one or more co-morbidities. Multiple regression analysis to predict duration of oxygen therapy and total requirement of oxygen revealed that total number of comorbidity and HRCT severity score added statistically significantly to the prediction (p < 0.05). In a study performed on 172 Iraqi COVID-19 patients, strong positive correlation was seen between CT severity score and male gender (p value = 0.0002 and R2= 0). In a retrospective study performed on 130 symptomatic SARS-CoV-2 patients in Rome, Italy, CT score was significantly higher in severe and critical disease than in mild disease (p< 0.0001). In a retrospective study conducted on COVID-19 patients at Abu Dhabi, UAE, significant correlation was found between CT severity score and male gender, maximum oxygen requirement, length of hospital stay, raised inflammatory marker. All the above studies reflect higher CT severity score in more critical patients. The results of the current study might be helpful in triage of COVID-19 patients, better understanding of clinical outcome as well as clinical decision making.

Table II: Multiple regression analysis to determine the predictors for duration of oxygen therapy

<table>
<thead>
<tr>
<th>Variables</th>
<th>Standardized Coefficients Beta</th>
<th>95.0% CI for Beta</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in years</td>
<td>-0.027</td>
<td>-0.088</td>
<td>0.067</td>
</tr>
<tr>
<td>Female sex</td>
<td>-0.189</td>
<td>-4.491</td>
<td>0.085</td>
</tr>
<tr>
<td>Smoker</td>
<td>0.068</td>
<td>-2.318</td>
<td>4.780</td>
</tr>
<tr>
<td>Number of comorbidity</td>
<td>0.355</td>
<td>0.768</td>
<td>2.819</td>
</tr>
<tr>
<td>HRCT score, %</td>
<td>0.313</td>
<td>0.134</td>
<td>0.527</td>
</tr>
</tbody>
</table>

Dependent Variable: Duration of Oxygen therapy; CI: Confidence interval.

Table III: Multiple regression analysis to determine the predictors for maximum requirement of oxygen therapy

<table>
<thead>
<tr>
<th>Variables</th>
<th>Standardized Coefficients Beta</th>
<th>95.0% CI for Beta</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in years</td>
<td>-0.188</td>
<td>-0.621</td>
<td>0.022</td>
</tr>
<tr>
<td>Female sex</td>
<td>-0.104</td>
<td>-14.575</td>
<td>4.416</td>
</tr>
<tr>
<td>Smoker</td>
<td>0.060</td>
<td>-10.205</td>
<td>19.253</td>
</tr>
<tr>
<td>Number of comorbidity</td>
<td>0.370</td>
<td>3.583</td>
<td>12.092</td>
</tr>
<tr>
<td>HRCT score, %</td>
<td>0.399</td>
<td>0.950</td>
<td>2.581</td>
</tr>
</tbody>
</table>

Dependent Variable: Maximum Oxygen required; CI: Confidence interval.

Acknowledgement
This study was funded by Chittagong Medical University

Conclusion
Hypoxia and its management is one of the mysterious as well as challenging areas of COVID 19. The current paper described a prospective, multicentered, observational study conducted on 85 consecutive patients of confirmed COVID-19 admitted in the participating centers who required supplemental oxygen and fulfilled the inclusion criteria. The results of the study might be helpful in triage of COVID-19 patients, better understanding of clinical outcome, clinical decision making as well as future research on a broader scale.

Conflict of Interest: The authors did not have any conflict of interest.

Funding: This study was funded by Chittagong Medical University

Ethical approval: Chittagong Medical College, Chattogram, Bangladesh.

Submitted: 18 December, 2022
Final revision received: 15 January, 2023
Accepted: 25 January, 2023
Published: 01 April, 2023
References


