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Abstract

Longitudinal studies involves repeated observations over time on the same experimental
units and missingness may occur in non-ignorable fashion. For such longitudinal missing
data, a Markov model may be used to model the binary response along with a suitable
non-response model for the missing portion of the data. It is of the primary interest to
estimate the effects of covariates on the binary response. Similar model for such
incomplete longitudinal data exists where estimation of the regression parameters are
obtained using likelihood method by summing over all possible values of the missing
responses. In this paper, we propose an expectation-maximization (EM) algorithm
technique for the estimation of the regression parameters which is computationally
simple and produces similar efficient estimates as compared to the existing complex
method of estimation. A comparison of the existing and the proposed estimation methods
has been made by analyzing the Health and Retirement Survey (HRS) data of United
States.
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Introduction

Longitudinal studies are designed to collect data on every individual at each time of follow-up and
it is very common that all responses are not observed at all occasions. This incomplete or missing
data leads standard analysis more difficult or inappropriate to implement, consequently the
parameter estimates may become inefficient and/or biased. When missingness occurs depending
on the response of that time point that is, the probability of being a non-respondent depends on the
unobserved response, the data are said to be affected by non-ignorable missingness. If the
missingness is non-ignorable, the resulting estimates are seriously biased.

Several researchers have worked over the last decade in variety of ways in analyzing
longitudinal missing data. For non-ignorable missing data, a class of log-linear models were
introduced by Fay (1986) and Baker and Laird (1988). The maximum likelihood estimates were
obtained by using EM algorithm. The log-linear modeling approach for contingency tables was
extended by Park and Brown (1994) and Green and Park (2003) under a Bayesian framework.
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For longitudinal data, Bonetti et. al. (1999) proposed a method-of-moments estimation. This
estimation technique is useful in some situation where likelihood maximization is problematic.
Fitzmaurice et. al. (2001) described how bias can arise in generalized estimating equations (GEE)
estimators where the missingness is informative. For longitudinal binary data with non-ignorable
drop-out, Ten Have et. al. (1998) proposed mixed effects logistic regression models and these
models were extended to ordinal response data with multiple causes of informative drop-out by
Ten Have et. al. (2000) in a later paper. Accommodating intermittent missingness in addition to
monotone missingness for second order dependency, a Markov chain model was proposed by
Huang and Brown (1999). For Longitudinal continuous data with non-ignorable non-monotone
missingness, Troxel et. al. (1998) proposed a full likelihood method involving a Markov
assumption regarding the correlation structure of the longitudinal outcomes. A class of semi-
parametric marginal regression models were developed by Rotnizky et. al. (1998) for handling

non-ignorable missing mechanism. Fairclough (2002) described multiple imputation techniques

Cole et. al. (2005) developed a multistate Markov chain model for the analysis of longitudinal,
categorical outcomes derived from QOL measures with the advantage over existing methods by
allowing two or more QOL states, while accommodating both intermittent, informative
missingness and covariate effects for first order dependency. For the purpose of inference,
estimation of the regression parameters was carried out by a maximum likelihood method,
summing over all possible values of the missing observations, which involves huge number of
parameters to be estimated. Because of this and computational complexity, this inference
procedure becomes complex and computationally intensive. Also for a data set containing very
small number of missing observations, this approach can not produce efficient estimates of all
regression parameters associated with the non-response model.

Considering the importance of the role of non-ignorable missingness in estimation, we focus
on estimating the model parameters with informative missing values by using EM algorithm. The
model and the inference procedure are outlined in the next sections. An application of the
proposed estimation approach to the Health and Retirement Survey (HRS) binary data is discussed

later.

