JORDAN HIGHER DERIVATIONS IN PRIME Γ -RINGS

M. M. Rahman* and A. C. Paul¹

¹Department of Mathematics, Jagannath University, Dhaka, Bangladesh.

Abstract

The objective of this paper is to study Jordan higher derivations in prime Γ -rings. We introduce a higher derivation and a Jordan higher derivation in Γ -rings. For a 2-torsion free prime Γ -ring M which satisfies the condition $a\alpha b\beta c=a\beta b\alpha c$ for all $a,b,c\in M$ and $\alpha,\beta\in\Gamma$, we prove that every Jordan higher derivation $D=(d_i)_{i\in N_0}$ of M is a higher derivation of M.

Keywords: Higher derivation, Jordan higher derivation, prime Γ -ring.

Introduction

We begin with the general definition of a Γ -ring. The notion of a Γ -ring was introduced by Nobusawa (1964) and generalized by Barnes (1966) as defined below. Let M and Γ be additive abelian groups. If there is a mapping $M \times \Gamma \times M \to M$ such that the conditions

- $(x + y)\alpha z = x\alpha z + y\alpha z, x(\alpha + \beta)y = x\alpha y + x\beta y, x\alpha(y + z) = x\alpha y + x\alpha z;$
- $(x\alpha y)\beta z = x\alpha(y\beta z)$

are satisfied for all $x, y, z \in M$, $\alpha, \beta \in \Gamma$, then M is called a Γ -ring. This concept is more general than that of a ring. From the definition it is clear that every ring is a Γ -ring but the converse is not necessarily true. A Γ -ring M is 2-torsion free if 2a=0 implies a=0 for all $a \in M$; M is called a *prime* Γ -ring if for all $a,b \in M$, $a\Gamma M\Gamma b=0$ implies a=0 or b=0.

The concepts of derivation and Jordan derivation of a Γ -ring have been introduced by Sapanci and Nakajima (1997). For classical ring theory, Herstien (1957) proved a well known result that every Jordan derivation of a 2-torsion free prime ring is a derivation. Bresar (1988) proved this result for semiprime rings. Sapanci and Nakajima (1997) proved the same result for completely prime Γ -rings. Haetinger (2002) worked on higher derivations on prime rings and extended this result to Lie ideals in a prime ring. In this article, we introduce a higher derivation and a Jordan higher derivation in Γ -rings. We extend the result of Cortes and Haetinger (2005) concerning Jordan higher derivations in prime Γ -rings. We prove that every Jordan higher derivation of a 2-torsion free prime Γ -ring satisfying the condition $a\alpha b\beta c = a\beta b\alpha c$ for all $a,b,c\in M$ and $\alpha,\beta\in\Gamma$, is a higher derivation of M.

Corresponding author e-mail: <mizanorrahman@gmail.com>. 1Department of Mathmatics, University of Rajshahi, Rajshahi, Bangladesh.

Throughout the article, we assume the condition $a\alpha b\beta c = a\beta b\alpha c$ for all $a,b,c\in M$ and $\alpha,\beta\in\Gamma$ and refer it to by (*).

Jordan Derivations in a Prime Γ -ring

The notions of derivation and Jordan derivation of Γ -rings have been introduced by Sapanci and Nakajima (1997) as follows.

Definition 1. For a Γ -ring M, if $d:M\to M$ is an additive mapping such that $d(a\alpha b)=d(a)\alpha b+a\alpha d(b)$ holds for all $a,b\in M$ and $\alpha\in\Gamma$, then d is called a derivation of M; d is called a Jordan derivation of M if $d(a\alpha a)=d(a)\alpha a+a\alpha d(a)$ holds for all $a\in M$ and $\alpha\in\Gamma$.

First, we show that every Jordan derivation of a 2-torsion free prime Γ -ring is a derivation. For this purpose we prove the following Lemmas.

