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Abstract 
The generalized quasi-likelihood (GQL) estimation approach has been used to analyze 
the longitudinal data of four repeated count responses of 872 registered diabetic patients. 
The data on variables such as age, sex, body mass index, family history of diabetes 
(heredity), area of residence, education level and physical exercise are obtained. It was 
aimed at proposing the GQL approach for analyzing longitudinal count data and to 
determine the factors related to the visits of diabetic patients at hospital. The heredity, 
gender, area of residence, physical exercise and age < 40 years are the potential factors to 
visit the hospital. It reveals that the patients who are below 40 years old, do physical 
exercise and whose ancestors have or had diabetes visit more to the hospital than the 
patients who are between 40 and 60 years old, do not exercise and whose ancestors did 
not have diabetes, respectively but the patients who are male and live in urban area visit 
less to the hospital than the patients who are female and live in rural area, respectively. 
Key words: Diabetes mellitus, longitudinal count responses, consistent and efficient 

estimates, generalized quasi-likelihood  
 

Introduction 
Diabetes mellitus is a major public health problem worldwide. It is the most common metabolic 
disorder and non-communicable disease. The number of people with diabetes was 108 million in 
1980 but it has been raised to 422 million in 2014. In 2012, estimated deaths were 1.5 million 
which were directly caused by diabetes and another 2.2 million deaths were attributable to high 
blood glucose. World Health Organization (WHO) projects that diabetes will be the seventh 
leading cause of death by 2030. The global prevalence of diabetes among adults over 18 years of 
age has risen from 4.7% in 1980 to 8.5% in 2014 (WHO 2016). There are three quarters of people 
with diabetes live in low and middle income countries and by 2040, 1 adult in 10 (642 million) 
will have diabetes in the world. In 2015, there were 7.1 million cases of diabetes and it has the 
second largest number of adults with diabetes (5.1 million adults, 6.31%) in Bangladesh (IDF 
2015). Therefore, visiting to the hospital for checkup or treatment or controlling their diabetes 
condition may reveal opportunities to reduce premature death, disability, and household economic 
shock. 
       Imam and Hossain (2012) carried out a comparison study between urban and rural areas of 
Bangladesh for the prevalence of diabetes based on the 14789 patients using the diabetes data of 
BIRDEM. They showed that men were more prone to developing diabetes as compared to women  
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and patients whose either or both the parents were diabetic experience diabetes more than the 
others. Again the highly educated person with high annual income had the tendency to experience 
diabetes. They also revealed that the disease is more common for people who are mostly 
physically inactive, and higher blood pressure and excess body weight also contribute to incidence 
of diabetes. Khanam et al. (2014) used a competing risk hazard model for complications of 
diabetes mellitus based on the 2887 patients of BIRDEM who have at least two follow-up visits 
and who are free from complications at the first visit during the follow-up period of 1984-1997. 
They reported that increase in blood pressure is a major risk factor for coronary heart disease 
(CHD) and nephropathy in type 2 diabetes mellitus (T2DM). They also revealed that urban 
participants were more affected by CHD whereas, rural population was the most vulnerable for 
developing nephropathy. They found that male and illiterate patients are more affected by 
nephropathy and female and illiterate patients are also more influenced by cataract. Tareque et al. 
(2015) studied about hypertension and diabetes using the data of BDHS (2011). They revealed that 
people from the highest wealth quintile were significantly more likely to have hypertension, 
diabetes and the coexistence of hypertension and diabetes than people from the lowest wealth 
quintile. They also revealed that the odds of having hypertension, diabetes, and their coexistence 
were higher for older people, women, people who are engaged in less physical labor, and people 
who were overweight and obese. Rahman et al. (2015) used multilevel logistic regression models 
to identify the risk factors for diabetes awareness using the data of BDHS (2011). They found that 
participants who had a lower education and lower economic condition were less likely to be aware 
of their diabetes. Again the people in higher socio-economic status and those living in urban areas 
have higher rates of diabetes. They also reported that people with no education, lower socio-
economic status, and those who lived in disadvantaged regions in terms of education and 
economic profile (north-western part of Bangladesh) were found lacking of diagnosis, treatment, 
and control of diabetes. 
 In longitudinal data analysis, one should take into account the correlation between 
observations from the same subject. The regression estimates (s) are less efficient i.e. they are 
more widely scattered around the true population value than they would be if the within subject 
correlation was incorporated in the analysis (Diggle et al. 2002, Fitzmaurice 1995). The 
generalized estimating equation (GEE) approach was developed by Liang and Zeger (1986) and 
Zeger and Liang (1986) to produce more efficient and unbiased regression estimates for analyzing 
longitudinal or repeated measurements. This is an extension of generalized linear models, which 
facilitates regression analyses on dependent variables that are not normally distributed (McCullagh 
and Nelder 1989, Nelder and Wedderburn 1972). Sutradhar (2003) showed through a simulation 
study that GQL performs the best in estimating both the regression and the true correlation 
parameters, even though the longitudinal correlations are estimated separately by the method of 
moments. 
       Regular visit in a hospital ensures the up-to-date diabetes status and hence patient's well-being 
depends on his/her number of visits to the hospital. This is because, depending on his/her current 
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diabetes status, the patient will be able to control it by appropriate actions such as controlling diet, 
doing physical exercise etc. Therefore, risk of deteriorating health status increases for those who 
do not have regular visit. We, therefore, would like to identify the factors that are associated with 
the number of visits to the hospital, BIRDEM.  
 
