Chronic Obstructive Pulmonary Disease Among the Users of Improved Cooking Stove and Traditional Cooking Stove

Ahmad SA¹, Faruquee MH¹, Yasmin R¹, Sultana S¹, Chowdhury S²

¹Department of Occupational and Environmental Health, Bangladesh University of Health Science (BUHS), Dhaka, Bangladesh; ²Department of Community Medicine, Bangladesh University of Health Science (BUHS), Dhaka, Bangladesh.

Abstract

Background: Use of Improved Cooking Stove (ICS) is increasing in Bangladesh. It is expected that the use of ICS will decrease the occurrence of respiratory diseases, which remains to be explored.

Objective: The current study was an attempt to find out the occurrence of respiratory illnesses, particularly the Chronic Obstructive Pulmonary Disease (COPD) among the ICS users and comparing such illness among Traditional Cooking Stove (TCS) users.

Methods: This was a cross-sectional comparative study carried out among the women who were using ICS and TCS for cooking purposes. Women aged 35 years and above and cooking for more than 3 years were the study population. A total of 674 respondents were selected from a selected rural area, of which 232 were ICS users and 442 were TCS users. The study participants of both groups were age-matched (± 2 years). Questionnaire on respiratory illness, COPD Population Screener (CPS) and COPD Assessment Test (CAT) questionnaires were used to collect necessary data from the respondents.

Results: The average age of the respondents was 43.96 ± 7.632 years. Significantly (p=.000) a higher proportion of the TCS users had no formal education (46.4%). None of the respondents had smoking habits, but 16.8% of them had the habits of chewing tobacco. Overall, 85.5% of the respondents used biomass fuel. The average cooking year of the respondents was 26.9 ± 8.59 and the daily average cooking duration was 3.09 hours. Among the TCS users, COPD (23.6%) and other respiratory illnesses (49.5%) were significantly (p=.001 and p=0.014 respectively) higher than those of the ICS users. Logistic regression analysis revealed that biomass fuel had the strongest ability (3.8 times) to predict COPD followed by the ability (1.8 times) of TCS use.

Conclusion: The study revealed that TCS users significantly suffered more from COPD than that of ICS users. Respondents having poor socio-economic conditions, a lower proportion of them were found to use ICS; not affordable was a reason. Along with TCS use, biomass fuel should also be discouraged.

Keywords: Respiratory disease, Biomass, Traditional cooking stove, Improved cooking stove

Introduction

Man learned to use fire as long as 500,000 years ago. Initially, ancient people created the fire for getting warm, for protection against wild animals and to some extent for cooking food. They discovered that food cooked with fire was easy to chew and increased the taste than raw foods.^{1,2} Stove use had been started since the beginning of human history.^{3,4} However, the clay made stove was first known to use in China from 221-207 BC.⁵

Use of traditional stoves began around thousands of year back. In Bangladesh, traditional cooking stoves (TCS) known as *Chula* is made of clay, commonly used in rural area.^{3,6} Biomass is the

principal source of fuel of *Chula*, which contributes more than 90% of the total fuel supply of the country. About 30 million households in Bangladesh use biomass fuels for cooking purpose, and of them 24 million households are from rural areas.^{2,7-9} The common biomass fuels used for cooking are wood, leaves, cow-dung, straw, paddy husk, jute sticks, bagasse, sawdust etc.⁸⁻¹¹

TCSs produce heavy smoke due to incomplete combustion and release many pollutants like particulate matters, carbon monoxide, nitrous oxides, sulphur dioxide, formaldehyde and carcinogens.⁷⁻⁹ Women and children in the household, spend 3 to 7 hours near the stoves while cooking and are exposed to these pollutants every day specially the particulate matter upto 20 times higher than recommended levels of the WHO.^{7,8,12} WHO assessed that pollution due to biomass fuel accounts for 1.6 million death and 39

^{*}Correspondence: SK Akhtar Ahmad, Department of Occupational and Environmental Health, Bangladesh University of Health Science (BUHS), 125/1 Darus Salam, Mirpur-1, Dhaka-1216, Bangladesh; e-mail:anonsaahmad@gmail.com; ORCID: 0000-0003-0025-2673

million disability-adjusted life years (DALY) every year,¹³ and responsible for 3.7% overall disease burden in developing countries;¹⁴ and contribute to increase the greenhouse gases in the atmosphere.^{4,15} Exposure to the pollutants released from the stoves may cause many health effects particularly asthma, acute respiratory infections, chronic obstructive pneumonia, pulmonary diseases (COPD)[,] low birth weight and various cancers.^{8,11-14} It was reported that under 5 children who were exposed to smoke of solid fuels, more than 1.8 times likely to develop pneumonia. According to a WHO report, smoke from cooking fuels account for nearly 2 million deaths mostly women and children, more than 99 percent of which occurs in developing countries. Further, it has been estimated that by 2030, over 4,000 people will die prematurely each day due to household air pollution. In developing countries 730 million tons of biomass fuel burned annually for cooking, which increases the greenhouse gases by emitting >1 billion tons of carbon dioxide into the atmosphere.4, 13, 14

