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ABSTRACT

This study examines the spatiotemporal dynamics of shoreline changes along the Kuakata coast, 
Bangladesh, over a 30-year period (1991–2021), using geospatial techniques and remote sensing 
data. Multi-temporal Landsat imagery, including Landsat7ETM, Landsat7ETM+, Landsat8, and 
9(OLI), and the Digital Shoreline Analysis System (DSAS) were employed to quantify rates of 
erosion, accretion, and overall shoreline movement. The highest erosion rate was observed in the 
central BC part (-13.8 m/year), while the southeastern zone exhibited the highest accretion rate 
(+25.58 m/year). The total land loss and gain during the study period were calculated at 8 km² and 
4.7 km², respectively. Temporal analysis revealed average shoreline movements of -9.68 m/year 
(1991–2000), -0.98 m/year (2000–2010), and +2.1 m/year (2010–2021). Erosional rates for these 
periods averaged -13.11 m/year, -6.42 m/year, and -8.38 m/year, while accretion rates were 15.09 
m/year, 14.73 m/year, and 18.56 m/year, respectively. Our findings provide actionable insights into 
erosion mitigation and sustainable coastal management strategies for one of Bangladesh's most 
dynamic and vulnerable shorelines.
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Introduction

Shorelines are dynamic, constantly shifting due to factors 
like winds, waves, tides, sediment availability, sea level 
changes, and human activities (O’Brien et al. 2014). These 
changes often alternate between erosion and accretion, with 
land moving inward or outward over time (Alam et al. 2014). 
In the Meghna Estuary, hydrodynamic factors such as river 
discharges, sediment loads, tidal forces, and cyclonic surges 
drive ongoing landform change (Alam et al. 2014). Bangla-
desh’s coastal zone, spanning 29,000 square kilometers, is 
highly vulnerable to rising sea levels, saltwater intrusion, 
erosion, and cyclonic flooding (Goswami et al. 2022). Rapid 
landform changes in this region are driven by sea level rise 
and wave action (Hoque et al. 2021), threatening tourist spots 
and critical infrastructure like the country’s only lighthouse 

(Anwar et al. 2022). Despite these challenges, earlier 
research has not fully explored the impacts of sea level rise 
on the eastern coast of Bangladesh (Anwar et al. 2022).

Shoreline changes in Bangladesh result from a combination 
of natural and anthropogenic factors, including sea level rise, 
wave activity, monsoon patterns, cyclones, and human 
interventions like embankment construction and resource 
extraction (Uddin et al. 2020; Brammer, 2014). The 
Ganges-Brahmaputra Delta, home to over 129 million 
people, faces significant risks from sea level rise, with 
projections suggesting a loss of 20% of Bangladesh’s land 
by 2100, displacing 15 million people (Paul and Rashid, 
2016; Sarwar and Woodroffe, 2013). The population of

Bangladesh has increased from 144 million in 2011 to  
165.16 million in 2022, according to the latest population 
and housing census, and is projected to reach 175 million 
by 2024 (BBS, 2022; MacroTrends, 2024) with many 
living in low-lying floodplains vulnerable to monsoon 
flooding and tidal surges (BBS, 2011). The global average 
sea level rose by 0.21 meters from 1902 to 2015, but the 
Ganges Delta has experienced a much higher rate of 5–15 
mm per year (Mullick et al. 2019; Anwar et al. 2022).

Tidal dynamics play a critical role in shoreline changes, 
particularly in Bangladesh’s semi-diurnal tidal regime, where 
two high and two low tides occur daily (Rose and Bhaskaran, 
2017). They, additionally, mentioned that the average tidal 
range is 1.86 to 2.47 meters, transitioning from microtidal to 
mesotidal conditions. Tide data, sourced from UHSLC 
Stations (2024) and the Bangladesh Tide Table, is essential 
for accurate shoreline delineation, especially when consider-
ing neap and spring tides. Spring tides, representing the 
highest flood levels, and neap tides, the lowest, help avoid 
biases in shoreline change analysis (UHSLC, 2024).

Remote sensing and GIS technologies, such as Landsat imag-
ery and the Digital Shoreline Analysis System (DSAS), are 
essential for monitoring shoreline changes (Himmelstoss et 
al. 2021; Bushra et al. 2021). DSAS Tool, widely accepted 
for statistical analyses, includes a number of methods, 
including WLR (Weighted Linear Regression), LRR (Linear 
Regression Rate), NSM (Net Shoreline Movement), etc. 
Tools like Sentinel-2 imagery and water indices (e.g., NDWI, 
MNDWI) enable accurate shoreline extraction and analysis 
(Astiti et al. 2019; Fejjari et al. 2023). Studies have used 
these methods to analyze shoreline changes over decades, 
employing statistical techniques like linear regression to 
predict future trends (Crowell et al. 1997; Maiti and 
Bhattacharya, 2009). 

This study focuses on Kuakata Beach, a vulnerable area in 
south-central Bangladesh, to analyze shoreline changes over 
the past 30 years using Landsat imagery, GIS, and DSAS. 
The Landsat images for analysis are collected from USGS 
Earth Explorer (https://earthexplorer.usgs.gov). This 
research highlights the critical need for integrated geospatial 
analyses and field validation in understanding coastal 
dynamics. By integrating tide data and advanced remote 
sensing techniques, the study aims to provide insights into 
erosion, accretion, and shoreline stabilization processes, 
contributing to effective coastal management and policy 
development.