Model for Longitudinal Count Data 
Consider that T repeated count responses are collected from each of K independent individuals. 
Let yi = (yi1, ..., yit, ..., yiT) denote the T repeated count responses obtained from the ith individual,    
i = 1, 2, ..., K and xit = (xit1, ..., xitj, ..., xitp) be the p × 1 vector of covariates associated with 
response yit. Let = (1, ..., j, ..., p) be the p × 1 vector of regression coefficients which we 
want to estimate and µi = (µi1, ..., µit, ..., µiT) be the T × 1 vector of mean of response yi, with µit = 
E(Yit); i = 1,2, ..., K and t = 1, 2, ..., T. Also let Let  Σi be the T × T variance - covariance matrix of 
Yt i.e. Σi = Var (Yi) = itt with Var (Yit) = itt'. Furthermore, suppose that the marginal density of 
the response yit is of the exponential family form 
  f(yit) = exp[yitit – (it) + b(yit, )]    (2.1)  
(Liang and Zeger 1986, Sutradhar 2003), where it = h(ηit) with ηit = x'it ; a(.), b(.) and h(.) of 
known functional forms and  is a possibly unknown scale parameter and  is the p × 1 vector of 
parameters of interest. In many important situations, for example, for binary and Poisson data, one 
may use  = 1. Consequently, for Poisson data, we use  = 1 in (2.1) and write the mean and the 
variance of  yit as  
 

  E(Yit) = '(it) and Var (Yit) = ''(it) 
 

Under regression setup, the most common approach assumes that the count responses follow a 
Poisson distribution. Note, however, that for rare events, Poisson regression model is also used as 
generalization of binomial distribution (Cameron et al. 1998). Under longitudinal count model, we 
assume that the response variable, number of visits, yit follows Poisson distribution with mean µit. 
Therefore,  
 

  E(Yit) = µit = Var(Yit) = exp (X'it  
 

 Furthermore, in the longitudinal setup, the components of the vector yi are repeated responses, 
which are likely to be correlated. Let C(ρ) be the T × T true correlation matrix of yi, which is 
unknown in practice. Here ρ is, say, a s×1 vector of correlation parameters which fully 
characterizes C(ρ). It is of primary interest to estimate after taking the longitudinal correlation 
structure  C(ρ)  into account.  
 