Lemma 1. Let M be a Γ -ring, and let d be a Jordan derivation of M. Then for all $a,b,c\in M$ and $\alpha,\beta\in\Gamma$, the following statements hold:

- (i) $d(a\alpha b + b\alpha a) = d(a)\alpha b + d(b)\alpha a + a\alpha d(b) + b\alpha d(a)$
- (ii) $d(a\alpha b\beta a + a\beta b\alpha a) = d(a)\alpha b\beta a + d(a)\beta b\alpha a + a\alpha d(b)\beta a + a\beta d(b)\alpha a + a\alpha b\beta d(a) + a\beta b\beta d(a)$.

In particular, if M is 2-torsion free and satisfies the condition (*), then

- (iii) $d(a\alpha b\beta a) = d(a)\alpha b\beta a + a\alpha d(b)\beta a + a\alpha b\beta d(a)$
- (iv) $d(a\alpha b\beta c + c\alpha b\beta a) = d(a)\alpha b\beta c + d(c)\alpha b\beta a + a\alpha d(b)\beta c + c\alpha d(b)\beta a + a\alpha b\beta d(c) + c\alpha b\beta d(a).$

Proof. Compute $d((a+b)\alpha(a+b))$ and cancel the like terms from both sides to obtain (i). Then replace $a\beta b + b\beta a$ for b in (i) to get (ii). Using the condition (*), and since M is 2-torsion free, (iii) follows from (ii). Finally, (iv) is obtained by replacing a+c for a in (iii).

Definition 2. Let d be a Jordan derivation of a Γ -ring M. Then for all $a,b \in M$ and $\alpha \in \Gamma$, we define $\phi_{\alpha}(a,b) = d(a\alpha b) - d(a)\alpha b - a\alpha d(b)$. Thus $\phi_{\alpha}(b,a) = d(b\alpha a) - d(b)\alpha a - b\alpha d(a)$. **Lemma 2.** Let d be a Jordan derivation of a Γ -ring M. Then for all $a,b,c \in M$ and $\alpha,\beta \in \Gamma$, the following statements hold:

(i)
$$\phi_{\alpha}(a,b) + \phi_{\alpha}(b,a) = 0$$
; (ii) $\phi_{\alpha}(a+b,c) = \phi_{\alpha}(a,c) + \phi_{\alpha}(b,c)$

(iii)
$$\phi_{\alpha}(a,b+c) = \phi_{\alpha}(a,b) + \phi_{\alpha}(a,c)$$
; (iv) $\phi_{\alpha+\beta}(a,b) = \phi_{\beta}(a,b) + \phi_{\beta}(a,b)$.

Proof. Obvious.

Remmark 1. d is a derivation of a Γ -ring M if and only if $\phi_{\alpha}(a,b) = 0$ for all $a,b \in M$ and $\alpha \in \Gamma$.

Lemma 3. Let M be a 2-torsion free Γ -ring satisfying the condition(*), and let d be a Jordan derivation of M. Then $\phi_{\alpha}(a,b)\beta m\gamma[a,b]_{\alpha}+[a,b]_{\alpha}\beta m\gamma\phi_{\alpha}(a,b)=0$ for all $a,b,m\in M$ and $\alpha,\beta,\gamma\in\Gamma$.

Proof. For any
$$a,b,m \in M$$
 and $\alpha,\beta,\gamma \in \Gamma$, by using Lemma 1(iv), we have
$$d(a\alpha b\beta m\gamma b\alpha a + b\alpha a\beta m\gamma a\alpha b) = d((a\alpha b)\beta m\gamma b\alpha a + (b\alpha a)\beta m\gamma (a\alpha b))$$
$$= d(a\alpha b)\beta m\gamma b\alpha a + a\alpha b\beta d(m)\gamma b\alpha a + a\alpha b\beta m\gamma d(b\alpha a),$$
$$+ d(b\alpha a)\beta m\gamma a\alpha b + b\alpha a\beta d(m)\gamma a\alpha b + b\alpha a\beta m\gamma d(a\alpha b)$$