The model for longitudinal data with non-ignorable missing values

th

Let, it = (¥t Xipns mn X :'?,‘J} be the time-varying p-dimensional covariate vector for !
individual at the T time point. For binary response Yir, the transition probabilities can be

modelled by using logistic regression as
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is the set of regression parameter associated with the transition

Let f:+°s are the observation indicator for ith individual at t-th time such that f:+ =1 if
Yie is observed; 0 otherwise. Under non-ignorable missing mechanism, £:+ depends on the
observed responses. Accordingly a common logistic regression model is assumed for the non-
response model. That is, the conditional probability that ¥i+ is observed given that Yo =7 is
defined by

quf i) =Pe(Ryit = [{| Vgt = j,203t) = (exp(nu" 20)/(L+ exp(ry™ 2t s L] = 0,1, (2

Following Cole et. al. (2005), for I, j =0, 1, the non-ignorable incomplete binary data model

may be written as

, . . T
PT{T’!:': =5l = '-"':':IF:'.:—:L = L x, 3:‘?} = puila gz ) :':{]- - Q;‘LZ:':J} - (3)

In (3), it is assumed that the likelihood for the initial state P T{¥:a = J} does not depend on
any of the parameters associated with the transition probabilities and the initial state is always

observed and also the covariate vectors are always observed.

Therefore, using (1) in (3) for I.7=0.1 | one obtains the Markov model for longitudinal

binary data subject to non-ignorable missingness

Pro(Yyit= Rt = mit4 |Vt =1) = L@t - 1), zit) 2= pl (el - 1) ag i) it L= ogf (20t V(L - 7it), (4

r r
In the next section, we outline the proposed estimation method for estimating 5= {Jgﬂ.ljlgj},

the two sets of parameter vectors for transition from 0 and 1, respectively.

Estimation technique by EM algorithm

Dbz Miss
Let Y&~ and ) denote the observed and missing components of : , respectively and all the
chains of the data is represented by y. Let, & = (5.7 )" be the vector of parameters associated
with incomplete data model (4). Cole et. al. (2005) proposed ML estimation for the parameter

& = (£,m)" by maximizing the likelihood function

LE{E: }EUM} - Z [ﬂp:"i-r—i *-"'ir{xf““i }q.‘-';r{zfr}!-ir [l B q-"'irI: zfr:l}i_rir . (5)
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It is clear from equation (5) that as the number of missing value increases, this likelihood
estimation becomes complicated and computationally intensive. As an alternative, we propose EM
algorithm approach for the estimation of the regression parameters §=08 of (4). Assuming the

data is complete, the conditional likelihood for the sample of chains is expressed as

L{E:.ri}: npr(}’il = Y }l_[p_‘-'gu;_i J:'_i:(xf-:'—i} : (6)

Under the assumption that the parameters of these components are distinct, for the estimation
of the parameters for the state transitions, the initial-state likelihood can be ignored and (6) takes

the following form

L) = Myi= DM = 2/ =000t = 4] v~ 1) = Lot =002 = M = VnEqe= 2000ETpd it - 1) ()2

The E step of the EM algorithm sets the complete data-sufficient statistic
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From the incomplete data, we calculate £ Or =1y =Lxea.B)= 2y 77 andif
P Hiod = 0.5 then in missing values we consider ¥ =1 _ But if 1};.15“[1:_:" 0.3 then
in missing values we consider ¥ =@ _ Note that, we estimate the initial G parameters assuming
the data as complete ignoring the missing values.

Once we impute the missing values in the E-step, we then maximize the likelihood (7) in the

M-step. The score functions and the elements of the information matrix are give in equation (8)

and (9) respectively.
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Finally using the score vector and information matrix we get the estimates of the regression

parameters by applying Newton-Raphson algorithm.
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Analysis of HRS data

To compare the two estimation methods discussed in previous section, we fit the Markov model
(4) to the Mental Health Index Data taken from Health and Retirement Survey (HRS) Data by both
approaches. The HRS is a longitudinal household survey data set for the study of retirement and
health among the elderly in the United States that surveys more than 22,000 Americans over the
age of 50 on subjects like health care, housing, assets, pensions, employment and disability in
every two years at the University of Michigan in Ann Arbor. Respondents in the initial HRS
cohort were those who born during 1931 to 1941. This cohort was first interviewed in 1992 and
subsequently every two years and the last interview was held in 2006. Detailed on the dataset can
be found at the the HRS website (http://hrsonline.isr.umich.edu) and in Islam et al. (2009).