This research attempts to assess quantitative factors, includ-
ing annual shoreline movement rate, land loss and land gain 

over 30 years from 1991 to 2021, and find vulnerable and 
critical areas by predicted graphical shoreline visualization, 
by integrating GIS and Remote Sensing techniques.

Materials and methods

Study area

The dynamic coastal region of Bangladesh, situated at the 
southernmost area along the Bay of Bengal, is continuously 
deformed by multiple factors, including sediment accumula-
tion from three mighty rivers source; Ganges River, the 
Meghna River, and the Brahmaputra, wave action, etc. The 
deltaic stability majorly depends on the sediment deposition 
and becomes a shelter for biodiversity. Kuakata sea coastline 
is situated in the central zone of the coast of Bangladesh, 
which contains two major estuaries: the estuaries of Andar-
manik River at the western zone, and the estuaries of Gola-
chipa River at the eastern portion (Fig. 1). This study area 
belongs to Kalapara Upazila in the Patuakhali district, and it 
covers from 21° 48’ 33.23” N to 21° 52’ 16.03” N latitude 
and 90° 6’ 16.45” E to 90° 12’ 48.46” E longitudes (Fig. 1). 
The study area get experience the high- est temperature in 
January (25.1°C) and 33.8°C in April (BMD, 2020), with a 
mean annual rainfall of 2580 mm/year.

The variation of wave height can be observed based on two 
major season, during monsoon season, the wave height is 
typically around 1.8m, on the other hand, during the summer 
season from January to March, the wave height is very small; 
however, in general, the wave height stays 1m. Tides in the 
beach region are semi-diurnal, with daily tide levels ranging 
from 1 to 1.5 m (Uddin and Niloy, 2022).

Data source

Multi-temporal Landsat images, including TM, ETM+, and 
OLI/TRIS sensors, were utilized from 1990 to 2021 to 
analyze the shoreline dynamics of Kuakata. Specifically, four 
satellite images were selected at 10- Multi-temporal Landsat 
images, including TM, ETM+, and OLI/TRIS sensors, were 
utilized from 1990 to 2021 to analyze the shoreline dynamics 
of Kuakata. Specifically, four satellite images were selected 
year intervals from 1991 to 2021 (as shown in Table I). The 
images were acquired from reliable platforms such as USGS 
Earth Explorer (https://earthexplorer.usgs.gov) and GLOVIS  
(www.glovis.gov.us), ensuring a cloud cover of less than 5% 
to maintain data quality and accuracy (Islam et al. 2022).

Here, ECurrent   represents the total positional error for the 
current year, and ENext  represents the total positional error for 
the following year.  

All the metadata of satellite images are shown in Table I. 
To ensure accuracy in shoreline change detection, tide data 
were collected from two main sources: UHSLC (2024) and 
Bangladesh Tide Times (2024). The uncertainty in shore-
line position for each time interval was calculated using 
Equation 1 (Himmelstoss et al. 2021), and the values are 
added in Table 1.

Data preparation

Four key steps were used to study the changes along the 
shoreline. These steps included: (1) processing images 
with Arc-GIS, which involved correcting the images and 
calculating the NDWI to separate the images into water 

and non-water categories, (2) using Otsu’s Binary 
Thresholding to create a binary image and to outline the 
shoreline between water and non-water areas, (3) 
estimating the errors in the LANDSAT images, and (4) 
using DSAS to measure the statistics of the changes 
(Mullick et al. 2019). Shoreline change is measured 
using the WLR, EPR, and LRR methods. This study 
looked at the dividing line between land and water by 
using a binary threshold method. While separating the 
land pixels from the water pixels, the shoreline was 
identified without including the tidal wave. As a result, 
the land boundary line considered in this study is less 
likely to have been mistakenly caused by waves and 
tides. To calculate the rate of shoreline change, we 
looked at four different shorelines from the study area 
over 30 years: 1991, 2000, 2010, and 2021. Where incon-
sistency has been found, the shoreline has been digitized 
on a scale of 1:1000, which indicates a very high accura-
cy (Kabir and Tanvir, 2020). Table II displays major 
attributes regarding shorelines and baselines, including 
their length, uncertainty, date, etc.

The baseline has been taken 200 meters away from the most 
ancient shoreline position, and transect spacing has been 
chosen to be 150m, where the number of transects is 179 
along the coastline.

Image correction

Landsat imagery captures pixel values as digital numbers 

(DN), which, as highlighted by (Chander et al. 2009) 
Top-Of-Atmosphere (TOA, serve as the foundation for 
radiometric adjustments that convert raw satellite data into 
calibrated units like radiance or reflectance, ensuring 
consistency and precision for scientific analyses across 
varying sensors, times, and atmospheric conditions.

Chander et al. (2009) Top-Of-Atmosphere (TOA suggested 
changing DN to Radiance for images taken by the Landsat 
MSS, TM, and ETM sensors by using these equations (2, 3).

Where Lλ is the radiance of a spectral unit of“W/(m2 sr. μ
m),” Qcal is the pixel value of quantized calibrated [DN], 
Qcalmin is the Minimum Qcal, Qcalmax is the Maximum Qcal, 
LMINλ = Minimum Lλ scaled to Qcalmin [W/(m2 sr μm)], LMAXλ 
= Maximum Lλ scaled to Qcalmax [W/(m2 sr μm)]. The follow-
ing formula is used to convert radiance to ToA reflectance as

where Pλ = ToA reflectance [unitless], π = 3.14159, d is the 
Earth-Sun distance [astronomical units], ESUNλ is the mean 
exo-atmospheric solar irradiance [W/(m2 μm)], Ɵz is the 
Solar zenith angle [degrees].