Estimation of Parameters 
Sutradhar and Das (1999) showed that even though the Liang and Zeger (1986) approach in many 
situations yields consistent estimators for the regression parameters, these estimators are usually 
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inefficient as compared to the regression estimators obtained by using the independence estimating 
equation approach. In this aspect, a recently developed methodology is generalized quasi-
likelihood (GQL) approach which was introduced by Sutradhar (2003). In the GQL approach, the 
quasi-likelihood estimator of   is the root of the score equation 
 

  
 
where Σi(ρ) is the true covariance matrix of Yi that can be expressed as Σi(ρ)= Ai

½ V (ρ) Ai
½ with Ai 

= diag (i11, ..., itt, ..., iTT)  and C(ρ)  as the true correlation matrix of Yi, ρ  being a correlation 
index parameter. To overcome the difficulty of unknown  C(ρ)  in practice, Sutradhar (2003) has 
suggested a general stationary auto-correlation structure given by 

  
where for l = 1, 2, ..., T – 1, ρl,  represents the lag l autocorrelation. The GQL estimate of   is 
then computed by solving the estimating equation  
 

  
 

where  Σi(ρ)= Ai
½C(ρ1, ..., ρl, ..., ρT – 1)Ai

½ with C(ρ1, ..., ρl, ..., ρT – 1)  as the true stationary 
correlation structure for any of the AR(1), MA(1) or equicorrelation models. It is, however, not 
necessary to know the specific form for the correlation matrix C(ρ), as this form in (2.1.2) is 
general which is valid under any of the three correlation structures. In practice ρ  is unknown, 
therefore the lag correlations can be consistently estimated by using the well known method of 
moments. For l = |t – t'|, t ≠ t' and t, t' = 1, 2, ..., T  the autocorrelation of lag l, ρl, is estimated by 
the method of moments as 
 

  
 
 [Sutradhar and Kovacevic (2000), Sutradhar (2003)], where  ỹit  is the standardized residual, 
defined as  ỹit = (yit – µit) / {itt}½.  
 The GQL estimating equation (2.1.3) for  and the moment estimate of ρl by (2.1.4) are 
solved imperatively by an iterative process until convergence. The final estimate of   obtained 
from the iterative process is referred to as the GQL estimate of  and may be denoted by . 
We may solve the estimating equation (2.1.3) for  by using Newton - Raphson iterative 
procedure.  

(2.1.1) 

(2.1.2) 

(2.1.3) 

(2.1.4) 
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Data and Variables 
We have used a follow-up data of registered patients collected by BIRDEM hospital where the 
patients visit at least two years but must visit at least one of last two years during the follow-up 
period of 1993 to 1996. In the follow-up period, we took 872 individuals (patients) with their 
various characteristics such as body mass index (BMI**), age, heredity, area of residence, 
education level, physical exercise etc. As the responses (number of visits of patients per year) are 
counts, it is appropriate to assume that the response variable marginally follows the Poisson 
distribution and the repeated counts recorded for four years will be longitudinally correlated. It is 
of scientific interest to take the longitudinal correlations into account. In the study we treat all the 
covariates as categorical variables. The covariate age is used as a categorical variable with three 
categories- age < 40, age 40 - 60 and age > 60 years. Again, gender is also a categorical variable 
with two categories- male and female, education level is used as three categories- pre-secondary, 
secondary and higher, area of residence has two categories- rural and urban, physical exercise has 
two categories-exercised and non-exercised and heredity has also two categories- heredity and 
non-heredity. We have considered rural patients as combined of rural and semi urban patients in 
the study. We treat the covariate body mass index as two categories- under-weight and over-
weight. 
 
Results 
Bivariate analysis is used to analyze the association between two variables. Thus we have used the 
one way ANOVA (analysis of variance) for bivariate analysis to know the association of the 
different characteristics of patients with their number of visits. Again the longitudinal count model 
has been used for multivariate analysis in the study to know the significant factors of number of 
visits of the patients. 
 Table 1 represents the mean and standard deviation (SD) of the visits of patients per year to 
the hospital for several categories of the selected covariates. Table 1 also incorporates p-values 
obtained by one way ANOVA F-test and p-values for pairwise comparisons (wherever applicable) 
obtained by t-test. From the p-values, we identify six variables that have significant associations 
with the number of visits. These are: heredity, gender, BMI, area of residence, education level and 
age of patients. Only one covariate physical exercise does not give the significant association with 
the number of visits. 
       It is seen that the average visits of male patients is 1.991 times per year and the average visits 
of female patients is 2.491 to BIRDEM hospital. Thus a female patient visits, on an average, more 
than a male patient to the BIRDEM hospital, which is highly significant (p-value < 0.001). 
 