On the other hand, by using Lemma 1 (iii)

$$d(a\alpha(b\beta myb)\alpha a + b\alpha(a\beta mya)\alpha b) = d(a\alpha(b\beta myb)\alpha a) + d(b\alpha(a\beta mya)\alpha b)$$

$$= d(a)\alpha b\beta myb\alpha a + a\alpha d(b\beta myb)\alpha a + a\alpha b\beta myb\alpha d(a)$$

$$+ d(b)\alpha a\beta mya\alpha b + b\alpha d(a\beta mya)\alpha b + b\alpha a\beta mya\alpha d(b)$$

$$= d(a)\alpha b\beta myb\alpha a + a\alpha d(b)\beta myb\alpha a + a\alpha b\beta d(m)yb\alpha a$$

$$+ a\alpha b\beta myd(b)\alpha a + a\alpha b\beta myb\alpha d(a) + d(b)\alpha a\beta mya\alpha b + b\alpha d(a)$$

$$\beta mya\alpha b + b\alpha a\beta d(m)ya\alpha b + b\alpha a\beta myd(a)\alpha b + b\alpha a\beta mya\alpha d(b).$$

Comparing the two relations and using the Definition 2, we obtain

$$\phi_{\alpha}(a,b)\beta m\gamma b\alpha a + \phi_{\alpha}(b,a)\beta m\gamma a\alpha b + a\alpha b\beta m\gamma \phi_{\alpha}(b,a) + b\alpha a\beta m\gamma \phi_{\alpha}(a,b) = 0.$$

This implies that

$$\phi_{\alpha}(a,b)\beta m\gamma[a,b]_{\alpha} + [a,b]_{\alpha}\beta m\gamma\phi_{\alpha}(a,b) = 0, \forall a,b,m \in M \text{ and } \alpha,\beta,\gamma \in \Gamma$$

Lemma 4. Let M be a 2-torsion free prime Γ -ring and let $a,b\in M$. If $a\alpha m\beta b+b\alpha m\beta a=0$ for all $m\in M$, $\alpha,\beta\in\Gamma$, then a=0 or b=0.

Proof. Replacing m by $s\delta a\mu t$ in $a\alpha m\beta b + b\alpha m\beta a = 0$, we have $a\alpha s\delta a\mu t\beta b + b\alpha s\delta a\mu t\beta a = 0$.

Now
$$b\alpha s\delta a = -a\alpha s\delta b$$
 and $a\mu t\beta b = -b\mu t\beta a$. Substituting these we get $-a\alpha s\delta b\mu t\beta a - a\alpha s\delta b\mu t\beta a = 0$. $\Rightarrow 2a\alpha s\delta b\mu t\beta a = 0$.

As M is 2-torsion free, so $a \alpha s \delta b \mu t \beta a = 0$.

Therefore, $(a\alpha s \delta b)\Gamma M\Gamma a = 0$. As M is prime, so $a\alpha s \delta b = 0$ or a = 0.

Suppose $a \alpha s \delta b = 0$. Again applying the primeness of M, we have a = 0 or b = 0.

Theorem 1. Let M be a 2-torsion free prime Γ -ring satisfying the condition (*), and let d be a Jordan derivation of M. Then d is a derivation of M.

Proof. By Lemma 3 and Lemma 4, and M being prime, we have

$$\phi_{\alpha}(a,b) = 0 \text{ or } [a,b]_{\alpha} = 0.$$

If $[a,b]_{\alpha}=0$ for all $a,b\in M$, $\alpha\in\Gamma$, then $a\alpha b=b\alpha a$. Using this in Lemma 1(i), we have $2d(a\alpha b)=2d(a)\alpha b+2a\alpha d(b)$. Since M is 2-torsion free, we obtain d is a derivation of M. If $\phi_{\alpha}(a,b)=0$, then d is also a derivation of M.

Jordan Higher Derivations in Prime Γ -Rings

We introduce higher derivation and Jordan higher derivation of Γ -rings in the following way.

