ICTHYOFAUNA OF MADHUMATI RIVER AT MOHAMMADPUR, MAGURA

Md. Anichur Rahman, AHM Shafiullah Habib* Shova Saha and Mallika Saha

Department of Zoology, Faculty of Life and Earth Sciences Jagannath University, Dhaka-1100, Bangladesh

Abstract: The investigation was conducted on the present situation of fish biodiversity and abundance of fish fauna at two different points of Madhumati River at Mohammadpur upazilla under Magura district from October 2018 to September 2019. A total of 83 species of fresh water fish species were recorded belonging to 58 genera of 28 families under 11 orders. Cypriniformes was recorded as the dominant order comprising 26 species constituting 31% of the total. According to IUCN 59% of fish species were Least Concern, 12% were Vulnerable, 11% were Endangered, 9% were Near Threatened, 1% of each were Data Deficient and Critically Endangered locally, and 7% Exotic fish species were also enlisted. Annual value of Shannon diversity index (H) was 1.974 and Sipmson diversity index (λ) was 0.272 which indicate highest diversity of fish was in March. Annual Margalef's richness index (D) was 6.654 and Pielou's evenness index (E) was 0.447 denote highest richness was in November and evenness was in March. The river was found to have moderate type of diversity in terms fish species composition.

Key words: Madhumati River, fish fauna, diversity status, diversity indices, diversity richness

INTRODUCTION

Bangladesh is favoured with various inland water bodies endowed with rich diversity in fish species (Islam *et al.*, 2016). It has the third biggest aquatic fish biodiversity in Asia, after China and India, with about 800 species in fresh, brackish and marine waters (Hussain and Mazid, 2001). It enriched with fish fauna support at least 265 freshwater fin fish species under 154 genera and 55 families (Rahman, 2005). More detailed systematic account of the Inland Fisheries of the Indian Region and Adjacent countries including Bangladesh has been made by Talwar and Jhingran (1991). Bangladesh is one of the world's prominent fish producing country with a total production of 4.276 million MT in FY 2017-18 (DoF, 2018). Through this remarkable achievement Bangladesh for the first time in the history has become self-sufficient in fish production

^{*} Author for corresponding: <ahmshabib@gmail.com>

^{©2021} Zoological Society of Bangladesh DOI: https://doi.org/10.3329/bjz.v49i1.53679

providing 62.58 g of fish per person in everyday dietary consumption. Last 10 years average growth performance of this sector is 5.26%, which seems quite consistent and encouraging (DoF, 2018).

Madhumati is a very important river in Bangladesh having very wide and extensive. It is also one of the longest rivers in Bangladesh and a distributary of the Ganges flows through Kushtia, Magura, Jessore, Faridpur, Pirojpur and Khulna districts in the country. The river has been named as the Gorai in the upper part and Madhumati in the lower. The Gorai River started its course at Talbaria, north of Kushtia town and 19 km downstream from Hardinge Bridge. South of Kushtia its first branch, the Kaliganga joined with the Kumar River near Shailkupa. The main river is divided and rejoined several times as it flows southeast to Mohammadpur upazila under Magura district. From this point it changes its name to Madhumati (Banglapedia, 2014).

Works on status of freshwater fish and diversity of fish in Bangladesh have been done by Shafi and Quddus (1982), Hossain *et al.* (2013), Galib *et al.* (2013), Joadder *et al.* (2015), Islam *et al.* (2016) and Easmin *et al.* (2018), whereby checklist of fish, showing conservation status of fish and diversity of fish was made. IUCN Red list of Bangladesh (2015) reported a total of 253 fish species were assessed of which 64 species have been found threatened consisting 25.3% of the total species. Among them 9 species were evaluated as Critically Endangered (CR), 30 species as Endangered (EN), 25 species as Vulnerable (VU), 27 species as Near Threatened (NT), 122 species as Least Concern (LC) and the rest 40 species were considered Data Deficient (DD). No fish was identified as extinct or regionally extinct.

The deterioration of natural water bodies resulting from human interference due to construction of roads, deforestation, embankments, invasion to agricultural lands, indiscriminate use of pesticides and natural causes had negative impact of fish diversity in the river. It was selected for its contribution in fisheries sectors. Fish status in the river may impact on the society of the river area. The rich diversity may elucidate further fish resources in the area which may ensure the protein supply of the local people. Instead, the indiscriminate harmful techniques of fishing, use of different fishing gears threatens the biodiversity of the seasonal floodplains. In case of less diversity awareness program may be initiated alongside the river for the development of the fish fauna of the river. Hence, there is necessity to update the species checklist of fish available in the Madhumati River and present status of the fish and their diversity, richness and evenness in the river. This exploration was aimed to build up authentic information about the species available at the Madhumati River in south-west part of country.