For this study, we have considered only last two waves (follow-ups) of the study and selected

only those individuals whose response at the first wave are complete and covariate information on
both waves are available. In this subset of the data, there are 16504 individuals in the 1st wave and
372 individuals responses were missing at the 2nd wave.

Our objective is to estimate the effect of gender (¥:ir1) and age (¥:irz) on the dependent
variable mental health index iz} by two estimation methods. This mental health index was
derived using a score on the Center for Epidemiologic Studies Depression (CESD) scale. The
CESD score (ranges 0 to 8) is the sum of the eight indicators such as ‘felt sad’, ‘felt alone’.
Considering the CESD score equal to 0 as ‘no depression’ and the CESD score greater than 0 as
‘depression’ we categorized the dependent variable. Then numerical scores 0 and 1 are assigned to
the categories ‘no depression’ and ‘depression’ respectively. The distribution of the selected

individals is reported in Table 1.

Table 1. Frequency distribution of Depression status by the selected covariates.

Depression Status

No Depression (%) Depression (%) Total

Gender* Male 3358 (51.9) 3114 (48.1) 6472

Female 4185 (41.7) 5847 (58.3) 10032
Age* <40 37 (39.8) 56 (60.2) 93
40-50 378 (42.2) 517 (57.8) 895

50-60 2028 (45.9) 2387 (54.1) 4415

60-70 2770 (48.8) 2910 (51.2) 5680

>70 2330 (43) 3091 (57) 5421

*p-value<0.01
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From the Table 1, we obtain that the proportion of depression is higher for females as
compared to males. It is also clear that, the proportion of depression is quite large in <40, 40-50
and >70 age intervals. Both of the covariates have significant association with depression status.

Estimation of the regression parameters obtained by the EM algorithm technique are reported
in Table 2. ML estimates proposed by Cole et. al. (2005) are also reported in the same table.

Table 2 shows that both covariates gender and age have significant effect on transition from
the state ‘no depression’ to ‘depression’. The covariate ‘gender’ has negative impact but the
covariate ‘age’ has positive impact to change the status from ‘no depression’ to ‘depression’. For
transition type ‘depression’ to ‘depression’, gender and age also have significant effects, gender

has negative and age has positive impact to stay at the ‘depression’ state.

Table 2. Estimates of the regression parameters by likelihood method and EM algorithm approach for

the HRS incomplete data.
Likelihood Method EM Method
Parameter Variable Estimate SE Estimate SE
Transitions from ‘no depression’
Boo Intercept -1.455 0.162 -1.105 0.161
Boq Gender 028" 0.051 20266 0.051
Boo Age 0.012" 0.002 0.006" 0.002
Transitions from ‘depression’
B0 Intercept 0.723 0.125 0.787 0.148
B1q Gender 0223% 0.043 20.190" 0.052
B Age 0.008" 0.002 0.007" 0.002
Logits of observation probabilities for ‘no depression’
Moo Intercept 2.321 1.189 - -
o1 Gender -1.968" 0.470 - -
o2 Age 0.054" 0.019 - -
Logits of observation probabilities for ‘depression’
0 Intercept 10.225 0.539 - -
ny Gender 0.123 0.142 - -
LIp) Age -0.093* 0.007 - -

*p—value<0.01. Female is used as the reference for gender
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Table 3. Parameter estimates and standard errors under likelihood and EM algorithm approaches for

different hypothetical samples with different missing proportions, y.

