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Abstract

The problem of calculating the correlation estimate from bivariate data
containing a fraction of outliers has been considered in this paper. Classical
product-moment estimate is affected by outliers, while robust estimates are
computationally inefficient. In order to achieve robustness and computational
efficiency at the same time, we propose a new robust estimator of correlation.
We call our estimator Median-Product (MP) correlation estimator. The classical
estimator of correlation uses non-robust estimator mean and standard deviation
as the building blocks. To construct the proposed MP estimator, we replaced
these non-robust estimators by their robust counterpart median and MAD
(Median Absolute Deviation from median). Thus, we developed robust
estimator of correlation that does not use iterative algorithm. Our simulation
studies and real data application show that the proposed. MP estimator of.
correlation gives better results in the contaminated data compared to the
classical estimator. The performance of our estimator is similar to that of the
existing robust estimators. The advantage of our estimator is that it requires less
computing time compared to the existing robust estimators.

Key words: Outliers, robustness, iterative algorithm, computational efficiency,
median product

Introduction

Real datasets usually contain a fraction of outliers and other contaminations. The
classical correlation coefficient, i.e., Pearson’s product-moment correlation coefficient r
is much affected by these outliers and often gives misleading results. Robust methods are
designed to consider the majority of the data rather than all the data. Therefore, robust
methods give reasonable results even when data contain a fraction of outliers. Several
robust correlation estimators are available in the literature. Stahel (1981) and Donoho
(1982) proposed the Stahel-Donocho estimator of multivariate location and scatter. This
estimator is the weighted mean vector and covariance matrix, where the weight assigned
to a point decreases as the distance of the point from the estimated center increases. The
Minimum Volume Ellipsoid (MVE) estimator (Rousseeuw and Leroy 1987 and
Rousseeuw and van Zomeren 1990) searches among all ellipsoids containing half of the
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data to obtain the ellipsoid with the minimum volume. The mean vector and covariance
matrix are then calculated from the points in this minimum-volume ellipsoid. Marazzi
(1993) rescales the covariance matrix to obtain consistency at the multivariate normal
model. The S-estimate (Davies 1987) minimizes an M-scale of the distances of the points
from the estimated center. Minimum Covariance Determinant (MCD) estimator
(Rousseuw and Vandriessen 1999 and Maronna et al. 2006) searches for half the data that
has the smallest “trimmed scale”. A major drawback of existing robust methods is that
they are not computationally suitable, because fitting a robust model is a nonlinear
optimization problem. In this study we propose a new robust correlation estimator (MP)
for bivariate data that is resistant estimator 2,, of 0 and this estimator achieves
robustness and computational efficiency at the same time. In the following section we
present our new robust. estimator. Then we show the results of simulation study to
compare the performance of our MP estimator with classical » and robust MVE
estimators. We apply the proposed estimator to a real data set and write the summary of
this article.

Median product correlation estimator

Pearson’s product-moment correlation estimator r can be expressed as

r=mean(Z XZ,) (1

where Z =(x-X)/s, and Z, =(y—¥)/s, are the standardized variablgﬁs, the

standardization being done by using the classical estimates means and standard
deviations. A simple robustification of r can be performed by replacing these non-robust
building blocks of r by their robust counterparts. Thus, an initial robust estimator,

denoted by r,,, is obtained as

ty = median(Q,xQ,), 2)

where O and Q are robustly standardized variables defined as
Q, = (x—median(x))/ MAD (x) and Q, = (y — median(y))/ MAD(y).

We are considering 7, as an “initial” robust estimator, because the range of r, is

different from that of the classical correlation estimator r. This is elaborated below. When
the data follow bivariate normal distribution, and there is perfect positive correlation

between X and Y (i.e., p =1), we have Q, = Q,=0. This gives

max 7, = median(Q?) and min r,, = —median(Q*),
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where Q% ~ 7. The median of A random variable is 0.4549. Thus, we have

~0.4549<r,, <0.4549.