MATERIAL AND METHODS

The Madhumati River was selected for this study to assess the fish fauna and their current status. The fish samples were collected monthly from the river during October 2018 to September 2019. Two points were selected in Magura District at Mohammadpur Upazila, which were Elangkhali Ghat (23°24'29.7"N and 89°36'16.5"E) and Jhama Bazar Ghat (23°36'03.4"N and 89°57'94.3"E). Monthly fish samples were collected from the selected spots directly from the fishermen, retailers, 'Nikari', 'Bapari' and 'Aratdar' from the two preselected sites. Some fishes were directly identified in the sampling spots and rest of the fish specimens were carried in ice box or safeguarded in 4 to 6% buffered formalin solution to the Fisheries Laboratory, Department of Zoology, Jagannath University for identification and further taxonomic study. Large fishes were easily counted and recorded but small fishes were counted using the following formula (Iqbal *et al.* 2015):

$$N = Ns \times \frac{Wt}{Ws}$$

Where, N is the total number of a fish species, Ns is number of individual small fish in each subsample, Wt is the total weight of small fish found in the sample and Ws is weight of subsample. Fish species were identified based on their morphometric and meristic characters following Fish Base (2020), Rahman (2005), Talwar and Jhingran (1991) and Bhuiyan (1964). Identified fishes were systematically arranged according to Nelson (2006). Fish status were categorized according to IUCN Redlist (2015, Volume 5: Freshwater Fish). Diversity, richness and evenness were calculated using the following formulae:

Shannon–Weaver diversity index, $H = -\Sigma Pi \ln Pi$ (Shannon–Weaver, 1949)

Simpson index, $\lambda = \Sigma P i^2$ (Simpson, 1949)

Margalef's richness index, $D = \frac{(S-1)}{\ln(N)}$ (Margalef, 1968) Pielou's evenness index, $E = \frac{H}{\ln(S)}$ (Pielou, 1966)

Where, H and λ is the diversity index, Pi is the relative abundance (n/N), , n is the number of individual for each species, N is the total number of individual, D

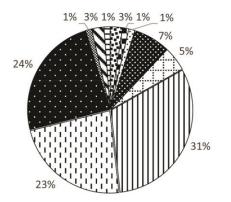
is the richness index, E is the similarity or evenness index, S is the total number of species and ln is the natural logarithm.

Statistical analysis was done with help of Microsoft Office Excel 2016.

RESULTS AND DISCUSSION

A total 83 species under 58 genera were identified belonging to 28 families under 11 orders (Table 1, Fig 7 - 89). The most dominant order was Cypriniformes comprising 31% of all the number of species recorded and the number of fish species was 26. Other dominating orders were Perciformes, Siluriformes, Clupeiformes and Channiformes which comprised 20, 19, 6 and 4 species of fish respectively. The lowest numbers of fish species representing orders were Anguiliformes, Pleuronectiformes, Synbranchiformes and Tetraodontiformes that consisted only 1 species of fish each (Fig. 1). Galib et al. (2013) reported on the fish fauna of Choto Jamuna River and a total of 63 species of fishes had been recorded under 41 genera, 23 families and 9 orders. The most dominant order was Cypriniformes comprising 34.92%, next to Cypriniformes, other dominant orders were Siluriformes, Perciformes and Synbranchiformes constituting 28.57%, 19.05% and 6.35% of species recorded respectively. Islam et al. (2016) found Perciformes as most dominant order constituting 42.62% of the total fish Siluriformes (11.48%), Clupeiformes population followed by (9.84%), Pleuronectiformes (3.29%), Synbranchiformes (3.29%), Osteoglossiformes (1.64%), Beloniformes (1.64%), Mugiliformes (4.92%), Cypriniformes (16.39%) and Tetraodontiformes (4.92%) in the Sibsa River in South-Western Bangladesh.

