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Abstract

Receiver operating characteristic (ROC) analysis is the commonly accepted
method for comparing diagnostic markers. The overall accuracy of a diagnostic
marker is summarized by the area under the ROC curve (AUC). One way to
compare the accuracies of diagnostic markers is to compare their AUCs. This
paper presents a study of the operating characteristics of the commonly used
parametric methods of comparing AUCs of two correlated ROC curves. An
extensive simulation study is conducted to explore and compare the operating
conditions of the testing methodologies.
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Introduction

A great use of diagnostic markers is made in medical studies based on clinical
observations or laboratory methods to specify which individuals are classified as normal
(nondiseased) or as abnormal (diseased). Throughout the medicine and public health
studies such markers are important. Diagnostic medicine has progressed successfully in
the last several decades and the trend promises to continue well into the next millennium.
Technological improvements provide new methods for detecting disease or physical
impairment. Diagnostic markers provide important medical decision making. Thus
statistical methods of evaluating and comparing the performance of such markers are of
great importance. The receiver operating characteristic (ROC) curve is a useful graphical
and statistical tool for evaluating and comparing diagnostic markers. It has been used in
many areas such as radiology (Metz 1989), psychiatry (Hsiao et al. 1989), epidemiology
(Aoki et al. 1997) and biomedical informatics (Lasko et al. 2005). But the effectiveness
of continuous diagnostic markers in distinguishing between diseased and nondiseased
individuals using ROC curves has been increased recently (Greiner e al. 2000, Pepe
2003). :

The ROC curve is a plot of the diagnostic marker’s sensitivity versus 1-specificity at
various observed values of the marker. The discriminatory power of a diagnostic marker
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measures the ability to correctly discriminate individuals or subjects into
‘diseased/abnormal’ and ‘nondiseased/normal’ subjects. To evaluate the discriminatory
ability of a diagnostic marker, it is obvious to summarize the information of ROC curve
into single global measure (Greiner et al. 2000). The most commonly used global
measure for the overall accuracy of a diagnostic marker is summarized by the area under
the ROC curve (AUC) because of its meaningful interpretation. AUC is interpreted as the
probability that the observed value of the diagnostic marker will be greater for a
randomly selected abnormal subject than for a randomly selected normal subject
assuming that the higher values of a diagnostic marker are associated with ‘abnormal’
subjects, while lower values are associated with ‘normal’ (DeLong et al. 1988). Thus,
AUC lies between 0 and 1 and the greater the AUC, the better the discriminatory power
of the diagnostic marker (Zhou e? al. 2002).

Since AUC is a measure of the overall performance of a diagnostic marker, the
overall diagnostic performance of different markers can be compared by comparing their
AUC:s. By the comparison of areas under the two ROC curves we can estimate which one
of two diagnostic markers is more suitable for discriminating nondiseased subjects from
diseased subjects or any other two conditions of interest. When comparing the AUCs of
two diagnostic markers, equal AUC values means that the two markers yield the same

- overall diagnostic performance, but does not necessarily mean that the two ROC curves
of the two markers are identical. In the field of diagnostic imaging, it is widely
recognized that the variability due to subjects represents a substantial component of the
overall variability of the AUC. To better control for the sources of variability when
comparing diagnostic markers, a paired study design is often implemented. This type of
design usually induces positive correlation between the ratings of the same subjects.
Several parametric and non-parametric methods have been suggested to compare the
accuracy of two diagnostic markers within a paired design setting. The scope of this
article is limited to a brief review and comparing performances of widely used parametric
methods suggested by Hanley and McNeil (1983) and Wieand et al. (1989). Hanley and
McNeil (1983) proposed a test statistic for comparing diagnostic markers from the same
individual and Wieand et al. (1989) prescribed a parametric test to compare diagnostic
markers assuming that the diagnostic marker values must follow the normal distribution.
In the following sections these two widely used parametric procedures are discussed and
their operating conditions are investigated through extensive simulation studies.