In order to obtain the final estimator, i.e., MP correlation estimator ﬁMP, we make a

transformation of 7,,. First, let us define p,, =1lim 7,. Since, p,, # 0, we conducted a
n—yes
numerical study of the functional relationship 0,, = g(0).

Table 1. p,, for different values of p

Y 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 | 0.0000 00014 00029 0.0044 0.0067 0.0085 0.0110 0.0127 0.0151 00172
0.1 | 0.0196 0.0225 0.024é 0.0274 0.0305 0.0336 0.0355 0.0384 0.0416 0.0437
6.2 0.0477 0.0509 0.0545 0.0576 0.0605 0.0637 0.0669 0.0705 0.0748 0.0774
03 | 0.0813 0.0856 0.0888 0.0926 0.0962 0.0999 0.1040 0.1075 0.1129 0.1159
0401199 0.1246 0.1299 0.1335 0.1363 0.1406 0.1455 0.1508 0.1548 0.1592
05]0.1633 0.1681 0.1737 0.1778 0.1827 0.1866 0.1920 0.1974 0.2023 0.2079
0.6 | 02114 02166 02221 02277 02321 02384 02419 02489 0.2547 0.2583
0.7 | 0.2643 02697 02758 0.2821 02875 02934 0.2996 03056 0.3106 0.3166
0.8 | 03227 03285 0.3349 0.3414 03479 03526 03595 03674 0.3717 0.3784
09 | 03857 03922 0.3984 04062 04130 04202 04270 04328 0.4401 0.4477

Table 1 shows the asymptotic values of p,, for different values of o . The first column
and first row of the table give the first and second places of decimal for the values of 0 .
For example, the third value of first column (0.2) and forth value of first row (0.03)
altogether gives the value of 0 = 0.23, and the corresponding entry in the table gives the
value of ©,, = 0.0576. They measure the same degree of association. The table includes
the values of p,, for every corregponding values of 0 between 0.00 and 0.99 with an
increment of 0.01. For constructing the table, we consider each value of 0 and generated
bivaraite data. of size # =1 million from normal population. Then we obtained the
corresponding value of p,, using (1) as asymptotic value of r. For negative values of o,

the values of p,, corresponds to the value of | Jo ] , but with a negative sign.
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Figure 1 plots the values of 0, against the values of p.
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Figure 1. Relationship between 0 and 0, .

To calculate 0,,, for a particular dataset, we first calculate r,, from the data, and
use Table 1 to make the transformation P,,, = 87'(r;,). For example, if r,, =0.3857
for a particular data set, then Table 1 suggests that Pur =0.90.We now conduct

simulation studies to examine the performance of the proposed MP estimator and
compare it with classical estimator r and existing robust estimator 0, ..

Simulation

In order to justify the performance of the proposed estimator J,,,, we conduct extensive

simulation studies. We first carried out a simulation to show that Pearson’s product-
moment correlation estimator r is sensitive to outliers while the existing robust MVE and
the proposed robust MP estimators are resistant to outliers. For this, we plot the sampling
distributions of these estimators for both clean and contaminated data. We then
conducted another simulation study to compare J,,, and Puyve With tespect to standard

error, magnitude of bias and CPU time required. We used R to carry out the simulations.
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Robustness of the estimators

We generated 200 datasets each of size # =1000 from bivariate normal distribution with
©=0.5. For each dataset, we calculated MP correlation estimate p,, along with

classical estimate 7 and the existing robust estimate 0,,,,. Then, the data are contaminated

Clean (n=1000) data
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Figure 2. Sampling distributions of r, 0, and 0,,, for clean data.

by replacing a fraction of observations on X and ¥ by outliers. Each observation of a
wanable is assigned probability 0.025 of being replaced by a large number. Therefore, the
probability that any particular row will be contaminated is 1— (1 s 0.025)2, which means

#hat approximately 5% of the rows will be contaminated. We then calculated the three
estimates again from the contaminated data. We plotted the sampling distributions of the
Swee estimators for clean data sets and contaminated data sets. Figure 2 reveals that all
W three estimators give similar results for clean data, though the classical estimator  has

smualler standard error. Figure 3 shows the sampling distributions of r, 0, and B, for
comtaminated data.
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Contaminated (n=1000) data
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Figure 3. Sampling distributions of r, 0, and P, for contaminated data.