In family composition, the most dominant family was Cyprinidae comprising 22 species under 12 genera. The minimal number (1 species) belonged to 11 families of fish viz. Ophichthidae, Pangasiidae, Synbranchidae, Heteropneustidae, Nandidae, Mugilidae, Anabantidae, Cynoglossidae, Belonidae, Hemiramphidae, Tetraodontidae (Fig. 2). Azadi and Alam (2013) reported Cyprinidae as the most dominant family comprising 20 species and other dominant families were Gobiidae, Schilbeidae and Bagridae constituting 11, 5 and 4 species respectively in the Halda River.


According to IUCN (2015), 59% of fish species were Least Concern, 12% were Vulnerable, 11% were Endangered, 9% were Near Threatened and 1% was Data Deficiency and Critically Endangered and 7% Exotic species were also recorded (Fig. 3). Easmin *et al.* (2018) reported 77 species of fish in the Jamuna River where 59% was Least Concern (LC), 23% were Threatened including 1% Critically Endangered (CR), 12% Endangered (EN) and 10% Vulnerable (VU) species, and 5% Exotic fish was also recorded during the study period.

Order Family		Scientific Name	Local Name	English Name	Local Status	Global Status
Osteoglossiformes	Notopteridae	1. Chitala chitala	Chital	Clown knife fish	EN	NT
		2. Notopterus notopterus	Foli	Bronze feather back	VU	LC
Anguiliformes	Ophichthidae	3. Pisodonophis boro	Kharu, Hijra	Rice paddy eel	LC	LC
Synbranchiformes	Synbranchidae	4. Monopterus cuchia	Kuchia, Kuicha	Cuchia	VU	VU
Clupeiformes	Clupeidae	5. Corica soborna	Kachki	Ganges river spral	LC	LC
		6. Pellona ditchela	Choukka	Indian pellona	LC	NE
		7. Tenualosa ilisha	llish	Hilsha shad	LC	LC
	Engraulidae	8. Gudusia chapra	Chapila	Indian river shad	VU	LC
		9. Setipinna phasa	Phasa	Gangatic hairfin	LC	LC
		10. Setipinna taty	Teli phasa	anchovy Scaly hairfin anchovy	LC	NE
Channiformes	Channidae	11. Channa marulius	Gajar	Great snakehead	EN	LC
		12. Channa orientalis	Cheng	Walking snakehead	LC	LC
		13. Channa puncta	Taki	Spotted snakehead	LC	LC
		14. Channa striata	Shol	Snakehead murrel	LC	LC
Cypriniformes	Cyprinidae	15. Amblypharyngodon mola 16. Aspidoparia morar	Mola Morar, Morari	Mola carplet Aspidopara	LC VU	LC NE
		17. Barbonymus gonionotus	Thai sarpunti	Java barb	Exotic	Exotic
		18. Catla catla 19. Cirrhinus cirrhosus 20. Cirrhinus reba	Katla Mrigal Tatkini	Catla Mrigal crap Reba	LC NT NT	NE VU LC
		21. Cyprinus carpio var. carpio	Common	Common carp	Exotic	Exotic
		22. Cyprinus carpio var. nudus	carp Carpu	Common carp	Exotic	Exotic
		23. Esomus danricus 24. Hypophthalmichthys	Darkina Silver carp	Flying barb Silver carp	LC Exotic	LC Exotic
		molitrix 25. Hypophthalmichthys nobilis	Big-head	Big-head carp	Exotic	Exotic
		26. Labeo bata	carp Bata	Bata labeo	LC	LC
		27. Labeo calbasu	Kalibaus	Orange fin labeo	LC	LC
		28. Labeo rohita	Rui	Rohu	LC	LC
		29. Osteobrama cotio	Lohasur, Keti	Cotia	NT	LC
		30. Pethia conchonius	Kanchan punti Mala nunti	Rosy barb	LC	LC
		31. Pethia guganio	Mola punti	Glass barb	LC	LC
		32. Pethia ticto	Tit punti	Ticto barb	VU	LC

