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Abstract 

Longitudinal studies involves repeated observations over time on the same experimental 
units and missingness may occur in non-ignorable fashion. For such longitudinal missing 
data, a Markov model may be used to model the binary response along with a suitable 
non-response model for the missing portion of the data. It is of the primary interest to 
estimate the effects of covariates on the binary response. Similar model for such 
incomplete longitudinal data exists where estimation of the regression parameters are 
obtained using likelihood method by summing over all possible values of the missing 
responses. In this paper, we propose an expectation-maximization (EM) algorithm 
technique for the estimation of the regression parameters which is computationally 
simple and produces similar efficient estimates as compared to the existing complex 
method of estimation. A comparison of the existing and the proposed estimation methods 
has been made by analyzing the Health and Retirement Survey (HRS) data of United 
States.  
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Introduction 
Longitudinal studies are designed to collect data on every individual at each time of follow-up and 
it is very common that all responses are not observed at all occasions. This incomplete or missing 
data leads standard analysis more difficult or inappropriate to implement, consequently the 
parameter estimates may become inefficient and/or biased. When missingness occurs depending 
on the response of that time point that is, the probability of being a non-respondent depends on the 
unobserved response, the data are said to be affected by non-ignorable missingness. If the 
missingness is non-ignorable, the resulting estimates are seriously biased. 
      Several researchers have worked over the last decade in variety of ways in analyzing 
longitudinal missing data. For non-ignorable missing data, a class of log-linear models were 
introduced by Fay (1986) and Baker and Laird (1988). The maximum likelihood estimates were 
obtained by using EM algorithm. The log-linear modeling approach for contingency tables was 
extended by  Park  and  Brown (1994)  and  Green  and  Park (2003) under a Bayesian framework. 
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       For longitudinal data, Bonetti et. al.  (1999) proposed a method-of-moments estimation. This 
estimation technique is useful in some situation where likelihood maximization is problematic. 
Fitzmaurice et. al. (2001) described how bias can arise in generalized estimating  equations (GEE) 
estimators where the missingness is informative. For longitudinal binary data with non-ignorable 
drop-out, Ten Have et. al. (1998) proposed mixed effects logistic regression models and these 
models were extended to ordinal response data with multiple causes of informative drop-out by 
Ten Have et. al. (2000) in a later paper. Accommodating intermittent missingness in addition to 
monotone missingness for second order dependency, a Markov chain model was proposed by 
Huang and Brown (1999). For Longitudinal continuous data with non-ignorable non-monotone 
missingness, Troxel et. al. (1998) proposed a full likelihood method involving a Markov 
assumption regarding the correlation structure of the longitudinal outcomes. A class of semi-
parametric marginal regression models were developed by Rotnizky et. al. (1998) for handling 
non-ignorable missing mechanism. Fairclough (2002) described multiple imputation techniques 

      Cole et. al. (2005) developed a multistate Markov chain model for the analysis of longitudinal, 
categorical outcomes derived from QOL measures with the advantage over existing methods by 
allowing two or more QOL states, while accommodating both intermittent, informative 
missingness and covariate effects for first order dependency. For the purpose of inference, 
estimation of the regression parameters was carried out by a maximum likelihood method, 
summing over all possible values of the missing observations, which involves huge number of 
parameters to be estimated. Because of this and computational complexity, this inference 
procedure becomes complex and computationally intensive. Also for a data set containing very 
small number of missing observations, this approach can not produce efficient estimates of all 
regression parameters associated with the non-response model. 

      Considering the importance of the role of non-ignorable missingness in estimation, we focus 
on estimating the model parameters with informative missing values by using EM algorithm. The 
model and the inference procedure are outlined in the next sections. An application of the 
proposed estimation approach to the Health and Retirement Survey (HRS) binary data is discussed 
later.   

 

The model for longitudinal data with non-ignorable missing values 

Let,  be the time-varying p-dimensional covariate vector for  
individual at the  time point. For binary response , the transition probabilities can be 
modelled by using logistic regression as 
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where  is the set of regression parameter associated with the transition 
model from  to 1. It follows that,  

      Let ’s are the observation indicator for ith individual at t-th time such that , if 
 is observed; 0 otherwise. Under non-ignorable missing mechanism,  depends on the 

observed responses. Accordingly a common logistic regression model is assumed for the non-
response model. That is, the conditional probability that  is observed given that  is 
defined by 
 
            (2) 

 

      Following Cole et. al. (2005), for l, j = 0, 1, the non-ignorable incomplete binary data model 
may be written as  

 

        (3) 

 

      In (3), it is assumed that the likelihood for the initial state  does not depend on 
any of the parameters associated with the transition probabilities and the initial state is always 
observed and also the covariate vectors are always observed. 

      Therefore, using (1) in (3) for  , one obtains the Markov model for longitudinal 
binary data subject to non-ignorable missingness 

 
 

      In the next section, we outline the proposed estimation method for estimating , 
the two sets of parameter vectors for transition from 0 and 1, respectively. 

