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Abstract 
The paper studies stability analysis for two standard finite difference schemes FTBSCS 
(forward time backward space and centered space) and FTCS (forward time and centered 
space). One-dimensional advection diffusion equation is solved by using the schemes 
with appropriate initial and boundary conditions. Numerical experiments are performed 
to verify the stability results obtained in this study. It is found that FTCS scheme gives 
better point-wise solutions than FTBSCS in terms of time step selection. 
Key words: Advection diffusion equation, Finite difference schemes, Stability condition 

 
Introduction 

The linear advection diffusion equation (ADE)  + 푢 = 퐷  is a model which describes the 

contaminant transport due to combined effect of advection and diffusion in a porous media. It is a 
parabolic type partial differential equation and is derived on the principle of conservation of mass 
using Fick’s law (Socolofsky and Jirka 2002). Stability analysis of finite difference schemes for 
the Navier-Stokes equations is obtained (Rigal 1979). An analytical solution is obtained of the one 
dimensional ADE by reducing the original ADE into a diffusion equation by introducing another 
dependent variable (Al-Niami and Ruston 1977). Analytical solution of 1D ADE with variable 
coefficients is presented in a finite domain by using Laplace transformation technique. In that 
process new independent space and time variables have been introduced (Kumeret al. 2009). 
Numerical treatment of the mathematical model is studied for water pollution. This study was 
examined by various mathematical models involving water pollutant. The authors used the 
implicit centered difference scheme in space and a forward difference scheme in time for the 
evaluation of the generalized transport equation (Agusto and Bamingbola 2007). Stability and 
convergence in fluid flow problems is presented (Morton 1971). Stability analysis of finite 
difference schemes for the advection-diffusion equation is studied (Chan 1984). A comparison of 
some numerical methods for the advection-diffusion equation is presented (Thongmoon and 
Mckibbin 2006). Stability analysis of finite difference schemes for the advection diffusion 
equation is presented (Chan 1984). An analytical solution of the advection diffusion equation for a  
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ground level finite area source is presented (Park and Baik 2008). An explicit finite difference 
scheme for solving the advection diffusion equation is studied. Numerical solution of the ADE is 
obtained by using FTBSCS and FTCS techniques for prescribed initial and boundary data. 
Numerical results for both the schemes are compared in terms of accuracy by error estimation with 
respect to exact solution of the ADE and also the numerical features of the rate of convergence are 
presented graphically (Azad et al. 2015). 
 With the above discussion in view, in the present paper, stability analysis for finite difference 
schemes FTBSCS and FTCS for solving the advection diffusion equation are presented. 
Numerical experiments are performed to verify the stability results obtained in this study. It is 
found that FTCS scheme gives better point-wise solutions than FTBSCS scheme in terms of time 
step selection. 
 
Numerical schemes for governing equation 
 The volumetric concentration of a pollutant in a moving, turbulent fluid may be described by 
the advection-diffusion equation 

휕푐
휕푡 + ∇(푢푐) = 퐷∇ 푐 

 where c(x, y, z, t) is the concentration (mass per unit volume) of pollutant at point (x, y, z) in 
Cartesian coordinates, at time t. The vector u is the fluid velocity field and D is the eddy-
diffusivity or dispersion tensor. 
 In this study, we consider one-dimensional ADE with constant velocity u and dispersion D 
which gives the 1-D advection-diffusion equation: 

, 

with initial condition                           

and mixed boundary conditions          

                 
where ca, cb are constant concentration values. 
 
Explicit finite difference scheme 
Finite difference methods involve calculating approximate values of the unknown function at a 
finite number of (mesh or grid) points in the domain. Here we let 0 = x1  xj xN+1 = l be the grid 
points in x-domain. The time is divided into equal steps of size t, with time tn - nt. Derivatives 
are approximated by truncated Taylor Series expansions. For the numerical solution of the 1-D 
ADE, we consider the IBVP 

,        (1) 
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with initial condition                

and boundary conditions         , 

              
 
Finite difference formulae 
Derivatives in the advection diffusion equation are approximated by truncated Taylor Series 
expansions, which are follows: 
 

=
∆

 (1st order forward difference in time)   (2) 

=
∆

 (1st order backward space difference formula)  (3) 

=
∆

 (1st order centered space difference formula)  (4) 

                                      and  

=
∆

 (2nd order centered space difference formula)  (5) 

 
Finite difference (FTBSCS) scheme 
Substituting equations (2), (3), (5) into equation (1) and rearranging according the time level, 
we get, 