Since 1970s, Bangladesh has worked to popularise the use of improved cook stoves (ICS) with an aim to reduce indoor air pollution. In the 1990s, ICS has been developed to make it more energyefficient, smoke removal, and user-friendly to cut the fuel consumption, decrease the emission of pollutants and greenhouse gases as well, thus to reduce the health problems particularly the lower respiratory tract infections, COPD and eye problems.^{2,4,9,15,16} ICS has been further developed in 2005 and 2010 to make ICS more acceptable and durable.^{2,9} Use of ICS has been increasing in Bangladesh, in 2011 about 510,000 ICSs were in use, which was increased from 424,000 ICSs in 2010. Recently over 800,000 ICSs have been installed by GIZ throughout Bangladesh. There is a target that 30 million households in Bangladesh will use ICS by 2030 to meet the goal of 100% clean cooking environment.9

It is expected that by using modified ICS, the household condition will be better in-terms of cleanliness and decreased pollutants emission.^{2,4,9} Hence, will decrease the exposure to toxic substances, as a result, the occurrence of respiratory problems will be reduced particularly among the women and children. To find out whether the use of ICS could reduce the occurrence of respiratory illnesses particularly the COPD or not, need evidence-based study, but there lacks such study. The current study aimed to explore the occurrence of respiratory illnesses and

COPD as well, among the ICS users while comparing the occurrence of such illnesses with TCS users.

Materials and Methods

This was a cross-sectional community based comparative study carried out to assess COPD and other respiratory illnesses among the women who used ICS. For comparison, the women who used TCS were included in the study. The women from a selected rural area where both TCS and ICS users were accessible and who were aged 35 years and above, and had a history of cooking more than three years was the study population. The study population was approached for consent to be a participant of the study and who agreed, was selected as the respondent. Initially, ICS users were selected then age-matched (± 2 years) TCS users were selected as the respondents. For each ICS user respondent, two TCS user respondents were selected. Ultimately, a total of 674 respondents were included in the study of which 232 were ICS users and 442 were TCS users. Twenty-two respondents from TCS users could not be included because of their unwillingness to participate or not available during data collection. The respondents were interviewed face to face by using a pretested questionnaire for data collection on socio-demographic characteristics, personal habits and cooking practices. For respiratory illnesses, a questionnaire on respiratory illness based on NHANES 2012 was used. ¹⁷ To assess COPD, COPD Population Screener (CPS) and COPD Assessment Test (CAT) questionnaires were used to collect necessary data from the respondents. ^{18,19}A respondent scored 5 or more in CPS, identified as most likely suffering from COPD. While a respondent scored upto 5 in CAT, identified as normal, healthy, not suffering from COPD. In this study, a participant was identified as suffering from COPD if she scored >4 in CPS and >5 in CAT. Based on CAT score, the COPD was categorised as normal (upto 5), low (<10), medium (10-20) and high (>20) COPD. In this study, spirometry test of the responded could not be done because the study was done at the village level where the women were shy to do spirometry test and even after several orientations on the use of a spirometer, they could not do it properly. However, to ascertain the COPD and other respiratory diseases the study physicians collected necessary information from the respondents.

Data analysis: The data entry and analysis were done using SPSS. Before entry collected data were

checked and verified for any inconsistencies. Initially, descriptive analysis such as frequency, percentage, mean and standard deviation was done. For inferential statistics, student's t-test for quantitative variables and to find associations between the qualitative variables chi-square test was conducted. Finally, a binary logistic regression analysis was done to find the predictors for COPD.

Ethical clearance: Ethical approval of the study was taken from the Ethical Review Committee of Bangladesh University of Health Sciences (BUHS). The participating women were briefed about the purpose of the study and the data collection procedure. The participating women were also informed that their participation would be voluntary and they could withdraw themselves from the study whenever they wanted to do.

Results

Overall, the mean age of the respondents was 43.9±7.8 years. Comparatively, TCS users had a lower mean age (43.5 years). Almost half (47.6%) of the respondents had education up to primary level. Significantly ($\chi^2=27.149$; p=.000) a higher proportion of the TCS users had no formal education (46.4%) while 5.2% of the ICS users had education up to HSC and above. Two-thirds (66.9%) of the respondents had family members upto 4 and comparatively ≥ 5 family members was higher among TCS users. The monthly family income was significantly higher among ICS users (Taka13295±6076) than that of the TCS users. Majority of the respondents lived in semipucca house (34.4%) however, significantly $(\chi^2=39.374; p=.000)$ a higher proportion of the TCS users lived in katcha house (19.0%) (table I).