 

Estimation technique by EM algorithm 

Let  and denote the observed and missing components of , respectively and all the 
chains of the data is represented by y. Let,  be the vector of parameters associated 
with incomplete data model (4). Cole et. al. (2005) proposed ML estimation for the parameter 

 by maximizing the likelihood function 
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      It is clear from equation (5) that as the number of missing value increases, this likelihood 
estimation becomes complicated and computationally intensive. As an alternative, we propose EM 
algorithm approach for the estimation of the regression parameters  of (4). Assuming the 
data is complete, the conditional likelihood for the sample of chains is expressed as 

 
 

 

       Under the assumption that the parameters of these components are distinct, for the estimation 
of the parameters for the state transitions, the initial-state likelihood can be ignored and (6) takes 
the following form 

 
 

The E step of the EM algorithm sets the complete data-sufficient statistic 

 
  

     From the incomplete data, we calculate  and if 

 then in missing values we consider . But if , then 
in missing values we consider . Note that, we estimate the initial  parameters assuming 
the data as complete ignoring the missing values. 

      Once we impute the missing values in the E-step, we then maximize the likelihood (7) in the 
M-step. The score functions and the elements of the information matrix are give in equation (8) 
and (9) respectively. 

 

 
 

 
 

      Finally using the score vector and information matrix we get the estimates of the regression 
parameters by applying Newton-Raphson algorithm. 
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Analysis of HRS data 

To compare the two estimation methods discussed in previous section, we fit the Markov model 
(4) to the Mental Health Index Data taken from Health and Retirement Survey (HRS) Data by both 
approaches. The HRS is a longitudinal household survey data set for the study of retirement and 
health among the elderly in the United States that surveys more than 22,000 Americans over the 
age of 50 on subjects like health care, housing, assets, pensions, employment and disability in 
every two years at the University of Michigan in Ann Arbor. Respondents in the initial HRS 
cohort were those who born during 1931 to 1941. This cohort was first interviewed in 1992 and 
subsequently every two years and the last interview was held in 2006. Detailed on the dataset can 
be found at the the HRS website (http://hrsonline.isr.umich.edu) and in Islam et al. (2009). 
      For this study, we have considered only last two waves (follow-ups) of the study and selected 
only those individuals whose response at the first wave are complete and covariate information on 
both waves are available. In this subset of the data, there are 16504 individuals in the 1st wave and 
372 individuals responses were missing at the 2nd wave. 

      Our objective is to estimate the effect of gender ( ) and age ( ) on the dependent 
variable mental health index  by two estimation methods. This mental health index was 
derived using a score on the Center for Epidemiologic Studies Depression (CESD) scale. The 
CESD score (ranges 0 to 8) is the sum of the eight indicators such as ‘felt sad’, ‘felt alone’. 
Considering the CESD score equal to 0 as ‘no depression’ and the CESD score greater than 0 as 
‘depression’ we categorized the dependent variable. Then numerical scores 0 and 1 are assigned to 
the categories ‘no depression’ and ‘depression’ respectively.  The distribution of the selected 
individals is reported in Table 1. 
 
Table 1. Frequency distribution of Depression status by the selected covariates. 
 

  Depression Status  
  No Depression (%) Depression (%) Total 

Gender* Male 3358 (51.9) 3114 (48.1) 6472 
 Female 4185 (41.7) 5847 (58.3) 10032 

Age* <40 37 (39.8) 56 (60.2) 93 
 40-50 378 (42.2) 517 (57.8) 895 
 50-60 2028 (45.9) 2387 (54.1) 4415 
 60-70 2770 (48.8) 2910 (51.2) 5680 
 >70 2330 (43) 3091 (57) 5421 

    *p-value<0.01 
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 From the Table 1, we obtain that the proportion of depression is higher for females as 
compared to males. It is also clear that, the proportion of depression is quite large in <40, 40-50 
and >70 age intervals. Both of the covariates have significant association with depression status.  

 Estimation of the regression parameters obtained by the EM algorithm technique are reported 
in Table 2. ML estimates proposed by Cole et. al. (2005) are also reported in the same table.  

      Table 2 shows that both covariates gender and age have significant effect on transition from 
the state ‘no depression’ to ‘depression’. The covariate ‘gender’ has negative impact but the 
covariate ‘age’ has positive impact to change the status from ‘no depression’ to ‘depression’. For 
transition type ‘depression’ to ‘depression’, gender and age also have significant effects, gender 
has negative and age has positive impact to stay at the ‘depression’ state. 
 
Table 2. Estimates of the regression parameters by likelihood method and EM algorithm approach for 

the HRS incomplete data. 
 

