FURTHER OBSERVATIONS ON THE PACKED CELL VOLUME AND HAEMOGLOBIN CONCENTRATION IN CATTLE NATURALLY INFECTED WITH FASCIOCA GIGANTICA

M. M. R. Howlader, S. Begum, Kh. N. Islam1, M. A. Hal2 and M. G. Hossain3
Department of Physiology, Biochemistry and Pharmacology, Department of Anatomy and Histology, Sylhet Government Veterinary College, Tilagar, Sylhet-3100, Bangladesh

ABSTRACT
The changes on packed cell volume (PCV) and haemoglobin (Hb) in zebu cattle infected with Fasciola gigantica were studied in two age and two sex groups during the period from November 1999 to June 2000. Eighty-eight selected cattle were divided into two age groups, 2.5 to 5 years (n = 44) and 5 to 10 years (n = 44) and 2×2 sex groups; and similarly two seasons, winter (n = 22 + 2) and summer (n = 22 + 22) were used for this study. Blood samples were collected in glass tubes contained EDTA anticoagulant for each age group of all animals in summer and winter seasons. PCV was determined using microhematocrit and Hb concentration by cyanomethemoglobin methods. The PCV of F. gigantica infected cattle were significantly (p < 0.01) lower than the non-infected control animals. The average PCV obtained were 24.6% and 32.3% for F. gigantica infected and non-infected cattle, respectively. The Hb concentrations of infected cattle were significantly (p < 0.01) lower than the non-selected control animals. The average Hb values found were 7.59 and 10.13 g/dl for F. gigantica infected and non-infected cattle, respectively. There was a significant effect of age and season on the values of PCV and Hb concentrations in infected and non-infected cattle.

Key words: Zebu cattle, Fasciola gigantica, packed cell volume, haemoglobin concentration

INTRODUCTION
Fascioliasis of cattle, caused by F. gigantica is common and widespread in Bangladesh (Samad, 2000). The disease causes high economic losses through reduced production and increased mortality in cattle, sheep and goats (Kendall, 1974; Berry, 1969). This loss due to anaemia and poor production performance, condemnation of liver and mortality (Kendall, 1954; Hammond and Sevick, 1974; Fabry and Adeleye, 1983) . Numerous hematology and biochemical changes are associated with liver damage caused by liver flukes (Sinclair, 1962). The causes of anaemia in fascioliasis have been the subject of study over many years (Stephenson, 1947; Kennings et al., 1956; Pratson, 1963; Todd and Ross, 1966; Holmes et al., 1966; Berry and Dargie, 1978). It is now considered that the flukes feed on host blood. A marked increase in plasma volume occurs during the first several weeks of infection, which coincides with the rapid drop in PCV (Berry and Dargie, 1978). The adult flukes suck more blood in the hepatic tracts and there is leakage of protein through the bile duct epithelium of the host (Dargie and Berry, 1979). A continuous loss of iron into the intestine is associated with an increased plasma iron turnover rate and a reabsorption in plasma iron concentration. As a result, iron deficiency anemia develops (Berry and Dargie, 1978). To combat this problem efficiently, an understanding of the effect of this parasite on hematological parameters is essential. Although some reports on the blood picture of fascioliasis in Black Bengal goats (Nawoodan et al., 1982; Howlader and Haq, 1997) and zebu cattle (Mohani et al., 1991; Khaltiwala and Chanda, 1998) are available in indian literature, however, this paper describes the changes of PCV and Hb of naturally F. gigantica infected zebu cattle in Sirajganj district of Bangladesh.

MATERIALS AND METHODS
Eighty eight zebu cattle of two age groups of 2.5 to 5.5 and 5.0 to 9.0 years old were used in this study during the period from November 1999 to June 2000. Fecal samples were collected from a large number of zebu cattle of the study area to select the F. gigantica infected and control animals. A total of 44 zebu cattle having F. gigantica infection with faecal egg count above 400 egg / gr of faeces were included as infected group. While a total of 44 cattle apparently healthy and negative for F. gigantica and other parasites on microscopic faecal examination were excluded as non-infected control group. Faecal samples were collected directly from the rectum of each animal 30 minutes between feeds and examined using Scott's oval counting technique. Number of egg per gram of faeces was determined by examining five slides for each sample that were prepared with the emulsified faecal solution. The absence of helminth parasitic egg for three subsequent fortnightly faecal examinations was considered as gastro-intestinal parasitic free animals.

Procter address: Veterinary Surgeon, Shahjadpur Government Veterinary Hospital, Shahjadpur, Sirajganj, Bangladesh, *Maha Livestock Officer, Shahjada, Sirajganj, Bangladesh.

Copyright © 2004 Bangladesh Society for Veterinary Medicine
All rights reserved 1729-7973(04)00160-0
For each age group 22 blood samples were collected in summer (March-June) and winter (November-February) seasons. About 5 mL blood was collected from the jugular vein in glass vials containing EDTA as anticoagulant. Each blood sample collected from the study animals was analyzed in triplicates for PCV and Hb concentrations. The PCV was determined following microhematocrit and library cyanmethemoglobin methods (Coles, 1980).

A two-factor factorial experiment in a randomized complete block design was done. Seasons and age group were two factors, each with two levels. Comparisons based on the least significant difference at 5% were done between the means of infected and control group in each season and age group.