Comparison of AUCs

For two diagnostic markers, suppose there are N individuals without disease and
M individuals with disease. Suppose (X,,Xz) and (Ysz) denote the diagnostic ratings
of corresponding patients without disease and with disease for the two diagnostic markers
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respectively. Corresponding bivariate outcomes should be (x,, x,) (i=12,..., N ) and
(y, i V2 j) ( j=L2,... M ), respectively for two diagnostic markers on the same N
nondiseased and M diseased individuals. Bivariate cumulative distribution functions are
denoted by F (xl, xz) and G(y,, v, ) and their corresponding marginal F, (x, ) G, (y,)
(l = 1,2). Bamber (1975) noted that the area under the ROC curve is equal
to Pr(Y > X), Let AUC, (1=1,2) be the areas under the respective ROC curves of
diagnostic marker 1 and 2, respectively. Here we discuss the parametric tests of the

hypothesis H, : AUC, = AUC, versus H,:AUC, # AUC,,
Hanley and McNeil Approach

Hanley and McNeil (1983) developed a method of comparing the AUCs derived from the
same samples. For the two observed areas under ROC curves AUC, and AUC,of

diagnostic markers 1 and 2, their method of assessing the difference in the AUCs derived
from the same set of patients is defined by the following standardized normal z — score

.- AUC, - AUC,
VSE* + SE,* -2 SE,SE,

where SE; and SE, refer to the estimated standard errors of the corresponding ROC

areas. It is mentioned that using the correlation coefficient for the ratings of nondiseased
subjects by the two diagnostic markers and the correlation coefficient for that from the
diseased subjects, between area correlation r can be obtained assuming Gaussian
distribution for the two diagnostic markers. That is, they first calculate the Pearson
correlation coefficient between the two diagnostic markers, then combing this number
and the size of the observed areas the between area correlation r is obtained through a
complicated formula that we like to skip in this paper'. Moreover, Hanley and McNeil
(1983) provided a working table to find the between area correlation r for different
combinations of average correlation between markers and average of observed areas. The
quantity z is then referred to tables of the normal distribution and values of z above
some cutoffs, for example, z >1.96 , are taken as evidence that the “true” ROC areas are
different.

Wieand et al. Approach

Wieand et al. (1989) described a test to compare two diagnostic markers. The test that
they suggested is based on the assumption that diagnostic markers 1 and 2 have bivariate
normal distribution for both diseased and nondiseased individuals. That is,

! The mathematical derivation of this formula is available on request.
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X ~ N, Uf) and Y ~ N{y,, 0';). Let u, and af’ (1=1,2) represent the means and
variances of the diagnostic marker for nondiseased individuals while
M, and 0; (1=1,2) represent those for diseased individuals. Then AUC, can be

defined as AUC, = ®(5,) with

é, =M, (l=1,2) (D)

, 2 2
O-Y: +0--‘l

Note that @ is the standard normal cumulative distribution function. The hypothesis
AS =6, -8, =0refers to the hypothesis H, : AUC, = AUC,. The test statistic for

testing this hypothesis is T = 51 -6, =A5. Wieand et al. (1989) derived the asymptotic

variance of AS using delta method (Rao 1973) which takes into account the correlation
between two diagnostic markers 1 & 2. The hypothesis is tested by considering the

PN

statistic - as approximately a N (O, l) variate. The asymptotic variance of Ad

\' Var ‘AS ’

is obtained using delta method (Rao 1973).
Simulation study .