We observe that the classical estimator r is seriously affected by the contaminations,
because its density plot does not even include the true parameter © =0.5. On the other

hand, the robust estimators 2,,, and P, are not affected by the outliers.

Pyp Versus Py

We considered three different sample sizes: n =25, n =100 and n=400. For each
sample size, we generated 200, datasets from bivariate normal distribution with
£ =0.1,0.5 and 0.9. For each generated dataset, we calculated PJ,,, and p,,,. Table

2 presents the standard errors, average magnitude of bias and CPU time required for these
two estimators. We observe that the existing MVE estimator has smaller standard error
and magnitudes of bias for small and large values of 0. However, for moderate value of
0, the proposed MP estimator has less bias compared to MVE. Moreover, MP requires

much less CPU time. Also, the standard error of all these estimates decrease as sample
size increases, while the bias does not change with sample size.
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Table 2. Simulation results (Average of estimates, standard errors, average biases and CPU
times of MVE and MP estimators).

Criteria p n=25 n=100 ' n=400
MVE MP MVE MP MVE MP
Average of Estimates 0.1  0.112 0.166 0.101 0.156 0.105 0.167
05 0543 0.518 0.504 0.528 0.511 0.527
09 0919 0.946 0.900 0.902 0.901 0.908
Smndard  error 0.1 0293 0.233 0.156 0.114 0.069 0.072
05 0282 0.254 0.115 0.123 0.058 0.066
09 0078 0.139 0.028 0.064 0.014 0.037
Awerage bias 0.1 0.012 0.066 0.001 0.056 0.005 0.067
05 0.043 0.018 0.004 0.028 0.011 0.027
09 0.019 0.046 0.000 0.002 0.001 0.008

CPU time 0:1 6.54 0.80 8.67 1.20 23.79 1.18
0.5 5.75 1.01 8.82 1.18 23.74 1.17
0.9 53.71 1.05 8.52 1.13 23.70 1.57

Application: Motorola vs. Market Data

We applied the proposed MP estimator along with classical r to Motoroala vs. Market
&2 (Adrover et al. 2002). The response variable (Y) is the difference between the
monthly Motorola returns and the Teturns on 30-day US Treasury bills. The explanatory
wariable (X) is the difference between the monthly Market returns and the returns on 30-
@y US Treasury bills. First, we obtained the two estimates from the original data that
comtzin possible outliers. Then based on the scatter plot (Figure 4), we removed three
autlying observations from the data and calculated the two estimates again. The results
ar= shown in Table 3. |

Table 3. Different correlation estimates for Motorola data.

Estimation Clean data Contaminated data
Classical 0.63 0.59
Proposed MP 0.66 0.66

The classical estimator 7 gives much different results for the original and cleaned
@z while the proposed MP estimator gives same results. This shows that MP estimator
= mot affected by outliers.
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Figure 4. Motorola return vs. Market return.

Summary

In this article, we proposed a new robust estimator for bivariate data that does not use
iterative algorithm. The proposed Median-Product (MP) correlation estimator achieves
robustness and computational efficiency at the same time. The classical estimator r is the
mean of the product of two standardized variables. We obtained initial robust estimator

r,, by replacing the means and standard deviations used in r ljy median and MAD. Thus,
r,, is the median of the product of two robustly standardized variables. The problem with
r,, is that —0.4549 < r,, £0.4549, where 0.4549 is the median of 7 random variable.
We denoted the‘asymptotic value of r,, by 0, ., and performed a simulation study to
ekplore the relationship between ,(3 and 0,,. Based on this numerical study, we made a

transformation of r,, and obtained the MP estimator of p denoted by Oyp-

The new robust estimator J,,, has much better performance compared to classical r
in the contaminated data. When compared to existing robust estimator 9,5 , the standard

error of our estimator is comparable to that of D, . Though the bias of our estimator is

slightly greater than that of MVE, the proposed MP estimator is computationally more
suitable.
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