RESULTS AND DISCUSSION

Fecal examination showed 400 to 1100 F. gigantica eggs per gram of feces (epg) with a mean of 594 epg which indicated a moderate and patent chronic infection. The average PCV values of zebu cattle of two age groups in two seasons infected with F. gigantica are presented in Table 1. The PCV values of two age groups of naturally infected animals did not differ significantly (p>0.05) in summer and winter seasons. The infected group showed significantly (p<0.01) lower PCV values than the non-infected control group irrespective of age and season. This difference could be attributed to hemodilution demonstrated by the increase in plasma and blood sucking activity of the adult flukes for a considerably longer period of time. The results of this study were consistent with the observation of Berry and Daggie (1978) who found a marked drop in PCV of sheep infected with F. hepatica. Holmes et al. (1966) demonstrated that the red blood cell loss per fluke was approximately 0.5 mL per day in F. hepatica infection. In the present study, the PCV ranged from 23.90 to 33.30. This indicates that the infected animals are able to maintain a low level of PCV despite having patent chronic infections.

Table 1. Changes on PCV and Hb in cattle naturally infected with Fasciola gigantica

<table>
<thead>
<tr>
<th>S / N</th>
<th>Seasons</th>
<th>Type of animal</th>
<th>No. of cattle</th>
<th>Age of animals (years)</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.5 to 5.5</td>
<td>6.0 to 9.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PCV (%)</td>
<td>Hb (%)</td>
</tr>
<tr>
<td>1.</td>
<td>Winter</td>
<td>Infected</td>
<td>22</td>
<td>24.20%</td>
<td>7.01%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uninfected</td>
<td>22</td>
<td>31.70%</td>
<td>9.73%</td>
</tr>
<tr>
<td>2.</td>
<td>Summer</td>
<td>Infected</td>
<td>22</td>
<td>23.80%</td>
<td>7.56%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uninfected</td>
<td>22</td>
<td>32.10%</td>
<td>10.65%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>Infected</td>
<td>44</td>
<td>24.00%</td>
<td>7.29%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uninfected</td>
<td>44</td>
<td>31.90%</td>
<td>9.00%</td>
</tr>
</tbody>
</table>

*Average of 22 replications. Means in the same column with a common capital letter are not significantly (p>0.01) different. **Significant at p<0.01.*

The results of this study are in agreement with the findings of Sinclair (1962), who reported that a small number of F. hepatica in sheep did not produce clinical signs of adverse effect on the rate of live weight gain in the early stage of infection. The anaemia that developed progressed and depressed the productivity of infected animals in the longer period when there are chronic infections. In an earlier study, Sinclair (1962) found that young flukes did not produce anaemia in sheep as they live on liver tissues during their early development and migration. Cameron (1951) observed that the parasites produced a toxin which caused damage in the red blood cells, but Upadhyay et al. (1996) claimed that a sheep weighing 20 kg which infected with 200 flukes would lose 40 mL of blood per day which would develop a progressive type of anaemia in the infected animals. In the present study, however, the PCV values showed a moderately lower degree of anaemia and this could be attributed to a loss of smaller amount of blood.

The average Hb values of zebu cattle of two age groups infected with F. gigantica in two seasons are presented in Table 1. Statistical analysis showed that naturally infected animals registered significantly (p<0.01) lower Hb values than the animals in non-infected control group. There was no significant (p>0.05) difference in Hb concentrations between the two seasons within the same group of infected and non-infected animals of two age groups. On the other hand, animals of infected group registered significantly (p<0.01) lower Hb concentrations than the non-infected...
control zebu cattle of two age groups in the two seasons. This results indicate that anemia have developed in the zebu cattle infected group. In the present study, the PCV and HB concentrations stag have brought about by interference with the production of erythrocytes and by or shortening of the life span of erythrocytes that were in agreement with the findings of Sinclair (1962). The continuous drainage of iron stores and reduction in the total number of erythrocytes were thought to be responsible for reductions in haemoglobin level. A continuous production of erythrocyte depended on the presence of raw materials in the blood that circulated through the bone marrow. Adequate supplies of iron, cobalt, vitamins and protein were essential for erythropoiesis and it was possible that the anemia in fascioliasis was caused by a deficiency of one or more of these components. Sinclair (1962) found that a change in the plasma protein occurred in fascioliasis, particularly it was marked in the chronic stage of the disease. In this study, the lower HB concentrations indicated the presence of a lower plasma protein that might be inadequate for normal erythropoiesis and this might have helped to develop anemia.

In this study, all the infected animals were found suffering from chronic infections. The lower PCV and HB values could be attributed to an abnormal loss of red blood cells due to the feeding habits of the fukes or to an excessive destruction of the red blood cells caused by some hemolyzing factors produced by the fukes. Some researchers reported that blood loss caused by the feeding activities of the fukes as the main factor causing anemia in fascioliasis (Stephenson, 1947; Jeffries et al., 1956). However, Sinclair (1962) found that anemia in fascioliasis was due to some other factors. A few studies show that red blood cells contain heme (Pearson, 1954; Todd and Russ, 1963). The HB concentrations of zebu cattle of infected groups showed significantly (p < 0.05) the lower HB concentrations than the uninfected animals in control group. This could be attributed to a loss of whole blood due to fascioliasis. Dargie et al. (1967) reported a loss of whole blood took place into the gastro-intestinal tract of fuke infected animals. From this study, it may be concluded that chronic F. gigantica infection significantly lower the PCV and HB concentrations in zebu cattle.

ACKNOWLEDGEMENTS

We thank the Director General of the Bangladesh Livestock Research Institute, Savar, Dhaka, for providing the laboratory facilities at the Regional Station, Baghaira, Sirajganj, to conduct the research work.

REFERENCES

127