We have performed an extensive simulation to compute empirical test sizes and power of
the parametric test approaches given by Hanley and McNeil (1983) and Wieand et al.
(1989) for different underlying AUC differences, correlation between diagnostic markers
and different sample sizes. We have considered the scenarios with non-crossing as well
as crossing ROC curves. Two such scenarios of non-crossing and crossing ROC curves
are shown in Figure 1. In our simulation study we have assumed two continuous
measurements for each nondiseased individual from a bivariate normal distribution
centered at 4, =0 with both measurements having a marginal variance of 1.0 and

correlation p (0.25, 0.50, 0.75). That is K, =0 and 0':, =1, 1=1,2.
So from (1) we have ‘

<I>"(AUC,)=5,—L 1=1,2 @

= =,
,/1+ oy,

where @' is the percentile of standard normal distribution. Similarly, two continuous
measurements for each diseased individual from a bivariate normal distribution centered
at p, with both measurements having a marginal variance of 1.0 for non-crossing ROC

curves; for crossing ROC curves 02 =1.0 and o} =4.0 and correlation p (0.25,
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Figure 1. (a). Non-crossing ROC curves and (b). Crossing ROC curves.

0.50, 0.75) are assumed. Equal variances assumed to present ROC curves not crossing
each other and unequal variances are assumed to attain the true situation where the ROC

curves cross each other. The values of x, are directly determined from AUC,

and AUC, from equation (2). We have performed simulations for different sample sizes
such as 20, 40, 80 in all cases and the rejection region for the tests are determined using a
nominal significance level of @ =0.05. For each scenario 1000 replications are
computed and both empirical test size and empirical power are obtained. The empirical
nominal values are compared with the approximate 95% confidence interval (0.036,
0.064) around nominal size of 0.05 based on a binomial sample of 1000 repetitions’. R: A
language and environment for statistical computing version 2.15.0 (R Development Core
Team 2012) is used to conduct the simulation work. Bivariate normal data are generated
using function rmvnorm in R package mvtnorm (Alan Genz et al. 2012).

For both non-crossing and crossing ROC curves, given the value of AUCs and
variances the mean values of diagnostic scores for diseased and nondiseased individuals
can be obtained from relation (2) and the variance-covariance matrix can be constructed

1
as3 = o O i 1 plloy O
0 o,ilp 1JLO0 o,

2 100(1- @)% confidence interval of binomial proportion for large sample size is Ptz,
: 2

, where

p is the estimate of proportion of successes in a binomial trial , z, is the % upper quantile of a

2
standard normal distribution and n is the sample size.
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Result and Discussion

Table 1 presents the empirical nominal sizes obtained for the two discussed
methodologies when testing for equality of two non-crossing ROC curves for different
combinations of correlation and sample sizes. Table 2 depicts the similar results for a null
hypothesis of equality of two crossing ROC curves. For non-crossing ROC curves (Table
1) we see the method of Hanley and McNeil (1983) provides more stable estimate of
empirical test size whereas for several setup of simulation the Wieand et al. (1989)
approach gives test size estimate outside of the 95% confidence interval of considered
nominal value 0.05 (the bold entries). Similarly in case of crossing ROC curves (Table 2)
Wieand et al. (1989) approach is more conservative than Hanley and McNeil (1983)
especially for high correlation among the diagnostic markers.

Table 1. Empirical test size for non-crossing ROC curves [ HM - Hanley & McNeil test; W -
Wieand et al. test].

Sample

. p=025 p =050 p=0.75
Size

Area Mean Variance

AUG AUC, My, M, o) o5, N M mM W uwM W HM W

070 070 0.74 074 1.00 1.00 20 20 0.044 0.048 0.042 0.049 0.054 0.058
40 40 0.055 0.051 0.058 0.050 0.054 0.051

80 .80 0.055 0.049 0.047 0.053 0.048 0.046

075 075 095 095 100 100 20 20 0.048 0.055 0.051 0.054 0.051 0.056
40 40 0.052 0.049 0.051 0.040 0.056 0.048

80 80 0.050 0.048 0.060 0.064 0.059 0.061

080 080 1.19 1.19 1.00 1.00 20 20 0.053 0.055 0.049 0.056 0.050 0.037
’ 40 40 0.058 0.053 0.061 0.055 0.059 0.045