Table I: Socio-demographic characteristics of participating women distributed by cooking stove

Characteristics		TCS user (%)	ICS user (%)	Total	
		442 (65.5)	232 (34.5)	n=674 (%)	Test of Significance
	35-44	223 (50.6)	125 (53.6)	348 (51.6)	
Age (years)	45 and Above	219 (50.5)	107 (46.1)	326 (48.4)	χ2=0.71; <i>p</i> =.398
	Mean±SD	$44.19{\pm}\ 7.995$	$43.53{\pm}7.515$	$43.96{\pm}\ 7.834$	t=1.039; p=.299
	Non formal	205 (46.4)	61 (25.3)	266 (39.5)	
D1	Upto Primary	191 (43.3)	130 (55.8)	321 (47.6)	2 27 140 000
Education	SSC	34 (7.7)	29 (12.4)	63 (9.3)	$\chi^2 = 27.149;; p = .000$
	HSC & Above	12 (2.7)	12 (5.2)	24 (3.6)	
F 1 6	Upto 4	297 (67.2)	154 (66.4)	451 (66.9)	2 0.04 0.21
Family Size	5 and Above	145 (32.9)	78 (33.5)	223 (33.1)	$\chi^2 = 0.04; p = .831$
Monthly Income	Mean± SD (Tk)	$9346{\pm}4832$	$13295{\pm}~607$	$10705{\pm}5612$	t=9.202; p=.000
House Type	Katcha	84 (19.0)	20 (8.6)	104 (15.4)	
	Tin	139 (31.5)	59 (25.3)	198 (29.4)	
	Semi pucca	117 (26.5)	115 (49.4)	232 (34.4)	$\chi^2 = 39.374; p = .000$
	Pucca	102 (23.1)	38 (16.4)	140 (20.8)	

Table II: Tobacco consumption and cooking practice by the participating women

Tobacco Use		TCS user n=442 (%)	ICS user n=232 (%)	Total n=674 (%)	Test of Significance	
Talaan Caaraa d	Yes	87 (19.7)	26 (11.2)	113 (16.8)		
Tobacco Consumed	No	355 (80.4)	206 (68.4)	581 (83.2)	$\chi^2 = 7.833; p = .005$	
T	Jarda	44 (73.3)	16 (26.7)	60 (53.1)		
Type of Tobacco consumption	Tamak	22 (81.5)	05 (18.5)	27 (23.9)	$\chi^2 = 0.970; p = .616$	
	Gul	21 (80.8)	05 (19.2)	26 (23.0)		
Second hand	Yes	219 (49.5)	91 (39.4)	310 (46.0)	$w^2 = 6.529$, $w = 0.11$	
Smoking in home	No	223 (50.6)	141 (60.5)	364 (54.0)	$\chi^2 = 6.528; p = .011$	
Cooking Practice						
Fuel Types	Biomass	374 (84.6)	202 (87.1)	576 (85.5)	w ² 727, m=0.201	
	Non-biomass	68 (15.4)	30 (12.9)	98 (14.5)	$\chi^2 = .737; p=0.391$	
Length of	Mean± SD (Yrs)	27.27 ± 8.775	26.41± 8.211*	26.98 ± 8.589	t=1.234; p=.217	
Cooking Mean± SD (Hrs		3.13 ± 0.675	$3.02{\pm}0.597$	3.09 ± 0.650	t=-1.960; p=.050	

* Total cooking years and cooking years with ICS 7.2 \pm 4.972 years

None of the respondents had the habits of smoking; however, 16.8% of them had the habits of chewing tobacco. The consumption of tobacco was significantly (χ^2 =7.833; p=.005) high (19.7%)

among TCS users than that of ICS users (11.2%). The chewing tobacco was *Jarda* (53.1%) *tamak* (23.9%) and *gul* (23.0%). Exposure to second-hand smoking (smoking by HH member) was significantly (χ^2 =6.528; *p*=.011) high among the

COPD among improved traditional cooking stove users

households of TCS users (49.5%) compared to that of ICS users (39.4%). (table II)

 Table III: Distribution of respiratory problems and COPD of the participating women