Definition 3. Let $D=(d_i)_{i\in N_0}$ be a family of additive mappings of a Γ -ring M such that $d_0=id_M$, where id_M is an identity mapping on M and $N_0=N\cup\{0\}$. Then D is a higher derivation of M if for each $n\in N_0$ and $i,j\in N_0$,

$$d_{n}(a\alpha b)=\sum_{i+j=n}d_{i}(a)\alpha d_{j}(b),\,holds\,\,for\,\,all\,\,a,b\in M\,;\alpha\in\Gamma,$$

D is a Jordan higher derivation of M if

$$d_n(\alpha\alpha a) = \sum_{i+j=n}^{\infty} d_i(\alpha)\alpha d_j(\alpha), \ holds \ for \ all \ \alpha \in M; \alpha \in \Gamma.$$

Example 1. Let R be an associative ring with 1. Let us consider $M = M_{1,2}(R)$ and

$$\Gamma = \left\{ \begin{pmatrix} n.1 \\ 0 \end{pmatrix} : n \in \mathbb{Z} \right\}, \text{ then } M \text{ is a } \Gamma \text{-ring. Let } f_n : R \to R \text{ be a higher derivation for each } 1$$

 $n \in N_0$. For $n \in N_0$, we define additive mappings $d_n : M \to M$ by $d_n((a,b)) = (f_n(a), f_n(b))$. Then an easy verifications leads to us that d_n is a higher derivation of M. Let $P = \{(a,a) : a \in R\}$, then P is a Γ -ring contained in M. In fact, P is a sub Γ -ring. Define $d_n((a,a)) = (f_n(a), f_n(a))$, then d_n is a Jordan higher derivation of P.

Lemma 5. Assume that $D = (d_i)_{i \in N}$ is a Jordan higher derivation of M. Then for all $a,b,c \in M$; $\alpha,\beta \in \Gamma$ and $n \in N$,

(i)
$$d_n(a\alpha b + b\alpha a) = \sum_{i+j=n} [d_i(a)\alpha d_j(b) + d_i(b)\alpha d_j(a)];$$

(ii)
$$d_n(a\alpha b\beta a) = \sum_{i \neq k-n} [d_i(a)\alpha d_i(b)\beta d_k(a)];$$

(iii)
$$d_n(a\alpha b\beta c + c\alpha b\beta a) = \sum_{i+j+k=n} [d_i(a)\alpha d_j(b)\beta d_k(c) + d_i(c)\alpha d_j(b)\beta d_k(a)].$$

Proof. The proofs of (i) and (ii) are similar to the proofs of Lemma 1(i) and Lemma 1(iii). Replacing a by a+c in (ii) and using (ii), we obtain

$$W = d_n((a+c)\alpha b\beta(a+c)) = \sum_{i+j+k=n} d_i(a+c)\alpha d_j(b)\beta d_k(a+c)$$

$$= \sum_{i+j+k=n} (d_i(a) + d_i(c))\alpha d_j(b)\beta (d_k(a) + d_k(c)) = \sum_{i+j+k=n} d_i(a)\alpha d_j(b)\beta d_k(a)$$

$$+\sum_{i+j+k=n}d_i(a)\alpha d_j(b)\beta d_k(c) + \sum_{i+j+k=n}d_i(c)\alpha d_j(b)\beta d_k(a) + \sum_{i+j+k=n}d_i(c)\alpha d_j(b)\beta d_k(c).$$

Also, we have

$$\begin{split} W &= d_n(a\alpha b\beta a + a\alpha b\beta c + c\alpha b\beta a + c\alpha b\beta c) \\ &= d_n(a\alpha b\beta a) + d_n(c\alpha b\beta c) + d_n(a\alpha b\beta c + c\alpha b\beta a) \\ &= \sum_{i+j+k=n} d_i(a)\alpha d_j(b)\beta d_k(a) + \sum_{i+j+k=n} d_i(c)\alpha d_j(b)\beta d_k(c) + d_n(a\alpha b\beta c + c\alpha b\beta a). \end{split}$$

By comparing the two expressions for W, we obtain (iii).