푐 − 푐
∆푡 + 푢

푐 − 푐
∆푥 = 퐷

푐 − 2푐 + 푐
∆푥 , 

implies to  푐 = (훾 + )푐 + (1− 훾 − 2)푐 +  푐 ,                                    (6) 

where                 훾 = ∆
∆

 ,  = ∆
∆

 

 
Finite difference (FTCS) scheme 
Substituting equations (2), (4), (5) into equation (1) and rearranging according the time level, 
we get, 

푐 − 푐
∆푡 + 푢

푐 − 푐
2∆푥 = 퐷

푐 − 2푐 + 푐
∆푥 , 
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implies to     푐 = (훾/2 + )푐 + (1− 2)푐 + − +  푐 ,                                      (7) 

where               훾 = ∆
∆

 ,  = ∆
∆

 

 It is seen that the truncation errors for the forward and backward differences are of first order; 
whereas the centered difference yields a second order truncation error (using by Taylor Series 
expansions). Therefore, both the schemes outlined above are consistent. 
 Also, initial condition   c(x, 0) = 0.02e  ,            0 ≤ x < l, 
and boundary conditions    c(x = 0, t) = 0.02, 

    (x = l, t) = 0,                     0 < t ≤ T 

    implies that,  ( ,   ) ( ,   )
∆

= 0 

    c(n + 1, nx + 1) = c(n + 1, nx) 
are to be used in both the schemes stated above. 
 
 
Stability conditions for the FTBSCS scheme 
The explicit centered difference scheme for (1) is given by 

푐 = (훾 + )푐 + (1− 훾 − 2)푐 +  푐 ,      (8) 

where              훾 = ∆
∆

 ,  = ∆
∆

 

The equation (8) implies that if 
     0 ≤ 훾 +  ≤ 1   (i) 
     0 ≤ 1 − 훾 − 2 ≤ 1  (ii) 
     0 ≤  ≤ 1   (iii) 

then the new solution is a convex combination of the two previous solutions. That is, the solution 
at new time-step (n + 1) at a spatial node i is an average of the solutions at the previous time-step 
at the spatial-nodes i-1, i and i+1. This means that the extreme value of the new solution is the 
average of the extreme values of the previous two solutions at the three consecutive nodes. 
Therefore, the new solution continuously depends on the initial value 푐 , 푖 = 1, 2, 3, … … … .푀. 
    (ii) implies 훾 ≤ 1− 2 ≤ 1 +  … … … (iv) 
    (i) implies − ≤ 훾 ≤ 1−  
    ∴ − ≤ 훾 ≤ 1 − 2 by (iv) 
Therefore, the conditions are 0 ≤  ≤ 1 and − ≤ 훾 ≤ 1− 2 
That is  0 ≤ ∆

∆
≤ 1 and − ∆

∆
≤ ∆

∆
≤ 1− 2 ∆

∆
. 
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It is clear that  − ∆
∆

 is very small negative quantity which is physically impossible. So, we 

consider the stability conditions of (6) are 0 ≤ ∆
∆

≤ 1 and 0 ≤ ∆
∆

≤ 1− 2 ∆
∆

 

 
Stability conditions for the FTCS scheme 
The explicit centered difference scheme for (1) is given by 

푐 = (훾/2 + )푐 + (1 − 2)푐 + ( − 훾/2)푐              (9) 

where               훾 = ∆
∆

 ,  = ∆
∆

 

The equation (9) implies that if 
    0 ≤ 훾/2 +  ≤ 1   (i) 
    0 ≤ 1 − 2 ≤ 1   (ii) 
    0 ≤  − 훾/2 ≤ 1  (iii) 
then the new solution is a convex combination of the two previous solutions. That is, the solution 
at new time-step (n+1) at a spatial node i is an average of the solutions at the previous time-step at 
the spatial-nodes i-1, i and i+1. This means that the extreme value of the new solution is the 
average of the extreme values of the previous two solutions at the three consecutive nodes. 
Therefore, the new solution continuously depends on the initial value 푐 , 푖 = 1, 2, 3, … … … .푀. 
   (ii) implies 0 ≤  ≤    (iv) 

   (iii) implies − 1 ≤    (v) 

   (i) implies − ≤ ≤ 1−   (vi) 

From (v) & (vi),  it follows that, − ≤ ≤ 1−  

−2 ≤  ≤ 2(1 − ) 
It is clear that  − ∆

∆
 is very small negative quantity which is physically impossible. So, we 

consider the stability conditions of (7) are  
0 ≤ ∆

∆
≤   and  0 ≤ ∆

∆
≤ 2(1− ∆

∆
) 