		TCS	ICS	Total				
Suffering	from	user	user	n=674	Test of			
Respira	tory	n=412	n=232	(%)	Significance			
Disord	ers	n-412 (%)	n=232 (%)	(70)	Significance			
		223	140	363				
Despiratory	No				$\chi^{2}=$			
Respiratory		(50.6) 219	(60.3) 93	(53.9) 311	5.991;			
problems	Yes				p=.014			
		(49.5)	(39.9)	(46.1)	-			
COPD*	No	337	201	538	$\chi^2 = 10.2$			
COPD*		(76.4)	(86.3)	(79.8)	0;			
	Yes	105	31	136	p=.001			
	Ŧ	(23.6)	(13.4)	(20.2)	-			
	Low	57	18	75				
COPD	(<10)	(54.8)	(59.4)	(55.1)				
Categories	Medium	40	11	51	χ ² =0.15			
(CAT	(10-	(38.1)	(35.5)	(37.5)	0;			
Score)	20)	(5011)	(5515)	(37.3)	p=.928			
Score)	High	8	2	10				
	(>20)	(7.8)	(6.5)	(7.4)				
		. /						
	Asthma	117	37	154	$\chi^2 = 4.52$			
		(53.4)	(40.2)	(22.8)	1;			
		()	(-)	(-)	p=.033			
					$\chi^2 = 5.09$			
	Duennooo	114	35	149	10			
	Dyspnoea	(52.3)	(38.0)	(22.0)	6; p= .024			
	Chest	121	39	160	χ ² =4.28			
	Tightness	(55.2)	(42.4)	(23.7)	9;			
		(33.2)	(12.1)	(23.7)	p= .038			
Respiratory	Chronic	-	0.1	07	$\chi^2 = 4.25$			
Manifestations		76	21	97	8;p=.03			
(Multiple	Cough	(34.7)	(22.8)	(14.4)	9			
Responses)	e							
(tesponses)	Cough	111	43	154	χ ² =0.57			
	&							
	Mucus	(50.9)	(46.2)	(22.8)	1; n=450			
					p=.450			
	Nasal	140	51	191	χ ² =1.97			
	block	(63.9)	(55.4)	(28.3)	2;			
	OTOUR	(03.7)	(55.7)	(20.5)	p= .160			
	NT 1			101	2			
	Nasal	137	44	181	$\chi^2 = 5.77$			
	discharge	(62.6)	(47.8)	(26.92	9;			
		()	())	p= .016			
* No= CDS up to $A \approx CAT$ up to $5: \text{Voc} = CDS > A \approx CAT > 5$								

* No= CPS upto 4 & CAT upto 5; Yes= CPS > 4 & CAT >5

Overall, 85.5% of the respondents used biomass fuel and of them, ICS users were 87.1% and TCS users were 84.6%. Respondents had a cooking length of 26.9±8.6 years and TCS users had a little higher length (27.3±8.8 years), and in this cooking length with ICS was7.2±4.972 years. However, the daily cooking hours between TCS (3.13±0.675) and ICS users (3.02±0.59) was significantly (t=-1.960; p=.050) different. (table II) The common biomass fuels used for cooking, were wood (78.3%), cowdung (75.0%) and leaves (26.6%). The reasons for not using ICS as stated, ICS was not suitable (34.0%), would not be comfortable to use (29.1%), not affordable (27.1%), didn't know about ICS (11.2%), need more fuel to use ICS (9.0%), and didn't find any necessity to use ICS (7.6%).

Overall, 46.1% of the respondents were found to suffer from respiratory illnesses (table III) and the occurrence was significantly (χ^2 =5991; p=.014) higher among TCS users (49.5%) than that of ICS users (39.9%). The manifestations of the respiratory illnesses were nasal block (28.3%), nasal discharge (26.9%), chest tightness (23.7%), asthma (22.8%), cough with mucus (22.8%), dyspnoea (22.0%) and chronic cough (14.4%). However, one-fifth (20.2%) of the total respondents were found to suffer from COPD (table III). Significantly ($\chi^2=10.204$; p=.001) a higher proportion of the TCS users (23.6%) were identified as suffering from COPD compared to that of ICS users (13.4%).

 Table IV: COPD participating women distributed by sociodemographic characteristics

