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Abstract 
This study considers the Gaussian mixture models for clustering. Since spherical and 
diagonal models occur very rarely in practice and analysis can be simplified when these 
models are implemented, we focus on the ellipsoidal models. EM algorithm is used to fit 
these models to a real data set related to an adaptive educational electronic course. 
Misclassification rates and Bayesian Information Criteria (BIC) values are used for 
comparison. 
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Introduction 
Suppose, we have n  multivariate observations x1, x2, ..., xn, where xi = (xi1, xi2, ..., xid)', i = 1, 2, ..., 
n, is the ith observation of a d-dimensional continuous random vector (X1, X2, ..., Xd)'. Our 
problem is to divide the n  observations into K clusters (subsets) C1, C2, ..., CK  in such a way that 
observations in the same cluster are more similar to one another than the observations assigned to 
other clusters. Usually, the number of clusters K is unknown and one requires that it be estimated 
from the data.  
 There are different types of clustering algorithms available in the literature. Partition-based 
methods represent each cluster by its centre (e.g. mean vector). These algorithms choose  K  initial 
centres, and then iteratively assign the observations to the nearest centres and updates the centres 
until the assignments do not change. Examples of partition-based algorithms are K-means (Lloyd 
1957 and 1982, MacQueen 1967, Gersho and Gray 1992) and K-medoids (Kaufman and 
Rousseeuw 1990).   
 Hierarchical methods build a hierarchy of nested clusters by either agglomerative or divisive 
approaches. Agglomerative or ‘bottom up’ approaches (Ward 1963, Fernandez and Gomez 2008) 
start with each object as a cluster and recursively merges two clusters with the most similarity. 
Divisive or ‘top down’ approaches (Chavent  et al. 2007, Zhong 2008) start with all observations 
as one cluster and at each step divides the cluster with the most dissimilar observations. 
 Partition-based methods have no guarantee of convergence to the global minimum and the 
value of K has to be specified by users. On the other hand, hierarchical methods require intensive 
computation. This is why model-based methods have been proposed in the literature which 
assume that the data are generated by a mixture of K underlying probability distributions. The 
most popular model is the Gaussian mixture model (Banfield and Raftery 1993) where each 
cluster Cl is modeled by a multivariate normal distribution with mean vector µl  and variance-
covariance matrix Σi.  
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 Several spherical, diagonal and ellipsoidal models have been proposed in this general frame 
work (Banfield and Raftery 1993, Celeux and Govaert 1995) and implemented by EM algorithm 
(Fraley and Raftery 1998). Pernkopf and Bouchaffra (2005) proposed genetic-based EM algorithm 
for learning Gaussian mixture models from multivariate data which is capable of selecting the 
number of components of the model using the minimum description length criterion. Dongbing 
(2008) used a distributed EM algorithm, a stochastic approximation to the standard EM algorithm, 
for Gaussian mixtures in sensor networks.  
 The objective of this study is to compare the performance of several Gaussians mixture 
models. EM algorithm is used to fit these models to a real data set related to an Adaptive 
Educational Electronic Course obtained from UCI machine learning repository. Misclassification 
rates and Bayesian Information Criteria (BIC) values are used for comparison.  
 

Gaussian mixture models 
Mixture models for clustering assume that the data are generated by a finite mixture of underlying 
probability distributions. Suppose the data set ×  consists of n  independent multivariate observa-
tions xi  to be divided into K  clusters C1, C2, ..., CK.  The likelihood for the mixture model is 

 
where fk  and θk  are the density and parameter-vector of the k th cluster, and πk  is the probability 
that an observation belongs to the k th cluster. 
 In the Gaussian mixture model, each cluster CK is modeled by the multivariate normal 
distribution with mean vector  µk and covariance matrix Σk. That is,  

 
 
 The shape, volume and orientation of each cluster  Ck is determined by the covariance matrix  
Σk. Banfield  and Raftery (1993) separated by the above mentioned geometric features of a cluster 
by representing the covariance matrix in terms of its Eigen value decomposition as follows: 
    Σk = λkDkAkD'k,  
 where Dk is the orthogonal matrix of eigenvectors, Ak is a diagonal matrix whose diagonal 
elements are proportional to the eigenvalues of Σk, and λk  is a scalar. The matrix Dk determines the 
orientation of cluster, Ak determines the shape, and λk  determines its volume. Table 1 presents a 
list of Gaussians mixture models that can be obtained by varying one or more parameters. Clearly, 
EII is the most constrained model because it restricts DkAkD'k to the identity matrix I  and assumes 
λk = λ for all clusters. The unconstrained model VVV allows all of  Dk, Ak  and λk  to vary between 
clusters. The unconstrained model has the advantage that it is the most general model, but the 
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number of parameters (that need to be estimated) is the largest. The other ellipsoidal models have 
fewer parameters.          
 

Table 1. List of Gaussian mixture models 
 

Name Model Distribution Volume Shape Orientation 

EII λI Spherical Equal Equal NA 
VII λkI     " Variable Equal NA 

EEII λA Diagonal Equal Equal Coordinate axes 
VEI λkA    " Variable Equal Coordinate axes 
EVI λAk    " Equal Variable Coordinate axes 
VVI λkAk    " Variable Variable Coordinate axes 
EEE λDAD' Ellipsoidal Equal Equal Equal 
EEV λDkAD'k    " Equal Equal Variable 
VEV λkDkAD'k    " Variable Equal Variable 
VVV λkDkAkD'k    " Variable Variable Variable 

 

 Fig. 1 shows the four ellipsoidal models in the case of four clusters. The model EEE, for 
example, considers that each cluster is ellipsoidal, but all the four ellipsoids (representing the four 
clusters) have equal volume, shape and orientation. 
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Fig. 1. The four ellipsoidal models in the case of four clusters. 