80 80 0.052 0.049 0.058 0.057 0.055 0.058

0.85 085 147 147 1.00 100 20 20 0.049 0.047 0.045 0.040 0.045 0.041
40 40 0.061 0.051 0.059 0.045 0.063 0.046

80 80 0.053 0.054 0.055 0.053 0.053 0.051

090 090 181 181 1.00 100 20 20 0046 0.034 0.045 0.030 0.044 0.028
40 40 0.061 0.047 0.058 0.047 0.055 0.042

80 80 0.051 0.054 0.052 0.046 0.049 0.046

095 095 233 233 100 1.00 20 20 0.051 0.017 0.051 0.015 0.051 0.012
40 40 0.057 0.044 0.057 0.038 0.055 0.033

80 80 0.049 0.047 0.054 0.045 0.053 0.038
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Along with the empirical nominal sizes we also have considered the statistical power
of the test methodologies to assess their performance. The power of a statistical
hypothesis test procedure is defined as 1 — Type II error that is, the rate of rejecting the
null hypothesis when it is false. Table 3 and Table 4 demonstrate statistical power of the
test procedures for testing equality of two non-crossing and two crossing ROC curves,
respectively.

Table 2. Empirical test size for crossing ROC curves [ M - Hanley & McNeil test; W -
Wieand ef al. test].

Sample

K p=025 p=0.50 p=0.75
Size

Area Mean Variance

AUG AUC, Hy, M, o3 03 N M HM W HM W HM W

070 070 0.74 1.17 100 400 20 20 0.052 0.057 0.054 0.062 0.055 0.081
40 40 0.056 0.052 0.055 0.060 0.063 0.086
80 80 0.060 0.067 0.046 0.062 0.047 0.076
075 075 095 151 1.00 400 20 20 0.058 0.068 0.062 0.077 0.057 0.078
40 40 0.058 0.052 0.050 0.057 0.059 0.082
80 80 0.052 0.060 0.041 0.066 0.047 0.073
080 080 1.19 1.88 1.00 400 20 20 0.65 0.063 0.058 -0.069 0.061 0.079
40 40 0.058 0.051 0.062 0.066 0.064 0.081
80 80 0.053 0.057 0.042 0.057 0.043 0.078
0.85 085 1.47 232 100 400 20 20 0.057 0.057 0.057 0.059 0.058 0.071
40 40 0.060 0.050 0.058 0.061 0.058 0.066
80 80 0.054 0.058 0.046 0.061 0.047 0.071
090 090 1.81 287 100 400 20 20 0.059 0.043 0.058 0.040 0.059 0.046
40 40 0.058 0.050 0.058 0.057 0.060 0.061
80 80 0.056 0.060 0.048 0.059 0.052 0.076
095 095 233 368 1.00 400 20 20 0.058 0.027 0.064 0.027 0.070 0.027
) 40 40 0.058 0.039 0.060 0.043 0.060 0.048
80 80 0.056 0.048 0.052 0.060 0.051 0.072

For non-crossing ROC curves (Table 3) the test of Hanley and McNeil (1983) shows
uniformly better performance in terms of statistical power than the Wieand et al. (1989)
approach for all simulation setup. Both the approaches exhibits lower power for smaller
differences in AUCs and for smaller sample sizes and with increasing sample sizes the
power also increases. When two crossing ROC curves are considered to compare (Table
4) our simulation study shows that though for AUCs < 0.85 and small differences
between AUCs the Wieand et al. (1989) approach has slightly highef power than Hanley
and McNeil (1983) approach, in all other situations the later dominates the former in
terms of statistical power.
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Table 3. Empirical test power for non-crossing ROC curves [ HM - Hanley & McNeil test;

W - Wieand et al. Test].