	CO	PD	Total	
Characteristics		Yes	n=674	Test of
		n=136	(%)	Significance
		(%)		-
Mean±	43.3±	46.7±	43.96±	t=-4.622;
SD	7.575	8.263	7.834	p=.000
Non	196	70	266	
formal	(36.4)	(51.5)	(39.5)	
Upto	265	56	321	
Primary	(49.3)	(41.2)	(47.6)	$\chi^2 = 11.80;$
SSC.	56	07	63	p=0.008
SSC	(10.4)	(5.1)	(9.3)	-
HSC &	21	3	24	
Above	(3.9)	(2.2)	(3.6)	
Linto 4	358	93	451	
Opto 4	(66.5)	(68.4)	(66.9)	$\chi^2 = .166;$
5 and	180	43	223	p=0.684
above	(33.5)	(31.6)	(33.1)	
Mean±	11055	9319±	10705	t=3.245;
SD	± 5685	5103	± 5612	p=.001
Katcha	77	27	104	-
	(14.3)	(19.9)	(15.4)	
Semi	160	38	198	
рисса	(29.7)	(27.9)	(29.4)	$\chi^2 = 3.566;$
Tin	187	45	232	p=0.312
	(34.8)	(33.1)	(34.4)	-
Pucca	114	26	140	
	(21.2)	(19.1)	(20.8)	
	Mean± SD Non formal Upto Primary SSC HSC & Above Upto 4 5 and above Mean± SD Katcha Semi pucca Tin	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c cccccc} & n=538 & n=136 \\ & (\%) & (\%) \\ \hline Mean\pm & 43.3\pm & 46.7\pm \\ SD & 7.575 & 8.263 \\ Non & 196 & 70 \\ formal & (36.4) & (51.5) \\ Upto & 265 & 56 \\ Primary & (49.3) & (41.2) \\ SSC & 56 & 07 \\ (10.4) & (5.1) \\ HSC \& & 21 & 3 \\ Above & (3.9) & (2.2) \\ Upto 4 & (56.5) & (68.4) \\ 5 and & 180 & 43 \\ above & (33.5) & (31.6) \\ Mean\pm & 11055 & 9319\pm \\ SD & \pm 5685 & 5103 \\ Katcha & 77 & 27 \\ & (14.3) & (19.9) \\ Semi & 160 & 38 \\ pucca & (29.7) & (27.9) \\ Tin & 187 & 45 \\ & (34.8) & (33.1) \\ Pucca & 114 & 26 \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Based on CAT scores, COPD was categorised as

p=.008) and had a lower (Taka 9319) monthly

income (t=3.245; p=.001) (table IV). Moreover,

occurrence of COPD was found significantly higher (22.2%) among the biomass fuel users (χ^2 =10.278; p=.001), who had a longer length (29.52 ± 9.064 years) of cooking experience (t=-3.911; p=.000), and habits (31.0%) of chewing tobacco (χ^2 =9.823; p=.002) (table V).

Table V: COPD by cooking practice and tobacco use of the respondents

Factors		CC	DPD	Total			
		No	Yes	n=674	Test of Significance		
Fac	ractors		n=136	(%)			
			(%) (%)				
Cooking	g Practice						
	Biomass	448	128	576			
Fuel	Biomass	(77.9)	(22.1)	(85.5)	$\chi^2 = 10.27;$		
types	Non-	90	08	98	p = .001		
	biomass	(91.8)	(8.2)	(14.5)			
Duratio	Mean± SD	$26.33 \pm$	$29.52 \pm$	$26.98 \pm$	t=-3.911;		
n of	Yrs	8.350	9.064	8.589	p = .000		
Cookin	Mean±	$3.08 \pm$	3.13±	3.09±			
	SD Hrs	0.662	0.604	0.650	t=681;		
g	SD Hrs	0.002	0.604		p=.496		
Tobacco) Use						
Tobacc	Yes	78	35	113			
0	res	(69.0)	(31.0)	(16.8)	$\chi^2 = 9.823;$		
consum	No	460	101	561	p = .002		
ption	NO	(82.0)	(18.0)	(83.2)	-		
-	Jarda	39	21	60			
Type of	Jaraa	(34.5)	(18.6)	(53.1)			
Tobacc	Tamak	20	7	27	$\chi^2 = 3.617;$		
0	татак	(17.7)	(6.2)	(23.9)	p=.164		
(n=113)	Gul	21	5	26			
	Gui	(18.6)	(4.4)	(23.0)			
Second	Yes	243	67	310			
hand		(78.4)	(21.6)	(46.0)	$\chi^2 = .734;$		
Smoking	No	295	69	364	p=.392		
Smoking	INU	(81.0)	(19.0)	(54.0)			

Logistic regression analysis was carried out to see the impact of the factors which were found to have a significant relationship with the occurrence of COPD. As such, age of the respondents, education, monthly income, years of cooking, chewing tobacco, biomass fuel and use of improved stove was controlled for to see the ability to predict the likelihood of occurrence of COPD (table V). Independently age of the respondents (p=.032), chewing tobacco (p=.029), cooking stove (p=0.018) and biomass fuel (p=0.001) had the significant ability to predict the likelihood of developing COPD. Use of biomass fuel was the strongest (3.8 times) predictor for COPD followed by the use of TCS (1.8 times). Furthermore, each unit increase of age significantly had 1.01 times ability to predict the development of COPD (table VI). A second logistic analysis was carried out to see the ability of TCS as a predictor for COPD after removing the control for biomass. The analysis revealed that the ability of TCS use to predict the likelihood of developing COPD was reduced after removing the control for biomass. However, in this model, TCS use was the strongest predictor (1.6 times) for COPD while the impact of chewing tobacco became insignificant predictor for COPD (table VI).