 Since spherical and diagonal models occur very rarely in practice and analysis can be very 
simplified when these models are implemented, we focus on the ellipsoidal models in our study.  
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 The ellipsoidal mixture models can be fitted to clustered data by the Expectation-
Maximization (EM) algorithm (Fraley and Raftery 1998) which is presented in the next section. 
 

The EM algorithm 
The Expectation-Maximization (EM) algorithm is usually employed to fit a model when data 
contain missing values. The algorithm first replaces the missing vlaues by some ‘initial values’ 
and fits the model to the ‘complete data’. Then the algorithm alternates between the E-step (where 
the missing values are replaced by values expected under the current model) and the M-step 
(where the model is fitted again by maximizing the likelihood). The algorithm stops when the 
estimates of two successive iterations are very close.  
 In the clustering problem, we do not know which cluster an observation belongs to. In that 
sense, clustering data contain missing vlaues, where all the values of the clustering variable are 
‘missing’. Therefore, the EM algorithm can be used to obtain the estimates of these missing 
values. 
 In order to fit a particular Gaussian Mixture Model, the desired number of clusters K  is 
specified. Then the model parameters πk, µk, Σk, k = 1, 2, ..., K,   are estimated by the EM 
algorithm. To implement the EM algorithm, we require the initial estimates of the model 
parameters which are obtained either arbitrarily or by implementing a hierarchical clustering 
algorithm. Then the Expectation step (E-step) and the Maximization step (M-step) alternate until 
convergence. The E-step estimates the conditional probability of each observation belonging to 
each cluster, given the current parameter estimates. The M-step estimates the model parameters 
given the current conditional probabilities of the class occurrence. The two steps are elaborated 
below: 
 1. E-step: Compute the conditional probabilities  πik = P(C = K I xi),  which is proportional to 

P (C = k) f (xi I C = k) = πkfk(xi I µk, Σk). 
 
 2. M-step: Compute new estimates of  πk, µk, Σk   as follows: 

    

    

    
 
 In order to select the number of clusters K  and the covariance structure, the Bayesian 
Information Criteria (BIC) (Schwarz 1978) is used. BIC is the value of the maximized log-
likelihood with a penalty for the number of parameters in the model. The value of K  is varied 
from 1 to 9 and the model with the largest BIC score is selected. 
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 In the next section, we fit different mixture models to domain-dependent data of students’ 
educational activities and classify their knowledge level using the EM algorithm.  
 
Application: Web-based education 
One of the main goals in machine learning is to develop an alrogithm that can best classify a user 
into one among different possible categories. User-models are commonly used in interactive 
systems, where the system adapts its behavior  according to users specific needs.  Based on the 
aquired information from the user, the user-model classifies the user as one of the  K  possible 
categories according to which an interactive system adapts its behavior. In web-based adaptive 
courses, a user-model collects students’ data and use them to predict (classify) their knowledge 
level about the course.  
 In this paper, we analyse students data (n = 258) related to an Adaptive Educational 
Electronic Course (AEEC) obtained from the machine learning repository of the University of 
California Irvine (http://archive.ics.uci.edu/ml). Kahraman et al. (2013) proposed a user-model 
where K NN classifier is used combined with weights of the predictors to classify users knowledge 
status of the course. The objective of this paper is to use a classifier that fits different mixture 
models using EM algorithm and compare the predicted knowledge levels of students enrolled in 
AEEC with that of Kahraman et al. (2013). Similar to Kahraman et al. (2013), we use five 
predictors, namely degree of study time for AEEC (STG), degree of repetition number (SCG), 
performance in exams (PEG), degree of study time in prerequisite objects (STR) and learning 
status of prerequisite objects (LPR), where STG, SCG and PEG are the features about learning 
objects and others are the features about the prerequisite objects. The domain dependent data on 
these five features are obtained by real-valued functions over the range of 0 to 1. The response of 
the user-model is the student’s current knowledge level which can be any one of 4 levels, high, 
medium, low and very low.   
 While we fitted four different mixture models to the data, only EEE  identified that the data 
has 4 clusters. All of the three other models indicate the data to have only 3 clusters. To compare 
the results with that of Kahraman et al. (2013), we compute percentage-mismatch. Suppose for a 

given xi, ,   and  denote that the i th unit has been classified into cluster j by the 
weighted  KNN method of Kahraman et al. (2013) and EM estimation method, respectively. We 

say that a mismatch for i th unit occurs if . Thus the percentage-mismatch is 
computed as  
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 Table 2 presents the percentage-mismatches observed for four different models fitted by the 
EM algorithm. EEV  has the smallest mismatch percentage, whereas all other percentages are 
approximately the same. The table also shows the Bayesian Information Criteria (BIC) values for 
the four fitted models. According to the BIC values,  EEE  is the best model for the AEEC data.  
 
Table 2. A comparison of the ellipsoidal mixture models.  
 

Criteria Model 

 EEE EEV VEV VVV 

Mismatch (%) 31.78 30.62 31.78 31.40 
BIC values          151.57 86.87 78.24 46.47 

 
Conclusion 
This paper investigates the performance of several Gaussian Mixture Models. The spherical and 
diagonal models are not interesting from the practical point of view. Therefore, we focus on the 
ellipsoidal models EEE, EEV, VEV and VVV.  The models are applied to a real data set related to 
an Adaptive Educational Electronic Course obtained from UCI machine learning repository. Only 
EEE  identifies correctly that the data have 4 clusters, and the BIC value for this model is the 
largest. On the other hand, EEV  is the best model with respect to the misclassification rate. This 
indicates that model selection based on BIC scores does not guarantee the best model with respect 
to other criteria.     
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