Area Mean Variance S;Tzl;lc p=025 p=0.50 p=075
AUG AUC, M, M, oy o, N M HM W M W HM W
0.70 0.75 074 095 1.00 1.00 20 20 0.081 0.078 0.101 0.090 0.148 0.132

40 40 0.122 0.127 0.142 0.141 0.231 0.222

80 80 0.163 0.153 0254 0217 0424 0392

0.70 080 074 1.19 100 1.00 20 20 0.207 0.191 0.266 0.238 0417 0377
40 40 0326 0.317 0449 0427 0.735 0.681

i 80 80 0.540 0517 0.737 0.704 0.949 0916

0.70 0.85 074 147 1.00 1.00 20 20 039 0374 0509 0476 0.793 0.710
40 40 0.675 0652 0842 0.805 0974 0.957

80 80 0926 0912 0985 0981 1.000 1.000

0.70 090 074 1.81 1.00 1.00 20 20 0.692 0.644 0.835 0.766 0.982 0.949
40 40 0939 0920 0982 0976 1.000 1.000

80 80 0.998 0999 1.000 1.000 1.000 1.000

0.70 095 0.74 233 100 1.00 20 20 0935 0.903 0987 0959 1.000 0.995
. 40 40 0.999 0998 1.000 1.000 1.000 1.000
80 80 1.000 1.000 1.000 1.000 1.000 1.000

0.75 080 095 1.19 100 100 20 20 0.094 0088 0.111 0.099 0.171 0.132
40 40 0.124 0.123 0.157 0.147 0.259 0.240

80 80 0.192 0.178 0.278 0250 0471 0434

. 075 085 095 147 1.00 1.00 20 20 0242 0219 0.296 0.279 0.487 0.425
40 40 0386 0.364 0.521 0.489 0.801 0.758

80 80 0.641 0628 0.826 0.791 0.976 0.960

0.75 090 095 181 1.00 100 20 20 0480 0449 0.629 0.547 0.876 0.798
40 40 0.793 0.768 0.910 0.884 0.993 0.986

80 80 0967 0964 0.995 0.994 1.000 1.000

0.75 095 095 233 100 100 20 20 0.841 0779 0936 0.876 0.995 0.968
40 40 0986 0.977 1.000 0.996 1.000 1.000

80 80 1.000 1.000 1.000 1.000 1.000 1.000

0.80 085 1.19 147 100 100 20 20 0.103 0.091 0.118 0.096 0.194 0.145
40 40 0.155 0.132 0.190 0.168 0.307 0.257

80 80 0.225 0215 0329 0313 0.554 0.508

0.80 090 1.19 181 1.00 1.00 20 20 0293 0244 0358 0.296 0.600 0.497
40 40 0494 0455 0.635 0595 0.892 0.842

80 80 0.771 0.748 0.895 0.887 0.994 0.989

0.80 095 1.19 233 100 100 20 20 0.671 0568 0809 0.690 0.965 0.870
40 40 0929 0.897 0977 0959 1.000 0.998

80 80 0998 099 1.000 1.000 1.000 1.000

0.85 090 147 181 1.00 1.00 20 20 0.122 0.094 0.149 0.104 0.237 0.157
40 40 0.188 0.160 0.231 0.198 0.406 0.327

. 80 80 0319 0283 0429 0398 0.688 0.639

0.85 095 147 233 100 100 20 20 0414 0308 0.537 0379 0.806 0.588
40 40 0711 0.651 0.847 0.782 0.978 0.941

80 80 0938 0911 0984 0973 1.000 1.000

0.90 095 181 233 100 100 20 20 0.187 0.108 0.238 0.122 0.362 0.181
40 40 0298 0229 0397 0299 0.629 0497

80 80 0.507 0472 0.687 0.610 0.896 0.841
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Table 4. Empirical test power for crossing ROC curves [ HM - Hanley & McNeil test; W -

Wieand et al. test].