Table VI: Logistic regression predicting likelihood of occurrence of COPD among the respondents

Dependent Variables	С	COPD among the TCS and ICS users women					95% Confidence Interval	
Independent Variables	В	S.E.	Wald	Р	Exp (B)	Lower	Upper	
a. Constant	-5.108	1.050	23.683	.000	.006			
Cooking stove	.576	.243	5.621	.018	1.778	1.105	2.862	
Biomass fuel	1.345	.403	11.162	.001	3.837	1.743	8.446	
Tobacco chewing	.571	.262	4.739	.029	1.769	1.059	2.957	
No education			.894	.827				
Primary education	.240	.662	.132	.716	1.272	.348	4.653	
Secondary educ	.287	.653	.192	.661	1.332	.370	4.791	
Higher Sec educ	095	.755	.016	.899	.909	.207	3.995	
Monthly income	.000	.000	1.817	.178	1.000	1.000	1.000	
Age in years	.049	.023	4.588	.032	1.050	1.004	1.098	
Years of cooking	004	.022	.034	.853	.996	.955	1.039	
b. Constant	-3.647	.932	15.310	.000	.026			
Cooking stove	.482	.240	4.049	.044	1.620	1.013	2.591	
Tobacco chewing	.370	.252	2.153	.142	1.447	.883	2.372	
No education			1.305	.728				
Primary education	.359	.652	.302	.582	1.431	.399	5.141	
Secondary education	.309	.644	.229	.632	1.361	.385	4.813	
Higher Secondary education	109	.746	.021	.884	.897	.208	3.868	
Monthly income	.000	.000	3.371	.066	1.000	1.000	1.000	
Age in Years	.047	.022	4.376	.036	1.048	1.003	1.095	
Years of Cooking	005	.021	.052	.820	.995	.954	1.038	

Overall Chi Square 52.400; p=.000 and 37.963; p=.000 respectively

Bangladesh Medical Res Counc Bull 2020; 46: 211-218

Discussion

ICS had been initiated in Bangladesh to cut the biomass fuel use, particularly the consumption of firewood thus, to prevent the occurrence of respiratory illness and other diseases including cancer.^{4,6} ICS has been proved to be energyefficient, reduce fuel consumption and less smoke emission but the main sources of fuel remain the biomass.^{2,8} About half of the world population still depends on biomass fuel and more than two billion people use biomass fuels such as dung, wood, crop residues and coal.8,20,21 In rural Bangladesh biomass is the principal sources of fuel which contributes more than 90% of the total fuel supply.^{8,21} In this study, most (85.5%) of the respondents were found to use biomass and the use was higher among the ICS users (87.1%), and the main biomass was wood and cow-dung.

Studies reported that poor socioeconomic conditions of the household had an important negative role in the ICS use.^{4,8,22,23} The current study also revealed that a majority of the TCS users belonged to the disadvantageous socioeconomic conditions. They had education up to primary level or no formal education, lower monthly income and lived in Tin house. On the contrary, the ICS users comparatively had a higher level of education (SSC and above), higher monthly income and majority lived in semi-pucca houses. ICS is fuel-efficient and takes less time to cook.^{2,9} The current study also revealed significantly a less cooking hour among the ICS users, which was on average 3.02 hours, while, overall daily cooking duration was 3.08 hours. Study in Bangladesh reported a higher average cooking hour (3.36) among rural women.¹¹

Pollutants in cooking smoke may cause increased risk even more than double for developing various respiratory illnesses, specially the COPD and cancer.^{12,24,25} The current study indicated that TCS users might be at the double burden of risk of developing diseases particularly respiratory diseases and cancer because TCS users were being exposed to the pollutants in the smoke daily and significantly a higher proportion of them consumed tobacco like Jarda, Tamak and Gul. Studies revealed the association of the pollutants released from cooking smoke with the occurrence of respiratory diseases. ^{2,8,11-15} In the current study, half (49.5%) of the TCS users were found to suffer from respiratory illnesses and almost one-fourth suffered from COPD (23.6%) which was significantly higher than those of ICS users and are reported to be attributable to biomass smoke.¹¹⁻¹⁴

However, in the studies, the prevalence of COPD among the rural and urban people in Bangladesh was reported to be 13.5% and among the residence of Dhaka city aged ≥ 40 years was 11.4%.^{26,27}

Studies from Bangladesh and elsewhere revealed an inverse relationship of socioeconomic factors and the occurrence of respiratory illnesses as well as COPD. ²⁷⁻³³ The socioeconomic factors of the current study also had an influencing role in the occurrence of COPD. Respondents who had lower monthly income and had education up to primary level or no formal education were found to suffer significantly more from COPD. In addition, this study revealed an increased occurrence of COPD with a higher average year of cooking experience of the respondents. Moreover, logistic regression analysis revealed 1.01 times more risk of developing COPD with one year increased in age.