Definition 4 For any Jordan higher derivation $D=(d_i)_{i\in N}$ of M, we define $\phi_n^\alpha(a,b)=d_n(a\alpha b)-\sum_{i+j=n}d_i(a)\alpha d_j(b) \text{ for all } a,b\in M \text{ ; }\alpha\in\Gamma \text{ and } n\in N.$

Remmark 2. D is a higher derivation of M if and only if $\phi_n^{\alpha}(a,b) = 0$ holds for all $a,b \in M$; $\alpha \in \Gamma$ and $n \in N$.

Lemma 6. For every $a,b,c \in M$; $\alpha,\beta \in \Gamma$ and $n \in N$,

(i)
$$\phi_n^{\alpha}(a,b) + \phi_n^{\alpha}(b,a) = 0;$$
 (ii) $\phi_n^{\alpha}(a+b,c) = \phi_n^{\alpha}(a,c) + \phi_n^{\alpha}(b,c)$
(iii) $\phi_n^{\alpha}(a,b+c) = \phi_n^{\alpha}(a,b) + \phi_n^{\alpha}(a,c);$ (iv) $\phi_n^{\alpha+\beta}(a,b) = \phi_n^{\alpha}(a,b) + \phi_n^{\beta}(a,b).$

Proof. (i) By Definition 4 and using Lemma 5(i), we obtain

$$\begin{split} \phi_n^\alpha(a,b) + \phi_n^\alpha(b,a) &= d_n(a\alpha b) - \sum_{i+j=n} d_i(a)\alpha d_j(b) + d_n(b\alpha a) - \sum_{i+j=n} d_i(b)\alpha d_j(a) \\ &= d_n(a\alpha b + b\alpha a) - \sum_{i+j=n} d_i(a)\alpha d_j(b) - \sum_{i+j=n} d_i(b)\alpha d_j(a) \\ &= \sum_{i+j=n} d_i(a)\alpha d_j(b) + \sum_{i+j=n} d_i(b)\alpha d_j(a) - \sum_{i+j=n} d_i(a)\alpha d_j(b) \\ &- \sum_{i+j=n} d_i(b)\alpha d_j(a) = 0. \end{split}$$

(ii) By Definition 4, we get

$$\begin{split} \phi_n^\alpha(a+b,c) &= d_n((a+b)\alpha c) - \sum_{i+j=n} d_i(a+b)\alpha d_j(c) \\ &= d_n(a\alpha c + b\alpha c) - \sum_{i+j=n} d_i(a)\alpha d_j(c) - \sum_{i+j=n} d_i(b)\alpha d_j(c) \\ &= d_n(a\alpha c) - \sum_{i+j=n} d_i(a)\alpha d_j(c) + d_n(b\alpha c) - \sum_{i+j=n} d_i(b)\alpha d_j(c) \\ &= \phi_n^\alpha(a,c) + \phi_n^\alpha(b,c). \end{split}$$

(iii)-(iv): The proofs are straight forward.

Lemma 7. Suppose $D = (d_i)_{i \in N}$ is a Jordan higher derivation of a Γ -ring M. Let $n \in N$ and assume that $a, b \in M$; $\alpha, \beta, \gamma \in \Gamma$. If $\phi_m^{\alpha}(a,b) = 0$, for every m < n, then $\phi_n^{\alpha}(a,b)\beta w \gamma [a,b]_{\alpha} + [a,b]_{\alpha}\beta w \gamma \phi_n^{\alpha}(a,b) = 0$, for every $w \in M$.