Order	Family	Scientific Name	Local Name	English Name	Local Status	Global Status
		33. Puntius chola 34. Puntius sophore	Chala punti Jat punti	Swamp barb Pool barb	LC LC	LC LC
		35. Salmostoma bacaila	Narkali chela	Large razorbelly minnow	LC	LC
		36. Salmostoma phulo	Fulchela	Finescale razorbelly minnow	NT	LC
	Cobitidae	37. Botia dario	Rani	Bengal loach	EN	LC
		38 .Botia lohachata	Putul	Reticulate	EN	NE
		39. Lepidocephalichthys annandalei	Gutum	Annandale Ioach	VU	LC
		40. Lepidocephalichthys guntea	Gutum	Guntea loach	LC	LC
Siluriformes	Bagridae	41. Mystus bleekeri	Gulsha tengra	Day's mystus	LC	LC
		42. Mystus cavasius	Kabashi tengra	Gangetic mystus	NT	LC
		43. Mystus tengara	Bajari tengra	Stripped dwarf catfish	LC	LC
		44. Mystus vittatus	Tengra	Asian striped catfish	LC	LC
		45. Rita rita	Rita	Rita	EN	LC
		46. Sperata aor	Ayre	Long- whiskered catfish	VU	LC
		47. Sperata seenghala	Guijja, Ayre	Giant river catfish	VU	LC
	Siluridae	48. Ompok pabda	Madhu pabda	Pabdah catfish	EN	NT
		49. Wallago attu	Boal	Freshwater shark	VU	NT
	Schilbeidae	50. Ailia coila	Kajuli, Baspata	Gangetic ailia	LC	NT
		51. Clupisoma garua	Ghaura	Garua bacha	EN	NE
		52. Eutropiichthys murius	Muri bacha	Murius vacha	LC	LC
		53. Eutropiichthys vacha	Bacha	Batchwa vacha	LC	LC
	Pangasiidae	54. Pangasius pangasius	Pangas	Pungas catfish	EN	LC
	Sisoridae	55. Bagarius bagarius	Baghair	Devil catfish	CR	NT
	Clariidae	56. Gagata cenia 57. Clarias batrachus	Cenia Magur	Indian gagata Walking	LC LC	LC LC
		58. Clarias gariepinus	African	catfish North african catfish	Exotic	Exotic
	Heteropneustidae	59. Heteropneustes fossilis	magur Shing	Stinging	LC	LC
Perciformes	Ambassidae	60. Chanda nama	Nama Chanda	Elongated glass-perchlet	LC	LC
		61. Parambassis lala	Lal chanda	Highfin glassy perchlet	LC	NE
		62. Parambassis ranga	Ranga chanda	Indian glassy fish	LC	LC
	Sciaenidae	63. Johnius coitor	Koitor poa	Coitor croaker	LC	LC
		64. Otolithoides pama	Poa	Pama croaker	LC	NE
	Nandidae	65. Nandus nandus	Bheda,	Mottled	NT	LC

Order	Family	Scientific Name	Local English Name Name		Local Status	Global Status
			Meni	nandus		
	Mugilidae	66. Rhinomugil corsula	Khorsula	Corsula mullet	LC	LC
	Gobiidae	67. Eugnathogobius oligactis	Bele	Goby	VU	LC
		68. Glossogobius giuris	Bele	Tank goby	LC	LC
		69. Oxyurichthyes microlepis	Nuna baila	Small scaled goby	LC	NE
		70. Pseudapocryptes elongatus	Chewa	Lanceolate goby	LC	LC
	Gobioididae	71. Eleotris lutea	Kuli, Goby	Lutea sleeper	DD	NE
		72. Odontamblyopus rubicundus	Lal chewa	Rubicundus Eelgoby	LC	NE
	Anabantidae	73. Anabas testudineus	Koi	Climbing perch	LC	DD
	Osphronemidae	74. Trichogaster chuna	Chuna khailsha	Dwarf gourami	LC	LC
		75. Trichogaster fasciatus	Khailsha	Banded gourami	LC	LC
		76. Trichogaster lalia	Lal Khailsha	Dwarf gourami	LC	LC
	Mastacembelidae	77. Macrognathus aculeatus	Tara baim	Lesser spiny eel	NT	NE
		78. Macrognathus pancalus	Guchi baim	Barred spiny eel	LC	LC
		79. Mastacembelus armatus	Sal baim	Zig-zag eel	EN	NE
Pleuronectiformes	Cynoglossidae	80. Paraplagusia bilineata	Kukur jeeb	Fingerlip tonguesole	LC	NE
Beloniformes	Belonidae	81. Xenentodon cancila	Kakila	Freshwater garfish	LC	NE
	Hemirhamphidae	82. Hyporhamphus limbatus	Ek thuitta	Congaturi halfbeak	LC	NE
Tetraodontiformes	Tetraodontidae	83. Leiodon cutcutia	Тера	Ocellated puffer fish	LC	LC

CR= Critically Endangered, EN= Endangered, VU= Vulnerable, NT= Near Threatened, LC= Least Concern, DD= Data Deficient, NE= Not Evaluated.