COPD is considered as a major cause of morbidity and mortality as well as the economic and social burden of a country. WHO estimates that currently, 65 million people worldwide have COPD and by 2030, COPD will be the 3rd main cause of death.^{28,30} Further, WHO report shows that biomass smokes is a major environmental risk factor and rank 8th important risk factor for the global burden of diseases and contributes for 2.7% of the burden of disease.^{2,13,14} This study revealed a higher occurrence of COPD (22.1%) among the biomass fuel users than that of non-biomass fuel Moreover, logistic regression users (8.2%). analysis revealed that both biomass fuel (3.8times) and TCS (1.8times) had strong ability to predict COPD. However, while the control for biomass fuel was removed from the analysis, the ability of TCS to predict the COPD was decreased. Thus, indicated an increased risk of developing COPD due to the combined effect of biomass fuel and TCS use and biomass had the main role to predict. Therefore, to reduce the risk of developing COPD, ICS use must be increased and the use of biomass fuel should be decreased. To undertake a preventive and control measures a regular community-based screening and monitoring service should be set up and community clinic services may be extended for this purpose so that in Bangladesh COPD would not be a burden by 2030 as estimated by the WHO.

Conclusion

The current study revealed that among the TCS users the occurrence of COPD significantly higher than that of ICS users. Further, this study revealed that the participating women who used biomass COPD among improved traditional cooking stove users

fuel and had the habits of chewing tobacco suffered more from COPD. Comparatively, the respondents who had poor socioeconomic conditions, a lower proportion of them was to be found to use ICS.

Conflict of Interest: The authors declare that they have no competing interest Funding: None Ethical Approval: Ethical Review Committee of Bangladesh University of Health Sciences (BUHS), Dhaka Submitted: 28th June, 2020 Final revision received: Accepted: 25th November 2020 Published: 1st December, 2020

References

- 1. Ancient History: Discovery and Creation of Fire. URL:www.ancient-history-to-1800.blogspot. com /2010/10/discovery-and-creation-of-fire.html
- Infrastructure Development Company Limited (IDCOL). URL:www.idcol.org/Download/4791414cf 7168d6da 3c2f426873e74bc.pdf
- From Traditional to Modern Stoves: A Chronology of Development. Available From: URL:www.energyfordevelopment.com/ 2014/05/ from-traditional-to-modern-stoves 25.html
- 4. World Bank. Household Cook stoves, Environment, Health and Climate Change: A new Look at an Old Problem. The Environment Department (Climate Change). The World Bank.2011.
- 5. Electric Range- 1892- Mag Lab. URL:www.nationalmaglab.org/education/magn et-academy/...electricity.../electric-range
- Hoque MN, Rahman MS and Nahar N. Development of portable traditional triple mouth Chula. J Ban Agri Univ. 2010; 8: 141-145.
- 7. Begum BA. Comparison of a Traditional Cook Stove with Improved Cook Stoves Based on Their Emission Characteristics. Nuclear Sci and Appl 2015; 24: 1-2.
- Khalequzzaman M, Kamijima M, Sakai K, Hoque BA and Nakajima T. Indoor air pollution and the health of children in biomassand fossil-fuel users of Bangladesh: situation in two different seasons. Environ Health Prev Med 2010; 15:236–243.
- 9. MoPEMR. Country Action Plan for Clean Cookstoves. Power Division, Ministry of

Power, Energy and Mineral Resources Ministry of Power, Energy and Mineral Resources, GOB, 2013.