For images from Landsat OLI, you can directly convert DN 
into ToA reflectance according to equation 4 (U.S. Geologi-
cal Survey, 2019).

where Mp is the reflectance multiplicative scaling factor for 
the band [unitless], and Ap is the reflectance additive scaling 
factor for the band [unitless]. The metadata file associated 
with LANDSAT imagery includes values for parameters such 
as Qcal, Qcalmax, Qcalmin, LMINλ, LMAXλ, Mp, Ap, and Ɵz (U.S. 
Geological Survey, 2019).

Digital index

The NDWI index is a useful tool for spotting water bodies on 
the Earth's surface. The NDWI was determined by using the 
green and near-infrared bands, as shown in equation 5 (Hos-
sain et al. 2021).

The NDWI can range from -1 to +1. The NDWI image 
typically indicates a good result for areas with water and a 
bad result for areas without water. To show the boundary 
between land and water as a coastline, we marked the land 
features with a 0 and the water features with a 1.

DSAS tool for shoreline change analysis

The Digital Shoreline Analysis System (DSAS) Version 6 is 
the latest standalone software developed for shoreline change 
analysis. Unlike its earlier versions, which operated as an 
extension of ArcGIS, DSAS v6 is no longer tied to ArcGIS, 
offering users more flexibility and independence from GIS 
software constraints. This modern version integrates a 
user-friendly interface with enhanced features, making it a 
powerful and comfortable tool for analyzing coastal changes. 
It requires pre-processed shoreline data and a baseline in 
GeoJSON format, ensuring standardized and efficient input 
handling. With updated algorithms and capabilities, DSAS 
v6 delivers accurate results, making it ideal for shoreline 
management and research applications. It estimates common 
uncertainty 10 and provides 13 types of statistical results that 
are so effective for analysts.

Varieties of Statistical Methods applied for understanding the 
Rate of Shoreline Movement

The Shoreline Change Envelope (SCE) and the rate of shore-
line change were measured using the EPR, NSM, LRR, and 
WLR methods as outlined in the Digital Shoreline Analysis 
System (DSAS). These measurements are commonly used in 
statistics that track changes along the shoreline.

The End Point Rate (EPR) is the best method when it is 
calculated using just two shoreline positions at different 
times (Sarwar and Woodroffe, 2013). The EPR method calcu-
lates how much the shoreline changes by dividing the 
distance by the number of years, as shown in equation six.

The distance (m) between the newest and oldest shoreline is 
represented by D1 − D2, and the time gap (years) between the 
two shoreline positions is shown as t1 − t0.

On the other hand, LRR (Linear regression method) is more 
appropriate when the number of shorelines exceeds two. 
OBrien et al. (2014) utilized the following LRR formula 
(Equation 7) for long-term shoreline analysis

Y = a + bX              (7)

In this equation, y represents the distance (in meters) from the 
baseline. The variable is the starting point of y, while b shows the 
slope of the line that describes how the shoreline changes over time.  

The variable x stands for the shoreline position in various years. 
A ±5 m uncertainty and a 95% confidence interval were set as 
default parameters for statistical calculations. Linear regression 
involves several key aspects: (1) it uses all available data, no 
matter if there are changes in trends or accuracy, (2) it relies 
entirely on calculations, (3) it follows recognized statistical 
principles, and (4) it is simple to use (Crowell et al. 2018). The 
linear regression method can be affected by outliers and often 
underestimates how quickly things change compared to other 
statistics, like EPR (Dolan, 1991). 

The Weighted Linear Regression (WLR) method employs a 
linear regression approach similar to the Linear Regression 
Rate (LRR) method but incorporates a weighting factor 
(Equation 8) applied to Equation seven to account for 
positional uncertainty (Himmelstoss et al. 2021).

In the DSAS tool, Hossain et al. (2021) utilized the R2 value 
to be determined for LRR and WLR methods as presented in 
Eq.9, and it represents the accuracy and perfection between 
linear regression rate and weighted linear regression rate.

Where y = distance from baseline and known shoreline 
position, y′= predicted value of the best-fit regression line 
according to the equation, y = mean of the shoreline position 
data. The R-squared value, denoted as LR2, evaluates how 
well the shoreline position data fits the linear regression line.

Forecasting model

This model (Equation 10) calculates the adjusted shoreline 
position by incorporating the rate of shoreline movement 
(LRR) over a given time period. It uses the original inter-
sect point position and adjusts it by multiplying the Linear 
Regression Rate (LRR), which represents the rate of 
shoreline change per year, by the time elapsed. This 
adjustment accounts for both erosion (negative LRR) and 
accretion (positive LRR), ensuring that the shoreline's 
movement landward or seaward is accurately represented 
(Crowell et al. 1997). The model can be applied separately 
to the X and Y coordinates, allowing for a comprehensive 
adjustment in both directions, and is useful in predicting 
future shoreline positions or validating trends of coastal 
change observed over time.

Where:

Xnew  : Adjusted shoreline position.
Xoriginal  : Original intersect point position.
LRR: Linear Regression Rate (rate of change in shoreline 
position per year).
Δt represents the time span.