" Area Mean Variance Sgri‘;‘;"" =025 0=0.50 =075
AUG AUC, M, M, o, o, N M HM W HM W HM W
070 075 074 151 100 400 20 20 0095 0094 0100 0119 0119 0.140

40 40 0120 0135 0129 0.149 0.141 0.189

80 80 0165 0.167 0210 0211 0241 0281

070 080 074 188 1.00 400 20 20 0.185 0.91 0215 0232 0252 0293
40 40 029 0302 0350 0364 0410 0457

80 80 0502 0495 0594 0.604 0.659 0.723

070 085 074 232 100 400 20 20 0380 0383 0420 0429 0500 0.518
40 40 0619 0605 0688 0.694 0787 0.797

80 80 0891 0.872 0935 0930 0974 0979

070 090 074 2.87 100 400 20 20 0637 0611 0688 0682 0782 0.784
40 40 0911 089 0940 0927 0968 0.968

80 80 0998 0994 0998 0997 1.000 1.000

070 095 074 3.68 100 400 20 20 0895 0878 0926 0909 0961 0955
40 40 0994 0988 1000 0996 1.000 1.000

- 80 80 1000 1.000 1.000 1.000 1.000 1.000

075 080 095 188 100 400 20 20 0099 0107 0106 0117 0.122 0.145
40 40 0116 0129 0129 0153 0.153 0.195

80 80 0188 0.183 0212 0217 0253 0294

075 085 095 232 100 400 20 20 0219 0217 0243 0264 0289 0316
40 40 0346 0342 0393 0408 0472 0513

80 80 0589 0578 0.683 0.682 0756 0.799

075 090 095 287 100 400 20 20 0460 0450 0510 0493 0584 0591
40 40 0731 0713 0795 0786 0873 0878

80 80 0946 0939 0977 0971 0996 0989

075 095 095 368 100 400 20 20 0779 0725 0841 0797 089 0.880
' 40 40 0972 0962 0985 0974 0995 0992

80 80 1000 1.000 1.000 1.000 1.000 1.000

080 085 1.19 232 100 400 20 20 0.106 0108 0.109 0129 0.125 0.152
40 40 0.134 0135 0148 0.163 0.180 0.209

80 80 0224 0209 0247 0258 0303 0343

080 090 119 287 100 400 20 20 0257 0245 0295 0292 0347 0369
40 40 0433 0419 0498 0504 0575 0.606

80 80 0705 0701 0790 0786 0.871 0.876

080 095 1.19 368 100 400 20 20 059 0553 0666 0.604 0749 0.706
40 40 0889 0859 0924 0907 0955 0.947

A 80 80 0993 0990 0997 0995 0998 0.998

085 090 147 287 100 400 20 20 0122 0109 0134 0117 0147 0153
40 40 0171 0171 0191 0.199 0222 0244

80 80 0284 0274 0327 0337 0393 0439

085 095 147 368 100 400 20 20 039 0336 0427 0368 0.500 0443
40 40 0631 0613 0699 0682 0780 0.768

80 80 0907 0874 0936 0921 0969 0.968

090 095 181 368 100 400 20 20 0.167 0123 0.89 0.136 0218 0.166
40 40 0262 0239 0285 0268 0356 0.345

80 80 0469 0429 0.532 0504 0.608 0.615
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Conclusion

The area under ROC curve (AUC) is recognized as a global measure of accuracy of a
diagnostic marker and consequently comparing AUCs of two diagnostic markers is of
practical importance to comment about discriminatory power of them. In this article two
very commonly used and competing parametric methodologies to compare AUCs of two
correlated diagnostic markers namely, Hanley and McNeil (1983) approach and Wieand
et al. (1989) approach, are discussed. The operating characteristics of the methods are
explored and compared through extensive simulation. The simulation study depicts that
though the Hanley and McNeil (1983) approach is little complex and tedious to apply, it
outperforms the Wieand et al. (1989) approach except some very restrictive situations in
terms of empirical test size and statistical power. The findings of this study will be of
help for researchers to select between the competing methods that this article has
discussed.
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