 
 
**BMI is calculated using the formula = 
 

         weight (kg) 
BMI   
          [height (m)]2 
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Table 1. Summary of the visits of patients for each category of the selected covariates. 
 

Variables Category Average 
visits SD p-value Multiple comparisons p-value 

Gender Male 1.991 1.842 0.000*** - - 
 Female 2.491 2.092    
 < 40 2.571 2.206  Age < 40 vs. Age 40-60 0.000*** 
Age 40-60 2.151 1.918 0.002*** Age < 40 vs. Age > 60 0.003*** 
 > 60 2.191 1.985  Age 40-60 vs. Age > 60 0.628 

 Pre-secondary 2.361 2.079  Pre-secondary vs.  
Secondary 0.413 

Education Secondary 2.281 2.038 0.002*** Pre-secondary vs. Higher 0.001*** 
 Higher 2.091 1.873  Secondary  vs. Higher 0.028** 
Area Rural 2.231 1.980 0.016**   
 Urban 2.001 1.847    
BMI Under-weight 2.251 1.958 0.053*   
 Over-weight 2.121 1.971    
Exercise Yes 2.301 1.790 0.561   
 No 2.191 1.970    
Heredity Yes 2.251 1.961 0.058*   
 No 2.121 1.967    

 

***, ** and * indicate significance at 1, 5 and 10% levels, respectively. 

 Similarly, we may say that, on an average, the number of visits for patient who is 40 years old 
is significantly large than the patients of other age groups and the pre-secondary educated patient 
visits more than the secondary and highly educated patients. Again a rural patient visits more than 
an urban patient and a patient who is under-weight visits more than a patient who is over-weight. 
Similarly, an exercised patient visits, on an average, more than a non-exercised patient but not 
significantly and a heredity patient (whose ancestors has or had diabetes) visits, on the average, 
more than a non-heredity patient (whose ancestors did not have diabetes) to the BIRDEM hospital.  
       Table 2 represents the regression parameter estimates ( ), standard errors and corresponding 
p-values (based on Wald test) obtained by Generalized Quasi-likelihood (GQL) estimation 
approach with lag correlation estimates for the longitudinal count data obtained by BIRDEM. 
Based on Table 2, the covatiates gender, area of residence, age < 40 and heredity have highly 
significant effects (p-value < 0.01) on the response variable and the physical exercise also has 
significant effect (p-value < 0.10) on the response variable. On the other hand, age > 60, body 
mass index, secondary and higher education levels do not have significant effects (p-value < 0.1) 
on the response variable. From the regression coefficient of the covariate gender, we see that it has 
significantly negative effect on the number of visits. The negative value of  (effect of gender) = 
–0.185 suggests that the male patients visit less to the hospital than the female patients. To be 
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specific, the mean visit of a male patient to the hospital is  lower 
than that of a female patient. The variable age <40 shows the positive association with the number 
of visits. The positive value of   (effect of age < 40) = 0.178 suggests that the patients who are 
40 years old visit more to the hospital most significantly than the patients who are between 40 and 
 
Table 2. Regression estimates of the selected covariates for number of visits of patients by general 

autocorrelation based GQL approach with lag correlation estimates. 
 