Validation of the Shoreline Prediction Model

The root mean square error is the square root of the variance 
of the residuals. It shows how well the model fits the data, 
i.e., how close the actual data points are to what the model 
predicted Lower RMSE values indicate a better fit, while 
higher values mean there is more error. The RMSE was used 
to check how well the actual coastline change rates matched 
the predicted ones. In shoreline observation, Uddin and Niloy 
(2022) assessed the calculated model and satellite observa-
tions of the shoreline change rate for 2021 by using RMSE 
values (Equation 11). 

Land loss and land gain computation

The areas identified as water or non-water in the images were 
compared to find out the values of land loss and gain, using 
the ArcGIS raster calculator tool (Mullick et al. 2019). The 
changes in land, both lost and gained, were measured over 
four years in a row, covering a total period of 30 years from 
1991 to 2021.

Results and discussion

The general view begins by describing the analysis of 179 
transects, with 174 considered active, along an approximate-
ly 25 km shoreline. This study utilized Weighted Linear 
Regression Rate (WLR) and Linear Regression Rate (LRR) 
for long-term analysis (1991–2021) and End Point Rate 
(EPR) and Net Shoreline Movement (NSM) for short-term 
intervals (1991–2000, 2000–2010, and 2010–2021).

Long term observation

Long-term observation includes overall analyses over the 
past 30 years from 1991 to 2021. There are a number of 
statistical methods developed to analyze long-term observa-
tion (more than two years) involving LRR, WLR, SCE, etc.

Shoreline change envelope

The highest distance range, from 590.78 to 495.79, belongs 
to the eastern region of shorelines (Graph 1, Fig 4). The 
farthest distance from the baseline belongs to the range of 
transect ID from 170 to 150. The nearest distance from the 
graph lies to the most eastward crossed 170 transect Id 
(Graph 1, Fig. 4).

Rate of shoreline movement

The Weighted Linear Regression (WLR) method shows 
varying rates of shoreline change along the studied coastal 
stretch. The spatial and temporal assessment of shoreline 
change across zones AB (Western), BC (Central), and CD 
(Eastern) of the Bay of Bengal reveals distinct patterns of 
erosion and accretion over the 30-year study period 
(1991-2021).

Spatial variation in shoreline dynamics

As shown in Fig. 6, the Bay of Bengal coastline demon-
strates significant zonal heterogeneity in shoreline change. 
Zone AB (Western Zone) exhibits a mixed pattern with 
predominantly erosional transects (73.33%), particularly in 
its central segment, though some accretional areas 
(15.56%) appear toward the boundaries. Zone BC (Central 
Zone) represents the most severely eroded region, with an 
overwhelming 98.31% of transects classified as erosional 
and no accretional transects observed. In contrast, Zone 
CD (Eastern Zone) displays a markedly different pattern 
with a majority of accretional transects (54.29%) concen-
trated in its central portion, though erosional processes still 
affect 28.57% of the area.

Quantitative assessment of shoreline change

The magnitude of shoreline change varies considerably 
across the study area, as illustrated in Table III. Zone BC 
exhibits the highest mean erosion rate (-9.48 m/yr), followed 
by Zone AB (-5.87 m/yr), while Zone CD shows net accre-

tion with a mean shoreline change of +5.88 m/yr. Maximum 
shoreline retreat was recorded in Zone BC (-13.8 m/yr), 
closely followed by Zone AB (-13.12 m/yr). Conversely, 
Zone CD registered the most substantial accretion, with a 
maximum shoreline advance of +25.58 m/yr, highlighting the 
dynamic nature of this eastern segment.

Transect-wise analysis

Graph 2 provides a detailed transect-by-transect visualization 
of erosion versus deposition patterns. The predominance of 
erosional processes (red areas) is evident across transects 

1-120, corresponding primarily to Zones AB and BC. The 
pronounced erosional trough between transects 43-64 corre-
sponds to the area of maximum retreat in Zone AB.

A dramatic shift occurs around transect 127, where 
substantial depositional processes (green areas) begin to 
dominate, reaching peak values exceeding +20 m/yr at 
transects 148-152, which aligns with the central portion 
of Zone CD. Notable interruptions in the accretional 
pattern occur around transects 155-158 and 168-169, 
indicating localized erosional hotspots within the general-
ly accretional eastern zone.

Short term observation

Shoreline variation is observed for each 10-year period 
from 1991 to 2021. The Fig. 6 shows seaward and 
landward movement at Kuakata area, Bay of Bengal, 
across three periods: 1991–2000, 2000–2010, and 
2010–2021. Accretion dominates in the eastern region, 
while erosion is prevalent in the western section, particu-
larly post-2000. In terms of short-period observation, the 
number of green transects is increasing both eastward 
and It reaches a peak point in 2021 from both the east and 
west portions, as shown in graph. 3 and Fig. 6. The 
method for frequent analyses is followed by NSM (Net 
Shoreline Movement) and EPR (End Point Rate).

Quantitative analysis using the EPR (End Point Rate) method

The End Point Rate (EPR) analysis is presented across 
three time periods: 1991-2000, 2000-2010, and 2010-2021. 
The Graph 3 and the Table IV demonstrate predominantly 
erosional rates with peaks reaching more than -20 meters/-
year, though a notable accretion peak of about more than 
30 meters/year appears around transect 125 between 1991 
and 2000.