- Mamun MRA, Kabir MS, Alam MM, and Islam DMM. Utilization Pattern of Biomass for Rural Energy Supply in Bangladesh. Int J Sustain Crop Prod 2009; 4: 62-71.
- Khandker S, Ahmad SA, Ahmed R, Mollah AR, Parvez F and Khan MH. Comparison of Respiratory problems among Women and Children of Rural Households using Improved Cook Stove and Traditional Cook Stove. JOPSOM 2015; 34:8-13.
- 12. WHO. Health Effects. URL:www.who.int/indoorair/health_impacts/di sease/en/
- WHO. Indoor Air Pollution, Health and the Burden of Disease Indoor Air Thematic Brefing2. URL:www.who.int/indoorair/info/briefing2.pdf
- WHO. Indoor air pollution and health. Fact sheet N°292. URL:www.laboratorios.cetesb. sp. gov.br/wpcontent/uploads/sites/
- 15. Venkataraman C, Sagar AD, Habib G, Lam N and Smith KR. The Indian National Initiative for Advanced Biomass Cookstoves: The benefits of clean combustion. Energ Sustain Dev 2010:14;63-72
- 16. Improved Cooking Stove- Alternative Energy Promotion Centre. URL:www.aepc.gov.np/old/ index.php? option=com_content&view=category.
- 17. NHANES 2012. Questionnaire: Respiratory Health and Diseases. URL:www.cdc.gov/ nchs/data/nhanes/2007-2008/questionnaires/rdq07_08_eng.pdf
- 18. CPS. COPD Population Screener, DRIVE4COPD. URL:www.drive4copd.org/AreYouAtRisk/ Take the Screener.aspx
- 19. CAT. COPD Assessment Test Bangla. URL:www.catestonline.org/images/pdfs/Benga liCATest.pdf
- WHO. Household (Indoor) Air pollution, Fact sheet N°292, Updated February 2016. URL:www.who.int/mediacentre/factsheets/fs2 92/en
- Nath TK, Baul TK, Rahman MM, Islam MT and Rashid MH. Traditional Biomass Fuel Consumption by Rural Households in Degraded

Sal (Shorea Robusta) Forest Areas of Bangladesh. Int J Emerg Tech Advan Eng. 2013; 3: 537-544

- 22. Malla S and Timilsina SG. House hold Cooking Fuel Choice and Adoption of Improved Cookstoves in Developing Countries: A Review. The World Bank, Development Research Group, Environment and Energy Team. June, 2014
- Debbi S, Elisa P, Nigel B, Dan P and Eva R. Factors Influencing Household Uptake of Improved Solid Fuel Stoves in Low- and Middle-Income Countries: A Qualitative Systematic Review. Int J Environ Res. Pub Health. 2014; 11: 8228-8250
- 24. Health Impacts of Indoor Pollution. EAP Clean Stove Initiative Knowledge Exchange Series: China. Australian AID, The World Bank. URL:www.cleancookstoves.org/binarydata/RESOURCE/ file/ 000/ 000/360-1.pdf
- 25. Tielsch JM, Katz J, Thulasiraj RD, Coles CL, Sheeladevi S, Yanik EL, Rahmathullah L. Exposure to indoor biomass fuel and tobacco smoke and risk of adverse reproductive outcomes, mortality, respiratory morbidity and growth among newborn infants in South India. Int J Epid. 2009; 38:1351-1363
- 26. Alam DS, Chowdhury MA, Siddiquee AT, Ahmed S and Clemens JD. Prevalence and Determinants of Chronic Obstructive Pulmonary Disease (COPD) in Bangladesh. URL:www.tandfonline.com/toc/icop20/current
- 27. Islam MS, Hossain MM, Pasha MM, Azad AK and Murshed KM. Prevalence and risk factors of chronic obstructive pulmonary disease

(COPD) in Dhaka city population. Mymensingh Med J. 2013; 22:547-551.

- Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease, updated 2016. URL:www.goldcopd. org/global-strategydiagnosis-management-prevention-copd-2016
- WHO. Chronic Obstructive Pulmonary Disease (COPD). URL: www.who.int/respiratory/ copd/en
- Grigsby M, SiddharthanT, Chowdhury MAH, Siddique A, Rubinstein A, Sobrino E, Miranda JJ, Ortiz AB, Alam D and Checkley W. Socioeconomic status and COPD among lowand middle-income countries. Int J COPD. 2016:11 2497-2507.
- Vardhan A, Sehgal VK and Kansal AP. Impact of socio-economic status, rural background and gender on the prevalence of chronic obstructive pulmonary disease. IJMDS. 2016; 5:1247-1251.
- 32. Kanervisto M, Vasankari T b, Laitinen T, Heliovaara M, Jousilahti P and Saarelainen S. Low socioeconomic status is associated with chronic obstructive airway diseases. Resp Med. 2011; 105: 1140-1146.
- 33. Yin P, Zhang M, Li Y, Jiang Y and Zhao W. Prevalence of COPD and its association with socioeconomic status in China: Findings from China Chronic Disease Risk Factor Surveillance 2007. BMC Public Health. 2011; 11:586. URL/www. biomedcentral.com/ 1471-

2458/11/586.