□ Osteoglossiformes □ Anguiliformes □ Synbranchiformes □ Clupeiformes □ Channiformes □ Cypriniformes □ Siluriformes ■ Perciformes ■ Pleuronectiformes ■ Beloniformes ■ Tetraodontiformes

Fig. 1. Species composition in different orders of fish.

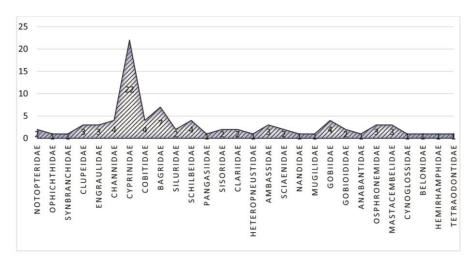


Fig. 2. Species composition of different families of fish in Madhumati River.

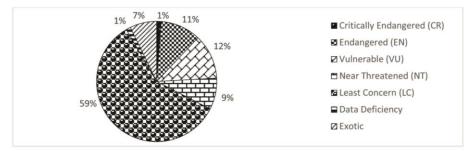
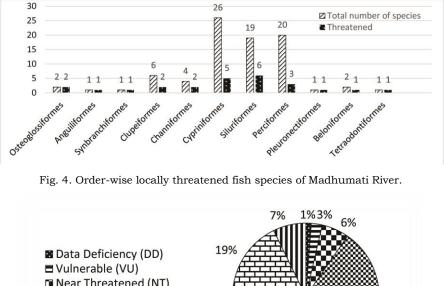



Fig. 3. Local status of fish fauna in the Madhumati River

A total 25 species of fish were found as Threatened locally where the highest number 6 representing the Siluriformes following 5 representing the Cypriniformes (Fig. 4). The lowest number of Threatened species was 1 in each order of Anguiliformes, Synbracchiformes, Beloniformes, Pleuronectiformes and Tetraodontiformes (Fig. 4). In Halda River among 83 species 3 were Critically Endangered and 8 were Vulnerable (Azadi and Alam, 2013).

On global context, 53 (64%) species of fish were Least Concern, 16 (19%) were Not Evaluated, 5 (6%) were Near Threatened, 2 (3%) were Vulnerable and 1 (1%) was Data Deficiency. Six (7%) Exotic species were also recorded in this study (Fig. 5). Joadder *et al.* (2015) working on Padma River found 72% of the total fish species to be Least Concern and global conservation status was not assessed by IUCN of 13% species.

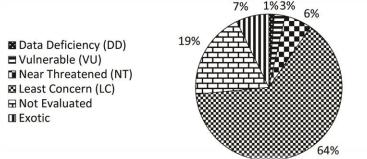


Fig. 5. Global status of fish fauna of Madhumati River.

According to Global status, 4 species of fish were recorded as Threatened among them 2 belonged to the order Perciformes and 1 of each species was found under orders Cypriniformes and Siluriformes (Fig. 6). According to Global status, two species of each were Threatened belonging to Cypriniformes and Synbranchiformes, as reported by Easmin *et al.* (2018) in the Jamuna River.

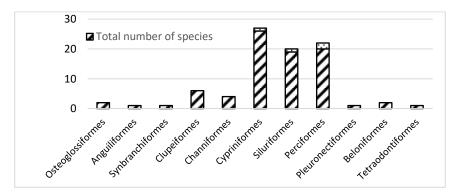
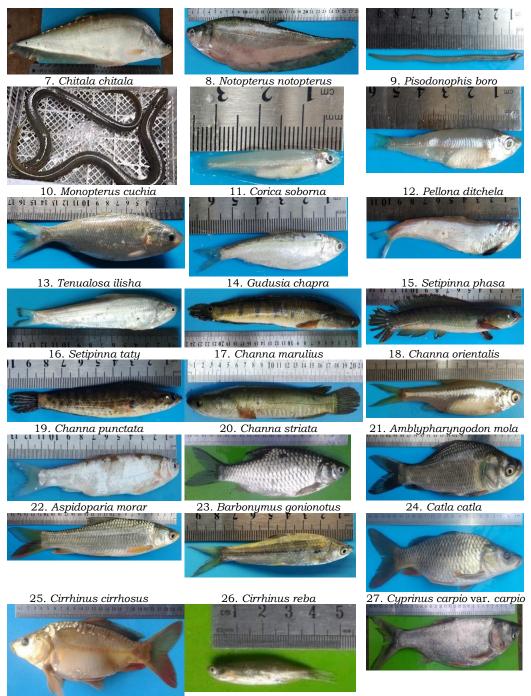