The 2000-2010 period exhibits similar erosional trends in the 
central part of the transects but displays a significant accre-
tion peak of nearly 40 meters/year around transect 125 (Table 
IV). The most recent period (2010-2021) shows a more 
variable pattern with two distinct accretion peaks: one at the 
beginning of the stretch (around transect 15) reaching 
approximately 35 meters/year (Graph 3), and another more 

pronounced peak near transect 175 reaching about 44.9 
meters/year, as shown in Table IV, and Graph 3. All three 
time periods demonstrate fluctuating patterns of shoreline 
change rates across the study area, with the magnitude and 
location of peaks varying between periods. The average 
rate of shoreline change shows a progressive shift from 
erosional dominance to accretional tendency, changing 
from -9.68 m/year (1991-2000) to -0.98 m/year 
(2000-2010), and finally to 2.1 m/year (2010-2021), in 
Table IV, which supports Fig. 8.

The number of erosional transects decreased over time 
from 123 (87.86%) in 1991-2000 to 99 (61.11%) in 
2010-2021, while depositional transects increased from 17 
(12.14%) to 63 (38.89%) during the same period. Maxi-
mum erosion rates decreased from -24.5 m/year to -14.64 
m/year, while maximum accretion rates increased from 
33.49 m/year to 44.9 m/year. The average erosional rates 
moderated from -13.11 m/year to -8.38 m/year, while 

average depositional rates increased from 15.09 m/year to 
18.56 m/year across the study period.

Computation of land loss and land gain

In Fig. 7, the analysis of shoreline movement (NSM) along 
the Bay of Bengal coast revealed distinct patterns of morpho-
logical changes across three temporal periods: 1991-2000, 

2000-2010, and 2010-2021. The shoreline exhibited both 
erosional and accretional trends, with varying intensities 
along different coastal segments. During 1991-2000, the 
coastline was predominantly characterized by erosion 
(indicated in red), particularly along the central portion of the 
study area.

A small section in the eastern segment showed accretion 
(shown in green), while isolated stable areas (indicated in 
grey) were observed intermittently along the shoreline. The 
period 2000-2010 demonstrated a similar erosional pattern, 
though with some notable changes. The extent of erosion 
remained significant along the western and central sections, 
while the eastern portion showed increased accretional 
tendencies compared to the previous decade. The stable zones 
appeared to be more fragmentary during this period.

The most recent period (2010-2021) exhibited a continuation 
of the erosional trend along the western and central coastline. 
However, the eastern section displayed enhanced accretion, 
suggesting a persistent pattern of sediment accumulation in 
this area. The transition between erosional and accretional 
zones appeared more distinct compared to earlier periods. The 
analysis of shoreline movement (NSM) along the Bay of 
Bengal coast revealed significant morphological changes 
across three temporal periods: 1991-2000, 2000 2010, and 
2010-2021. The total affected area over the entire study 
period was 13.27 km², indicating substantial coastal dynamics 
in the region, as mentioned in Table V and Graph 4.

Expected shoreline position

According to Fig. 8, these historical trends manifest in 
distinct spatial patterns. The eastern portion, however, exhib-
its a significant landward movement, indicating persistent 
erosional processes despite the overall increase in previous 
erosional transects. 

This spatial variation in shoreline movement suggests that 
while accretional processes at the central zone have increased 
over time at a broader scale, localized erosional hotspots 
persist, particularly in the eastern section.

A remarkable morphological change along the coastline was 
observed with high fluctuation in some coastal zones from 
1991 to 2021. These physiological changes along the Bay 
of Bengal at Kuakata experienced both erosion and deposi-
tion, along with inward and outward movement of the 
shoreline. This study has highlighted both long-term obser-
vation over one period from 1991 to 2021 and short-term 
observation into three periods with a 10-year interval.

A comparable study conducted by Goswami et al. (2022) 
analyzed 1052 transects over a 55 km shoreline of Kuakata 
area, employing metrics such as EPR, NSM, and LRR 
while integrating SCE to assess shoreline variability over 
20 years from 2000 to 2020. Another study by Islam et al. 
(2014) found, in their study on Kutubdia Island, south 
eastern zone of Bangladesh, a strong correlation between 
EPR with WLR and LRR. However, their prime result of 
the transect rates is 0.29 m/yr, 2.91m/yr, and 3.53 for EPR, 
LRR, and WLR, respectively.

Similar studies conducted in the same location by Bushra 
et al.   (2021), their studies strongly supported our 
findings, though they chose a bit longer distance toward 
the north part from the Golachipa River at the eastern side. 
They got lost area of approximately 13.59 km2, over 30 
years from 1989 to 2020, likely, in my studies (Table V, 
Graph. 4) loss of area is more than 8 km2.

On the side of Red Crab Island in south eastern zone, it is 
literally being sedimentation from past years according to 
all previous publications and our research as well (Fig. 7). 
In this study, the shoreline dynamics along the Kuakata 

coast from 1991 to 2021 revealed significant erosion 
patterns, consistent with the findings of  Uddin & Niloy 
(2022). Their investigation results have clarified that red 
crab char, the eastern part of Kuakata beach, is more 
dynamic, demonstrating a vulnerable region and high 
SCE is 486m from  Uddin and Niloy (2022) and 490 in 
order to this report (Graph. 1, Fig. 4). My study found 
higher overall shoreline loss (~8.2 km²) and gain (~5.3 
km²) compared to their 6.11 km² loss and 3.26 km² gain. 
Differences may arise from data sources and methodolo-
gy, but both studies indicate a long-term erosional trend. 
On the side of statistical rate of shoreline variation, max, 
and min shoreline change rates regarding three zones 
(Table III) are homogenized by them, for instance, mean 
coastline variation -2.84 from our study and -3.11 in 
order to Uddin and Niloy (2022), similarly, highest accre-
tion rate from CD altered section shows insignificant 
difference as from my study is 25.58 and 23.88 from their 
study. Overall, it can be observed that no significant 
variation is found between the studies. 