Likelihood Method EM Method
Parameter Variable Estimate SE Estimate SE
Y =5% (n =7440)
Boo Intercept -1.916 0.246 -1.173 0.240
Boq Gender 20380° 0.077 0341° 0.077
Boz Age 0.020" 0.004 0.007"" 0.004
BIO Intercept 0.268 0.186 0.397 0.220
By Gender 0257 0.065 0179 0.077
Bio Age 0.015" 0.003 0.013" 0.003
oo Intercept 2.214 1.146 - -
o1 Gender 1.977" 0.468 - -
o2 Age 0.042"" 0.018 - -
M0 Intercept 9.307 0.559 - -
Uit Gender 0.148 0.152 - -
LIp) Age -0.091* 0.007 - -
v =15% (n =2480)
BOO Intercept -3.058 0.444 -1.090 0.411
Bo1 Gender -0.100 0.135 -0.035 0.134
Boo Age 0.038" 0.007 0.003 0.006
[310 Intercept 0.055 0.341 0.451 0.395
B1q Gender 043" 0.117 02327 0.140
Bro Age 0.021" 0.005 0.016" 0.006
00 Intercept -0.109 1.364 - -
o1 Gender 2035 0.504 - -
o2 Age 0.064" 0.022 - -
0 Intercept 7.420 0.559 - -
iyl Gender 0.069 0.158 - -
12 Age -0.083" 0.007 - -

Female is used as the reference for gender. *p-value <0.01, **P-value<0.05 and ***p-value<0.1
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This finding makes sense, because, as age increases, individuals are more likely to transit
from ‘no depression’ to ‘depression’ state (therefore positive effect for transition from 0 to 1) and
as they reach ‘depression’ state, they remain depressed (hence effect for 1 to 1 transition model).
On the other hand, males are psychologically stronger than females. Thus they are less likely to
get depressed when they are not depressed (hence negative effect for transition type 0 = 1), and
once they are depressed, they are less likely to remain depressed (hence negative effect for
transition type 1 = 1).

For the observation probabilities for ‘no depression’, we observe that both of the covariates
have significant effects on the responses to be observed. On the other hand,the result from non-
response model indicates that the chance of missing response increases as age increases.

From the table it is clear that the parameter estimates obtained by the proposed EM technique
are almost equally efficient as compared to that of likelihood approach, the standard error of the

estimates produced by two approaches are almost identical.

Estimation under small and large proportion of missing data

Here to compare the performance of estimation technique under different proportion of missing
cases, we draw some hypothetical samples. To do so, we fix 372 missing responses and select
random sample of size " from the remaining (16504 - 372 = 16132) individuals such that there
are ¥ % missing responses in the sample of size n (= ™~ + 372 ). Note that this is not a random

sample.

Table 3 summarizes the estimation performance for ¥ = 5% and 15%. Irrespective of the
missing proportion, the standard errors under both approaches are almost identical for 0—1
transition model. On the other hand, the performance of likelihood method is slightly better than

EM algorithm approach for 1—1 transition model, but this efficiency gain is not too much.

Conclusion
We have used an alternative EM algorithm approach of estimation of the regression parameters of
the Markov model for longitudinal informative missing data. In a position to pick one out of two
alternative inference methods that are equally efficient, the simple answer is to pick the one that is
simple in theory, easy to apply and computationally less intensive. In all of these respects our
proposed EM approach outperforms the likelihood approach proposed by Cole et. al. (2005).
Therefore, one can avoid doing complex algebra and complicated programming algorithm by
using our proposed EM algorithm technique accommodating both longitudinal nature of the data
and non-ignorable missingness and get efficient estimates.

Further note that, in EM algorithm approach we do not need to estimate huge number of

parameters. As we have seen, the likelihood approach requires 12 parameters including the
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parameters for the non-response model. On the other hand, we can achieve similar efficient
regression effect by estimating only 6 parameters. That is why the estimation procedure becomes
more simple, takes less time for computation. But in likelihood estimation approach, this huge
number of parameters make the whole procedure computationally inconvenient. However,

imposing appropriate restrictions, this large parameter set can be reduced.
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