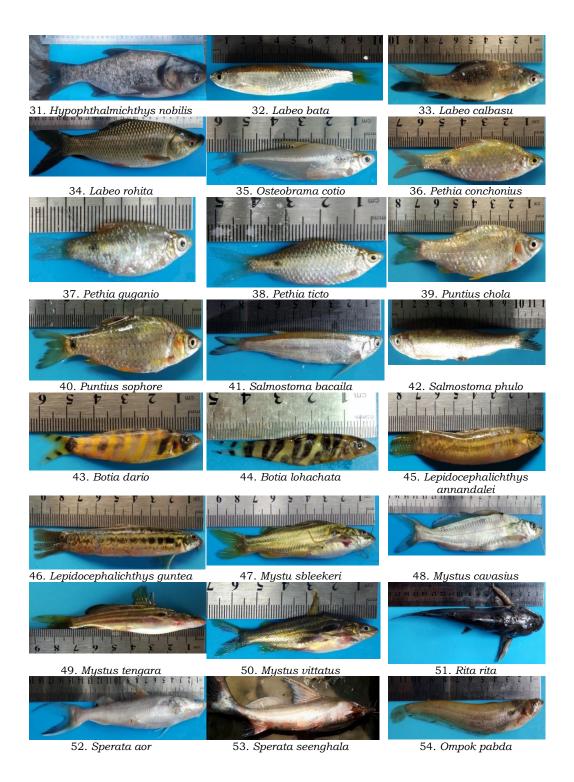
Fig. 6. Globally threatened fish species in different orders of Madhumati River.

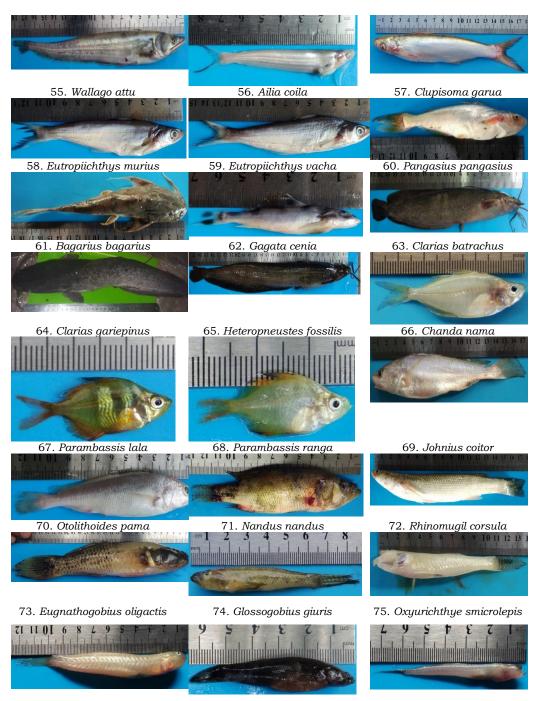
Diversity, Richness and Evenness indices of fishes in Madhumati River: Higher Shannon diversity index was found in March 2.651 and lower 1.369 in January (Table 2). The higher Shannon diversity index value indicates the higher species diversity of the area. Thus in the river highest diversity

Months	Number	Number of	Shannon	Simpson	Margalef's	Pielou's
	of	Individuals	diversity	diversity	richness	evenness
	species		index (H)	index (λ)	index (<i>D</i>)	index (<i>E</i>)
October'18	38	2489	2.177	0.180	4.732	0.594
November'18	48	19913	2.099	0.110	4.747	0.549
December'18	34	29526	1.480	0.336	3.206	0.419
January'19	34	16058	1.369	0.429	3.407	0.388
February'19	36	7476	1.920	0.245	3.924	0.531
March'19	41	26184	2.651	0.099	3.932	0.629
April'19	33	18553	1.700	0.277	3.256	0.486
May'19	32	18394	1.568	0.282	3.157	0.452
June'19	32	46463	1.393	0.313	2.884	0.402
July'19	36	11781	1.890	0.238	3.734	0.525
August'19	36	10120	1.738	0.298	3.795	0.483
September'19	40	17841	1.631	0.351	3.984	0.441
Annual	83	224798	1.974	0.272	6.654	0.447


Table 2. Different indices of fish fauna of Madhumati River

was seen in March and lowest diversity of fish was in January in the river. Highest Simpson index was 0.429 in January and lowest 0.099 in March (Table 2). Simpson index value ranges between 0 to 1 and low value represents higher diversity. So, according to Simpson's index highest diversity was observed in March and lowest in January.