Coastal districts are evaluated considering temporal shore-
line change analyses by Shamsuzzoha and Tofael (2023), 
and they analyzed the whole southern part of Bangladesh 
altogether, with a different approach, which poses 
challenges to making comparisons.

Shoreline forecasting has been limited, primarily for 
identifying critical areas. Rahman and Ferdous (2019) and 
Uddin & Niloy (2022) predicted shorelines for 2028 and 
2041, while this study forecasts 2050 (Fig. 8). Rahman and 
Ferdous (2019) analyzed the entire northern Bay of Bengal, 
making a Kalapara-specific evaluation difficult. Uddin and 
Niloy (2022) used DSAS beta forecasting, differing from 
this study’s equation-based model (equation_10), which 
aligns with observed short-term trends (1991–2021). The 
central part of Kuakata is predicted to shift seaward, which 
is in contrast findings of Uddin and Niloy (2022), while the 
eastern part will experience significant landward move-
ment, partially aligning with previous findings. However, 
uncertainties remain due to the long projection period (29 
years) and using a different prediction model, making the 
forecast probabilistic rather than absolute. 

Notably, the southeastern zone, which includes Red Crab 
Island (or char), appears to be highly dynamic, with signif-
icant landward shoreline movement indicating erosion. 
This region’s vulnerability may stem from its exposure to 
high-energy tidal forces and sediment-starved conditions, 

leading to the gradual loss of land (Uddin and Niloy, 
2022). The ecological significance of Red Crab Island, 
coupled with its role as a potential buffer against coastal 
erosion, makes it a critical area for focused conservation 
and monitoring efforts.

Conclusion

This study provides a comprehensive analysis of shoreline 
dynamics along the Kuakata coast, Bangladesh, over a 
30-year period (1991–2021). Using multi-temporal Land-
sat imagery and the Digital Shoreline Analysis System 
(DSAS), key findings revealed the highest erosion rate of 
-13.8 m/year in the central BC part and the highest accre-
tion rate of +25.58 m/year in the southeastern zone.

These findings underscore the dynamic nature of the 
Kuakata coastline, and due to our ignoring a direct field 
visit, we could not detect the exact reason among many 
probable reasons, including climate change, anthropogenic 
activities, tidal flux, etc. The study highlights the vulnera-
bility of coastal communities and infrastructure, necessi-
tating immediate action to mitigate erosion risks and 
promote sustainable development.

Future research should focus on discontinuous areas, deep 
social impact with accurate reasons, and detecting the 
exact reason by integrating higher-resolution satellite 
imagery, field validation, and hydrodynamic modeling.
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Bangladesh has increased from 144 million in 2011 to  
165.16 million in 2022, according to the latest population 
and housing census, and is projected to reach 175 million 
by 2024 (BBS, 2022; MacroTrends, 2024) with many 
living in low-lying floodplains vulnerable to monsoon 
flooding and tidal surges (BBS, 2011). The global average 
sea level rose by 0.21 meters from 1902 to 2015, but the 
Ganges Delta has experienced a much higher rate of 5–15 
mm per year (Mullick et al. 2019; Anwar et al. 2022).

Tidal dynamics play a critical role in shoreline changes, 
particularly in Bangladesh’s semi-diurnal tidal regime, where 
two high and two low tides occur daily (Rose and Bhaskaran, 
2017). They, additionally, mentioned that the average tidal 
range is 1.86 to 2.47 meters, transitioning from microtidal to 
mesotidal conditions. Tide data, sourced from UHSLC 
Stations (2024) and the Bangladesh Tide Table, is essential 
for accurate shoreline delineation, especially when consider-
ing neap and spring tides. Spring tides, representing the 
highest flood levels, and neap tides, the lowest, help avoid 
biases in shoreline change analysis (UHSLC, 2024).

Remote sensing and GIS technologies, such as Landsat imag-
ery and the Digital Shoreline Analysis System (DSAS), are 
essential for monitoring shoreline changes (Himmelstoss et 
al. 2021; Bushra et al. 2021). DSAS Tool, widely accepted 
for statistical analyses, includes a number of methods, 
including WLR (Weighted Linear Regression), LRR (Linear 
Regression Rate), NSM (Net Shoreline Movement), etc. 
Tools like Sentinel-2 imagery and water indices (e.g., NDWI, 
MNDWI) enable accurate shoreline extraction and analysis 
(Astiti et al. 2019; Fejjari et al. 2023). Studies have used 
these methods to analyze shoreline changes over decades, 
employing statistical techniques like linear regression to 
predict future trends (Crowell et al. 1997; Maiti and 
Bhattacharya, 2009). 

This study focuses on Kuakata Beach, a vulnerable area in 
south-central Bangladesh, to analyze shoreline changes over 
the past 30 years using Landsat imagery, GIS, and DSAS. 
The Landsat images for analysis are collected from USGS 
Earth Explorer (https://earthexplorer.usgs.gov). This 
research highlights the critical need for integrated geospatial 
analyses and field validation in understanding coastal 
dynamics. By integrating tide data and advanced remote 
sensing techniques, the study aims to provide insights into 
erosion, accretion, and shoreline stabilization processes, 
contributing to effective coastal management and policy 
development.

This research attempts to assess quantitative factors, includ-
ing annual shoreline movement rate, land loss and land gain 

over 30 years from 1991 to 2021, and find vulnerable and 
critical areas by predicted graphical shoreline visualization, 
by integrating GIS and Remote Sensing techniques.