 
 
Numerical results and discussions 
Various finite difference equations were used to approximate the parabolic model equation (1). It 
is interesting to experiment with these numerical techniques. It is hoped that by writing computer 
codes and analyzing the results, additional insights into the solution procedures are gained. 
Therefore, this section proposes an example and presents solutions by the described schemes. 
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Problem description 
In this study, we assume that spatial length, l = 18 m, D = 0.01m2/s=36 m2/h, u=0.01 m/s = 36 m/h 
, x = 0.05 mat all time, t = 1 minute to t = 6 minutes.  

 The one-dimensional advection diffusion equation for this problem  + 푢 = 퐷  

is to be solved with initial condition and boundary conditions 
    푐(푥, 0) = 0.02 × 푒 ,                         0 ≤ 푥 < 푙 
    푐(푥 = 0, 푡) = 0.02, 
    (푥 = 푙, 푡) = 0                                         0 ≤ 푡 < 푇 

Various values of time steps are to be used to investigate the numerical schemes and the effect of 
steps on stability. 
 
Results and Discussion 
Case I. In this case, both schemes are to be used as stated previously: 
The stability requirements of the FTBSCS scheme are 
0 ≤ ∆

∆
≤ 1 and 0 ≤ ∆

∆
≤ 1− 2 ∆

∆
 (The terms ∆

∆
= 훾 and  ∆

∆
= 휆 are known as the advection 

number and diffusion number, respectively.) 
 
When the time step is increased to t = 0.1, 
For this particular application, 휆 = ∆

∆
= . × .

( . ) = 0.4 

훾 =
푢∆푡
∆푥 =

0.01 × 0.1
0.05 = 0.02 

 ∆
∆

= . × .
( . ) = 0.4 ≤ 1 and  0 ≤ 0.02 ≤ 0.2 

And the stability requirements of the FTCS scheme are 

0 ≤ ∆
∆

≤   and  0 ≤ ∆
∆

≤ 2 1− ∆
∆

. 

For this particular application, 
 ∆
∆

= . × .
( . ) = 0.4 ≤  and  0 ≤ 0.02 ≤ 1.20 

 Therefore, the stability condition is satisfied, and a stable solution is expected. The 
concentration profiles for both the schemes are to be obtained up to t = 6 minutes are shown in 
Fig. 1. 



Stability analysis of finite difference schemes 149 

 
 

 
Fig. 1. Concentration profiles with x = 0.05, t = 0.1. 

 
Case II: 
When the time step is increased tot = 0.122, which is only a fraction of an increase over 
preceding cases. 
 In this case, the stability conditions of FTBSCS scheme are 

0 ≤ ∆
∆

≤ 1 and 0 ≤ ∆
∆

≤ 1− 2 ∆
∆

. 

 
For this particular application, 휆 = ∆

∆
= . × .

( . ) = 0.488 

훾 =
푢∆푡
∆푥 =

0.01 × 0.122
0.05 = 0.0244 

 ∆
∆

= . × .
( . ) = 0.488 ≤ 1 and  0 ≤ 0.0244 ≤ 0.024, which exceeds the stability 

requirement. 
 
And the stability requirements of the FTCS scheme are 

0 ≤ ∆
∆

≤   and  0 ≤ ∆
∆

≤ 2 1− ∆
∆

 

For this particular application, 
 ∆
∆

= . × .
( . ) = 0.488 ≤  and  0 ≤ 0.0244 ≤ 1.024. 
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Therefore, at this stage one of the stability conditions for FTBSCS is not satisfied, and an unstable 
solution is appeared. With the step sizes indicated, an unstable solution is developed. The velocity 
profiles are to be obtained at t = 6 minutes are shown in Figure 2. 

 
Fig. 2. Concentration profiles with x=0.05, t = 0.122 

Conclusion 
Authors have presented stability analysis and numerical solutions by using FTBSCS and FTCS 
schemes for 1D advection diffusion equation with an initial condition and two boundary 
conditions. Numerical experiment is presented graphically. In the Fig. 1, it has been found that 
FTCS scheme gives better pointwise solution than FTBSCS. Fig. 2, an unstable solution is 
appeared by using FTBSCS scheme however, the solutions by using FTCS scheme is stable at the 
increased time step size t = 0.122 and it is shown that FTCS scheme is superior to FTBSCS 
scheme interms of time step selection.  
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