Highest Margalef's Richness value was 4.747 in November and lowest in 2.884 June (Table 2). Margalef's richness index value depends on species number. Higher the species number, it expresses higher richness in that ecosystem. Highest species number was found in November and lowest species number was found in June. So, November was the highest richness and June was the lowest richness month in term of species richness.


Highest Pielou's Evenness was 0.629 in March and lowest was 0.388 in January. Pielou's evenness index value range from 0 to 1, if the value is towards 1, shows species number to be more evenly distributed. Therefore, in March the species were more evenly distributed and less evenly distributed in January.

Annual Shannon diversity index, Simpson diversity index, Richness index, Evenness Index values were 1.974, 0.272, 6.654 and 0.447 respectively (Table 2). Annual values of indices shown moderately diversified, Richest and evenly

- 28. Cyprinus carpio var. nudus
- 29. Esomus danricus
- 30. Hypophthalmichthys molitrix

- 76. Pseudapocryptes elongatus
- 77. Eleotris lutea
- 78. Odontamblyopus rubicundus

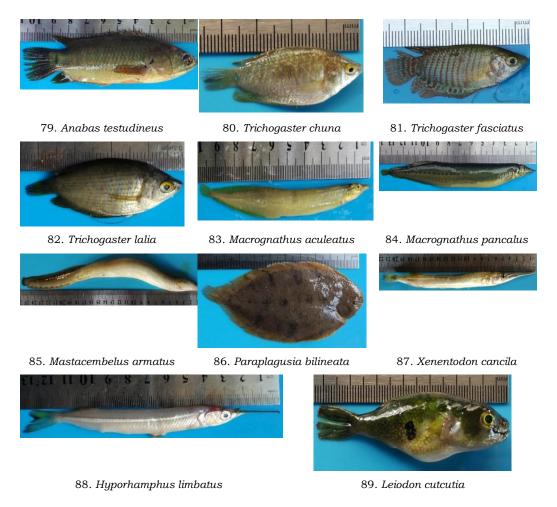


Fig. 7-89. Photographs of the fishes recorded from Madhumati River, Magura.

distributed in number respectively in the Madhumati River. Easmin *et al.* (2018) found in the Jamuna River the annual values of Shannon diversity index (*H*), Simpson index (λ), Margalef's richness index (*D*) and Pielou's evenness index (*E*) as 3.350, 0.053, 6.931 and 0.772 respectively. Overall values of diversity, richness and evenness indices were found as 3.717, 6.954 and 0.897, respectively by Galib *et al.* (2013) in Choto Jamuna River. Over all values of diversity, richness and evenness indices were found to be 1.42, 6.64 and 0.86, respectively by Rahman *et al.* (2015) in the Talma River. From this study and according to the experiences shared by some fishermen engaged fishing in this river, the fish biodiversity of the Madhumati River has declined with time due to over exploitation, natural causes such as flooding, siltation, drought and natural

calamities, construction of obstacle for fish migration and breeding and lack of social awareness.

CONCLUSION

This is a preliminary and baseline study and have some limitations. A small part of the river was considered in this study which may not reflect the exact condition of the river. This study suggests the decline trend of the existing fish fauna and degrading the biodiversity. Extensive and complete study on this river along with social impact of local people may reveal the exact condition of the river.

Acknowledgement: The authors are very grateful to National Science and Technology (NST) Fellowship Program (Fiscal year 2019-2020, merit position: 492) granted by the Government of Bangladesh supporting financially to conduct the research properly.