Materials and methods

Study area

The dynamic coastal region of Bangladesh, situated at the 
southernmost area along the Bay of Bengal, is continuously 
deformed by multiple factors, including sediment accumula-
tion from three mighty rivers source; Ganges River, the 
Meghna River, and the Brahmaputra, wave action, etc. The 
deltaic stability majorly depends on the sediment deposition 
and becomes a shelter for biodiversity. Kuakata sea coastline 
is situated in the central zone of the coast of Bangladesh, 
which contains two major estuaries: the estuaries of Andar-
manik River at the western zone, and the estuaries of Gola-
chipa River at the eastern portion (Fig. 1). This study area 
belongs to Kalapara Upazila in the Patuakhali district, and it 
covers from 21° 48’ 33.23” N to 21° 52’ 16.03” N latitude 
and 90° 6’ 16.45” E to 90° 12’ 48.46” E longitudes (Fig. 1). 
The study area get experience the high- est temperature in 
January (25.1°C) and 33.8°C in April (BMD, 2020), with a 
mean annual rainfall of 2580 mm/year.

The variation of wave height can be observed based on two 
major season, during monsoon season, the wave height is 
typically around 1.8m, on the other hand, during the summer 
season from January to March, the wave height is very small; 
however, in general, the wave height stays 1m. Tides in the 
beach region are semi-diurnal, with daily tide levels ranging 
from 1 to 1.5 m (Uddin and Niloy, 2022).

Data source

Multi-temporal Landsat images, including TM, ETM+, and 
OLI/TRIS sensors, were utilized from 1990 to 2021 to 
analyze the shoreline dynamics of Kuakata. Specifically, four 
satellite images were selected at 10- Multi-temporal Landsat 
images, including TM, ETM+, and OLI/TRIS sensors, were 
utilized from 1990 to 2021 to analyze the shoreline dynamics 
of Kuakata. Specifically, four satellite images were selected 
year intervals from 1991 to 2021 (as shown in Table I). The 
images were acquired from reliable platforms such as USGS 
Earth Explorer (https://earthexplorer.usgs.gov) and GLOVIS  
(www.glovis.gov.us), ensuring a cloud cover of less than 5% 
to maintain data quality and accuracy (Islam et al. 2022).

Here, ECurrent   represents the total positional error for the 
current year, and ENext  represents the total positional error for 
the following year.  

All the metadata of satellite images are shown in Table I. 
To ensure accuracy in shoreline change detection, tide data 
were collected from two main sources: UHSLC (2024) and 
Bangladesh Tide Times (2024). The uncertainty in shore-
line position for each time interval was calculated using 
Equation 1 (Himmelstoss et al. 2021), and the values are 
added in Table 1.

Data preparation

Four key steps were used to study the changes along the 
shoreline. These steps included: (1) processing images 
with Arc-GIS, which involved correcting the images and 
calculating the NDWI to separate the images into water 

and non-water categories, (2) using Otsu’s Binary 
Thresholding to create a binary image and to outline the 
shoreline between water and non-water areas, (3) 
estimating the errors in the LANDSAT images, and (4) 
using DSAS to measure the statistics of the changes 
(Mullick et al. 2019). Shoreline change is measured 
using the WLR, EPR, and LRR methods. This study 
looked at the dividing line between land and water by 
using a binary threshold method. While separating the 
land pixels from the water pixels, the shoreline was 
identified without including the tidal wave. As a result, 
the land boundary line considered in this study is less 
likely to have been mistakenly caused by waves and 
tides. To calculate the rate of shoreline change, we 
looked at four different shorelines from the study area 
over 30 years: 1991, 2000, 2010, and 2021. Where incon-
sistency has been found, the shoreline has been digitized 
on a scale of 1:1000, which indicates a very high accura-
cy (Kabir and Tanvir, 2020). Table II displays major 
attributes regarding shorelines and baselines, including 
their length, uncertainty, date, etc.

The baseline has been taken 200 meters away from the most 
ancient shoreline position, and transect spacing has been 
chosen to be 150m, where the number of transects is 179 
along the coastline.

Image correction

Landsat imagery captures pixel values as digital numbers 

(DN), which, as highlighted by (Chander et al. 2009) 
Top-Of-Atmosphere (TOA, serve as the foundation for 
radiometric adjustments that convert raw satellite data into 
calibrated units like radiance or reflectance, ensuring 
consistency and precision for scientific analyses across 
varying sensors, times, and atmospheric conditions.

Chander et al. (2009) Top-Of-Atmosphere (TOA suggested 
changing DN to Radiance for images taken by the Landsat 
MSS, TM, and ETM sensors by using these equations (2, 3).

Where Lλ is the radiance of a spectral unit of“W/(m2 sr. μ
m),” Qcal is the pixel value of quantized calibrated [DN], 
Qcalmin is the Minimum Qcal, Qcalmax is the Maximum Qcal, 
LMINλ = Minimum Lλ scaled to Qcalmin [W/(m2 sr μm)], LMAXλ 
= Maximum Lλ scaled to Qcalmax [W/(m2 sr μm)]. The follow-
ing formula is used to convert radiance to ToA reflectance as

where Pλ = ToA reflectance [unitless], π = 3.14159, d is the 
Earth-Sun distance [astronomical units], ESUNλ is the mean 
exo-atmospheric solar irradiance [W/(m2 μm)], Ɵz is the 
Solar zenith angle [degrees].