Proof. We consider $G = d_n(a\alpha b\beta w \gamma b\alpha a + b\alpha a\beta w \gamma a\alpha b)$. First, we compute

$$G = d_n(a\alpha(b\beta w \gamma b)\alpha a) + d_n(b\alpha(a\beta w \gamma a)\alpha b).$$

Using Lemma 5(ii), we have on one hand

$$G = \sum_{i+p+l=n} d_i(a)\alpha d_p(b\beta w \gamma b)\alpha d_l(a) + \sum_{i+p+l=n} d_i(b)\alpha d_p(a\beta w \gamma a)\alpha d_l(b)$$

$$=\sum_{i+j+k+h+l=n}\!\!\!d_i(a)\alpha d_j(b)\beta d_k(w)\gamma d_h(b)\alpha d_l(a) + \sum_{i+j+k+h+l=n}\!\!\!d_i(b)\alpha d_j(a)\beta d_k(w)\gamma d_h(a)\alpha d_l(b).$$

On the other hand

$$G = d_n((a\alpha b)\beta w\gamma(b\alpha a) + (b\alpha a)\beta w\gamma(a\alpha b)).$$

Using Lemma 5(iii), we obtain

$$\begin{split} G &= \sum_{r+s+t=n} (d_r(a\alpha b)\beta d_s(w)\gamma d_t(b\alpha a) + d_r(b\alpha a)\beta d_s(w)\gamma d_t(a\alpha b)) \\ &= \sum_{r+s+t=n} d_r(a\alpha b)\beta d_s(w)\gamma d_t(b\alpha a) + \sum_{r+s+t=n} d_r(b\alpha a)\beta d_s(w)\gamma d_t(a\alpha b). \end{split}$$

Comparing the two expressions for G, we obtain

$$\begin{split} &\sum_{i+j+k+h+l=n} d_i(a)\alpha d_j(b)\beta d_k(w)\gamma d_h(b)\alpha d_l(a) - \sum_{r+s+t=n} d_r(a\alpha b)\beta d_s(w)\gamma d_t(b\alpha a) \\ &+ \sum_{i+j+k+h+l=n} d_i(b)\alpha d_j(a)\beta d_k(w)\gamma d_h(a)\alpha d_l(b) - \sum_{r+s+t=n} d_r(b\alpha a)\beta d_s(w)\gamma d_t(a\alpha b) = 0. \end{split} \tag{1}$$

By the inductive assumption we can put $d_r(x\alpha y)$ for $\sum_{i+j=r} d_i(x)\alpha d_j(y)$, when r < n. Therefore,

$$\begin{split} &\sum_{i+j+k+h+l=n} d_i(a)\alpha d_j(b)\beta d_k(w)\gamma d_h(b)\alpha d_l(a) - \sum_{r+s+l=n} d_r(a\alpha b)\beta d_s(w)\gamma d_l(b\alpha a) \\ &= (\sum_{i+j=n} d_i(a)\alpha d_j(b))\beta w\gamma b\alpha a + a\alpha b\beta w\gamma (\sum_{h+l=n} d_h(b)\alpha d_l(a)) \\ &+ \sum_{i+j+k+h+l=n}^{i+j< n, h+l< n} d_i(a)\alpha d_j(b)\beta d_k(w)\gamma d_h(b)\alpha d_l(a) - d_n((a\alpha b)\beta w\gamma (b\alpha a) \\ &- (a\alpha b)\beta w\gamma d_n(b\alpha a) - \sum_{r+s+l=n}^{i+j=r< n, p+q=t< n} d_i(a)\alpha d_j(b)\beta d_s(w)\gamma d_p(b)\alpha d_q(a) \end{split}$$

$$= -(d_n((a\alpha b) - \sum_{i+j=n} d_i(a)\alpha d_j(b))\beta(w\gamma b\alpha a) - (a\alpha b\beta w)\gamma(d_n(b\alpha a) - \sum_{h+l=n} d_h(b)\alpha d_l(a))$$

$$= -(\phi_n^{\alpha}(a,b)\beta w\gamma b\alpha a + a\alpha b\beta w\gamma \phi_n^{\alpha}(b,a)). \tag{2}$$

Similarly,

$$\sum_{i+j+k+h+l=n} d_i(b)\alpha d_j(a)\beta d_k(w)\gamma d_h(a)\alpha d_l(b) - \sum_{r+s+t=n} d_r(b\alpha a)\beta d_s(w)\gamma d_t(a\alpha b)$$

$$= -(\phi_n^{\alpha}(b,a)\beta w\gamma a\alpha b + b\alpha a\beta w\gamma \phi_n^{\alpha}(a,b)). \tag{3}$$