LITERATURE CITED

- AZADI, M.A. and ARSHAD-UL ALAM, M. 2013. Ichthyofauna of the River Halda, Chittagong, Bangladesh J. Zool. 41(2): 113-133.
- BANGLAPEDIA, 2014. National encyclopedia of Bangladesh. Asiatic society of Bangladesh.http://en.banglapedia.org/index.php?titl=Gorai-Madhumati River.
- BHUIYAN, A.L. 1964. Fishes of Dacca. Asiatic Soc. Pakistan, Publ. No. Dacca. 148 pp.
- DoF, 2018. Yearbook of Fisheries Statistics of Bangladesh, 2017-18. Fisheries Resources Survey System (FRSS), Department of Fisheries. Bangladesh: Ministry of Fisheries, 2018. Volume 35
- EASMIN, M.N., HABIB, A.H.M. SHAFIULLAH, AKTER, S. and MAJUMDER, K. 2018. Status and diversity of ichthyofauna of Jamuna River, Bangladesh. *Jagannath University Journal of Life and Earth Sciences* **4**(1) 12 24.
- FISHBASE, 2020. https://www.fishbase.se/search.php,Creative Commons Attribution-Noncommercial 3.0 Unported License. (CC-BY-NC). Visited on April 2020.
- GALIB, M.S., NASER, A.M.S., MOHSIN, M.B.A., CHAKI, N. and FAHAD, H.F. 2013. Fish diversity of the River Choto Jamuna, Bangladesh: Present status and conservation needs. *Academic Journals* 5(6): 389-395.
- HOSSAIN, S.M., DAS, G.N., SARKER, S. and RAHMAN, Z.M. 2013. Fish diversity and habitat relationship with environment variables at Meghna River estuary, Bangladesh. *Egyptian J. Aquatic Res.* 38: 213-226.
- HUSSAIN, M.G. and MAZID, M.A. 2001. Genetic improvement and conservation of carp species in Bangladesh. Bangladesh Fisheries Research Institute and International Center for Living Aquatic Resources Management, p. 74.

- IQBAL, M.M., NASREN, S., ABDULLAH-ALMAMUN, M. and HOSSAIN, M.M. 2015. Fish assemblage including threatened species in Hakaluki Haor, Sylhet, Bangladesh. J. Aqua Trop. 30(3-4): 233-246.
- ISLAM, K.M., HABIB, A.K., AHSAN, E.M., ALI. M.M. and BASAK, K.S. 2016. Fish biodiversity at Sibsa River in South-Western Bangladesh: status and conservation requirements. International J. of Fisheries and Aquatic Studies 4(1): 24-28.
- IUCN, 2015. Red list of threatened animals of Bangladesh Volume 5. IUCN, international Union for Conservation of Nature, Bangladesh Country Office, Dhaka, xvi, 360pp.
- JOADDER, R.A.M., GALIB, M.S., HAQUE, M.M.S. and CHAKI, N. 2015. Fishes of the River Padma, Bangladesh: Current trend and conservation status. *J. of Fisheries* **3**(2):259-266.
- MARGALEF, R. 1968. Perspectives in Ecological Theory. Chicago: University of Chicago Press.
- NELSON, J.S. 2006. Fishes of the World. 4th Edition, John Wiley & Sons, Hoboken, 601 pp.
- PIELOU, E.C. 1966. The Measurement of Diversity in Different Types of Biological Collections. J. of Theoretical Biology 13:131-144.
- RAHMAN, A.K.A. 2005. Freshwater fishes of Bangladesh. 2nd ed., Zool. Soc. Bangladesh, Dhaka, Bangladesh. 394 pp.
- RAHMAN, M.A., MONDAL, M.N., HANNAN, M.A. and HABIB, K.A. 2015. Present status of fish biodiversity in Talma River at Northern Part of Bangladesh, *International Journal of Fisheries and Aquatic Studies* **3**(1): 341-348.
- SHAFI, M. and QUDDUS, M.M.A. 1982. Bangladesher Matsho Sampad (Fisheries of Bangladesh, in Bengali). Bangla Academy, Dacca, Bangladesh. 444 pp.
- SHANNON, C.E. and WEAVER, W.J. 1949. The Mathematical Theory of Communication. University of Illinois Press, Urbana, 117pp.
- SIMPSON, E.H. 1949. Measurement of Diversity. Nature 163: 688.
- TALWAR, P.K. and JHINGRAN, A.G. 1991. Inland Fishes of India and Adjacent Countries. Oxford-IBH Publishing Co. Pvt. Ltd., New Delhi, 1158 p.

(Manuscript received on 26 November 2020 revised on 10 March 2021)