Variables Categories     p-value 

(Intercept) - 0.854 0.043 0.000*** 
Gender Female     
 Male –0.185 0.034 0.000*** 
 40-60     
Age < 40 0.178 0.050 0.000*** 
 > 60 0.029 0.034 0.394 
 Pre-secondary     
Education Secondary –0.059 0.042 0.160 
 Higher –0.058 0.040 0.147 
Area Rural     
 Urban –0.135 0.047 0.004*** 
BMI Under-weight     
 Over-weight 0.016 0.031 0.606 
Exercise No     
 Yes 0.132 0.075 0.078* 
Heredity No     
 Yes 0.081 0.030 0.007*** 
Lag correlations Estimates    

 0.331    

 0.121    

 0.000    
 

*** and * indicate significance at 1 and 10% levels, respectively. 
 

60 years old. To be specific, we may say that, on an average, a patient who is 40 years old has 
19.5% higher rate of visiting the hospital as compared to that of a patient who is between 40 and 
60 years old. Again the variable age > 60 shows the positive association with the response variable 
and the positive value suggests that the age > 60 patients visit more to the hospital than the age 40-
60 patients but not significantly. From the covariate education level, we created two dummy 
variables secondary and higher education with pre-secondary as reference category. The variable 
secondary education shows the negative association with the response variable and it may be said 
that the pre-secondary educated patients visit hospital more than the secondary educated patients 
but not significantly. Again the variable higher education level shows the negative association 
with the response variable and the negative value suggests that the pre-secondary educated 
patients visit hospital more than the higher educated patients but not significantly.  
        The covariate area of residence is negatively associated with the response variable. We may 
say that the rural patients visit more to the hospital most significant than the urban patients. By 
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percentage, it may be said that the mean visit of an urban patient to the hospital is 12.6 lower as 
compared to that of a rural patient. The covariate BMI does not give the significant effect on the 
number of visits of patients but it is positively associated and the positive value suggests that the 
over-weight patients visit hospital more than the under-weight patients. The covariate physical 
exercise is positively associated with the response variable and it may be said that the mean visits 
of a patient who does physical exercise is 14.1% higher as compared to that of a patient who does 
not exercise. It is found that heredity has highly significant effect (p-value < 0.01) on the response 
variable, number of visits, to the BIRDEM hospital. From the regression coefficient, we see that it 
is positively associated with the response variable. The positive value suggests that heredity 
patients made more visit to the hospital significantly as compared to non-heredity patients. To be 
specific, we may say that, on an average, a patient whose ancestors have/had diabetes have 8.4% 
higher rate of visiting the hospital as compared to that of a patient whose ancestors did not have 
diabetes. Again, from Table 2, we notice that first lag correlation estimate of the general 
autocorrelation structure is 0.331 which is moderately large. Thus avoiding the lag correlations 
will result in inefficient regression estimates. 
 
Conclusion 
We use longitudinal count model for diabetes related data during the follow-up period of 1993-
1996. It is clear that generalized quasi-likelihood approach can be an ideal choice for analyzing the 
longitudinal data which consider the general autocorrelation structure. In longitudinal data 
analysis, estimating the effect of covariates on a response variable is often of interest while 
longitudinal correlations are typically considered as nuisance parameters. In the study, we have 
discussed the generalized quasi-likelihood (GQL) approach. The approach has been applied to the 
longitudinal count data of BIRDEM to get consistent as well as highly efficient estimates of the 
regression parameters. From the resulting regression estimates using GQL approach under a 
general autocorrelation structure among the responses of the individuals, we have found that 
heredity, gender, area of residence, physical exercise and age < 40 have significant effects on the 
response variable, number of visits, to the BIRDEM hospital and all other covariates do not have 
significant effects. So these significant factors are the potential factors to visit to the BIRDEM 
hospital. We revealed that the patients who are below 40 years old, do physical exercise and 
whose ancestors have or had diabetes visit more to the hospital than the patients who are between 
40 and 60 years old, do not exercise and whose ancestors did not have diabetes, respectively but 
the patients who are male and live in urban area visit less to the hospital than the patients who are 
female and live in rural area, respectively. Thus, we recommend to increase awareness for the 
groups who are male, live in urban area, patients who do not exercise, patients who are between 40 
and 60 years old and the patients whose ancestors did not have diabetes, so that they increase their 
visits i.e. follow-up visits to the hospital for controlling diabetes.  
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