  Likelihood Method EM Method 

 Parameter Variable Estimate SE Estimate SE 

Transitions from ‘no depression’    
β00 Intercept -1.455 0.162 -1.105 0.161 

β01 Gender -0.282* 0.051 -0.266* 0.051 

β02 Age 0.012* 0.002 0.006* 0.002 

Transitions from ‘depression’    
β10 Intercept 0.723 0.125 0.787 0.148 

β11 Gender -0.223* 0.043 -0.190* 0.052 

β12 Age 0.008* 0.002 0.007* 0.002 

Logits of observation probabilities for ‘no depression’  
η00 Intercept 2.321 1.189 - - 

η01 Gender -1.968* 0.470 - - 

η02 Age 0.054* 0.019 - - 

Logits of observation probabilities for ‘depression’  
η10 Intercept 10.225 0.539 - - 

η11 Gender 0.123 0.142 - - 

η12 Age -0.093* 0.007 - - 

*p−value<0.01. Female is used as the reference for gender 
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Table 3. Parameter estimates and standard errors under likelihood and EM algorithm approaches for 
different hypothetical samples with different missing proportions, γ.  

 

  Likelihood Method EM Method 

 Parameter Variable Estimate SE Estimate SE 

γ = 5% (n = 7440) 
β00 Intercept -1.916 0.246 -1.173 0.240 

β01 Gender -0.380* 0.077 -0.341* 0.077 

β02 Age 0.020* 0.004 0.007** 0.004 

β10 Intercept 0.268 0.186 0.397 0.220 

β11 Gender -0.257* 0.065 -0.179** 0.077 

β12 Age 0.015* 0.003 0.013* 0.003 

η00 Intercept 2.214 1.146 - - 

η01 Gender -1.977* 0.468 - - 

η02 Age 0.042** 0.018 - - 

η10 Intercept 9.307 0.559 - - 

η11 Gender 0.148 0.152 - - 

η12 Age -0.091* 0.007 - - 

γ = 15% (n = 2480)      
β00 Intercept -3.058 0.444 -1.090 0.411 

β01 Gender -0.100 0.135 -0.035 0.134 

β02 Age 0.038* 0.007 0.003 0.006 

β10 Intercept 0.055 0.341 0.451 0.395 

β11 Gender -0.423* 0.117    -0.232*** 0.140 

β12 Age 0.021* 0.005 0.016* 0.006 

η00 Intercept -0.109 1.364 - - 

η01 Gender -2.035* 0.504 - - 

η02 Age 0.064* 0.022 - - 

η10 Intercept 7.420 0.559 - - 

η11 Gender 0.069 0.158 - - 

η12 Age -0.083* 0.007 - - 

 
Female is used as the reference for gender. *p-value <0.01, **P-value<0.05 and ***p-value<0.1 
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       This finding makes sense, because, as age increases, individuals are more likely to transit 
from ‘no depression’ to ‘depression’ state (therefore positive effect for transition from 0 to 1) and 
as they reach ‘depression’ state, they remain depressed (hence effect for 1 to 1 transition model). 
On the other hand, males are psychologically stronger than females. Thus they are less likely to 
get depressed when they are not depressed (hence negative effect for transition type 0  1), and 
once they are depressed, they are less likely to remain depressed (hence negative effect for 
transition type 1  1). 

      For the observation probabilities for ‘no depression’, we observe that both of the covariates 
have significant effects on the responses to be observed. On the other hand,the result from non-
response model indicates that the chance of missing response increases as age increases. 

 From the table it is clear that the parameter estimates obtained by the proposed EM technique 
are almost equally efficient as compared to that of likelihood approach, the standard error of the 
estimates produced by two approaches are almost identical. 

 

Estimation under small and large proportion of missing data 

Here to compare the performance of estimation technique under different proportion of missing 
cases, we draw some hypothetical samples. To do so, we fix 372 missing responses and select 
random sample of size  from the remaining (16504 - 372 = 16132) individuals such that there 
are  missing responses in the sample of size n (=  + 372 ). Note that this is not a random 
sample. 

 Table 3 summarizes the estimation performance for = 5% and 15%. Irrespective of the 
missing proportion, the standard errors under both approaches are almost identical for 0→1 
transition model. On the other hand, the performance of likelihood method is slightly better than 
EM algorithm approach for 1→1 transition model, but this efficiency gain is not too much.  

 

Conclusion 

We have used an alternative EM algorithm approach of estimation of the regression parameters of 
the Markov model for longitudinal informative missing data. In a position to pick one out of two 
alternative inference methods that are equally efficient, the simple answer is to pick the one that is 
simple in theory, easy to apply and computationally less intensive. In all of these respects our 
proposed EM approach outperforms the likelihood approach proposed by Cole et. al. (2005). 
Therefore, one can avoid doing complex algebra and complicated programming algorithm by 
using our proposed EM algorithm technique accommodating both longitudinal nature of the data 
and non-ignorable missingness and get efficient estimates. 

      Further note that, in EM algorithm approach we do not need to estimate huge number of 
parameters. As we have seen, the likelihood approach requires 12 parameters including the 
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parameters for the non-response model. On the other hand, we can achieve similar efficient 
regression effect by estimating only 6 parameters. That is why the estimation procedure becomes 
more simple, takes less time for computation. But in likelihood estimation approach, this huge 
number of parameters make the whole procedure computationally inconvenient. However, 
imposing appropriate restrictions, this large parameter set can be reduced. 
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