Hence, by using (2) and (3) in (1), we get

$$\phi_n^{\alpha}(a,b)\beta w \gamma b \alpha a + a \alpha b \beta w \gamma \phi_n^{\alpha}(b,a) + \phi_n^{\alpha}(b,a)\beta w \gamma a \alpha b + b \alpha a \beta w \gamma \phi_n^{\alpha}(a,b) = 0.$$

By Lemma 6(i), we have

$$\phi_n^{\alpha}(a,b)\beta w \gamma b \alpha a - a\alpha b\beta w \gamma \phi_n^{\alpha}(a,b) - \phi_n^{\alpha}(a,b)\beta w \gamma a\alpha b + b\alpha a\beta w \gamma \phi_n^{\alpha}(a,b) = 0.$$

This implies,

$$\phi_n^{\alpha}(a,b)\beta w\gamma[a,b]_{\alpha} + [a,b]_{\alpha}\beta w\gamma\phi_n^{\alpha}(a,b) = 0, \forall w \in M.$$

Here, we extend the result of Cortes and Haetinger (2005) concerning Jordan higher derivations in prime Γ -rings.

Theorem 2. Let M be a 2-torsion free prime Γ -ring satisfying the condition (*). Then every Jordan higher derivation of M is a higher derivation of M.

Proof. By definition, we have

$$\phi_0^{\alpha}(a,b) = 0$$
, for all $a,b \in M, \alpha \in \Gamma$.

Also, by Theorem 1,

$$\phi_1^{\alpha}(a,b) = 0$$
, for all $a,b \in M$, $\alpha \in \Gamma$.

Now, we proceed by induction. Suppose that, $\phi_m^{\alpha}(a,b) = 0$.

This implies, $d_m(a\alpha b) = \sum_{i+j=m} d_i(a)\alpha d_j(b)$ for all $a,b \in M$; $\alpha \in \Gamma$ and m < n.

Taking $a, b \in M$, by Lemma 7, we get

$$\phi_n^{\alpha}(a,b)\beta w\gamma[a,b]_{\alpha} + [a,b]_{\alpha}\beta w\gamma\phi_n^{\alpha}(a,b) = 0, \forall w \in M, \alpha, \beta, \gamma \in \Gamma.$$

Since M is prime, so by Lemma 4 $\phi_n^{\alpha}(a,b) = 0$, or $[a,b]_{\alpha} = 0$. Using the similar arguments as used in the proof of Theorem 1, we obtain that every Jordan higher derivation of M is a higher derivation of M.

References

- Barnes, W. E. 1966. On the Γ -rings of Nobusawa, *Pacific J. Math.* **18**: 411-422.
- Bresar, M. 1988. Jordan derivations on semiprime rings. *Proc. Amer. Math. Soc.* **104**(4): 1003-1004.
- Cortes, W. and C. Haetinger. 2005. On Jordan generalized higher derivations in rings, *Turk. J. Math.* **29**: 1-10.
- Ferrero M. and C. Haetinger. 2002. Higher derivations and a theorem by Herstein, *Quaestions Mathematicae*. **2**(2): 249-257.
- Haetinger, C. 2002. Higher derivations on Lie ideals, *Tenclencias em Matematica Aplicada e. computacional*, **3**(1): 141-145.
- Herstein, I.N. 1957. Jordan derivations of prime rings, Proc. Amer. Math. Soc., 8: 1104-1110.
- Nobusawa, N. 1964. On the generalizeation of the ring theory, Osaka J. Math. 1: 81-89.
- Sapanci, M. and A. Nakajima. 1997. Jordan Derivations on Completely Prime Γ -Rings, *Math. Japonica.* **46**: 47-51.

(Manuscript received on 21 September, 2014: revised on 29 October, 2014)