For images from Landsat OLI, you can directly convert DN 
into ToA reflectance according to equation 4 (U.S. Geologi-
cal Survey, 2019).

where Mp is the reflectance multiplicative scaling factor for 
the band [unitless], and Ap is the reflectance additive scaling 
factor for the band [unitless]. The metadata file associated 
with LANDSAT imagery includes values for parameters such 
as Qcal, Qcalmax, Qcalmin, LMINλ, LMAXλ, Mp, Ap, and Ɵz (U.S. 
Geological Survey, 2019).

Digital index

The NDWI index is a useful tool for spotting water bodies on 
the Earth's surface. The NDWI was determined by using the 
green and near-infrared bands, as shown in equation 5 (Hos-
sain et al. 2021).

The NDWI can range from -1 to +1. The NDWI image 
typically indicates a good result for areas with water and a 
bad result for areas without water. To show the boundary 
between land and water as a coastline, we marked the land 
features with a 0 and the water features with a 1.

DSAS tool for shoreline change analysis

The Digital Shoreline Analysis System (DSAS) Version 6 is 
the latest standalone software developed for shoreline change 
analysis. Unlike its earlier versions, which operated as an 
extension of ArcGIS, DSAS v6 is no longer tied to ArcGIS, 
offering users more flexibility and independence from GIS 
software constraints. This modern version integrates a 
user-friendly interface with enhanced features, making it a 
powerful and comfortable tool for analyzing coastal changes. 
It requires pre-processed shoreline data and a baseline in 
GeoJSON format, ensuring standardized and efficient input 
handling. With updated algorithms and capabilities, DSAS 
v6 delivers accurate results, making it ideal for shoreline 
management and research applications. It estimates common 
uncertainty 10 and provides 13 types of statistical results that 
are so effective for analysts.

Varieties of Statistical Methods applied for understanding the 
Rate of Shoreline Movement

The Shoreline Change Envelope (SCE) and the rate of shore-
line change were measured using the EPR, NSM, LRR, and 
WLR methods as outlined in the Digital Shoreline Analysis 
System (DSAS). These measurements are commonly used in 
statistics that track changes along the shoreline.

The End Point Rate (EPR) is the best method when it is 
calculated using just two shoreline positions at different 
times (Sarwar and Woodroffe, 2013). The EPR method calcu-
lates how much the shoreline changes by dividing the 
distance by the number of years, as shown in equation six.

The distance (m) between the newest and oldest shoreline is 
represented by D1 − D2, and the time gap (years) between the 
two shoreline positions is shown as t1 − t0.

On the other hand, LRR (Linear regression method) is more 
appropriate when the number of shorelines exceeds two. 
OBrien et al. (2014) utilized the following LRR formula 
(Equation 7) for long-term shoreline analysis

Y = a + bX              (7)

In this equation, y represents the distance (in meters) from the 
baseline. The variable is the starting point of y, while b shows the 
slope of the line that describes how the shoreline changes over time.  

The variable x stands for the shoreline position in various years. 
A ±5 m uncertainty and a 95% confidence interval were set as 
default parameters for statistical calculations. Linear regression 
involves several key aspects: (1) it uses all available data, no 
matter if there are changes in trends or accuracy, (2) it relies 
entirely on calculations, (3) it follows recognized statistical 
principles, and (4) it is simple to use (Crowell et al. 2018). The 
linear regression method can be affected by outliers and often 
underestimates how quickly things change compared to other 
statistics, like EPR (Dolan, 1991). 

The Weighted Linear Regression (WLR) method employs a 
linear regression approach similar to the Linear Regression 
Rate (LRR) method but incorporates a weighting factor 
(Equation 8) applied to Equation seven to account for 
positional uncertainty (Himmelstoss et al. 2021).

In the DSAS tool, Hossain et al. (2021) utilized the R2 value 
to be determined for LRR and WLR methods as presented in 
Eq.9, and it represents the accuracy and perfection between 
linear regression rate and weighted linear regression rate.

Where y = distance from baseline and known shoreline 
position, y′= predicted value of the best-fit regression line 
according to the equation, y = mean of the shoreline position 
data. The R-squared value, denoted as LR2, evaluates how 
well the shoreline position data fits the linear regression line.

Forecasting model

This model (Equation 10) calculates the adjusted shoreline 
position by incorporating the rate of shoreline movement 
(LRR) over a given time period. It uses the original inter-
sect point position and adjusts it by multiplying the Linear 
Regression Rate (LRR), which represents the rate of 
shoreline change per year, by the time elapsed. This 
adjustment accounts for both erosion (negative LRR) and 
accretion (positive LRR), ensuring that the shoreline's 
movement landward or seaward is accurately represented 
(Crowell et al. 1997). The model can be applied separately 
to the X and Y coordinates, allowing for a comprehensive 
adjustment in both directions, and is useful in predicting 
future shoreline positions or validating trends of coastal 
change observed over time.

Where:

Xnew  : Adjusted shoreline position.
Xoriginal  : Original intersect point position.
LRR: Linear Regression Rate (rate of change in shoreline 
position per year).
Δt represents the time span.

Validation of the Shoreline Prediction Model

The root mean square error is the square root of the variance 
of the residuals. It shows how well the model fits the data, 
i.e., how close the actual data points are to what the model 
predicted Lower RMSE values indicate a better fit, while 
higher values mean there is more error. The RMSE was used 
to check how well the actual coastline change rates matched 
the predicted ones. In shoreline observation, Uddin and Niloy 
(2022) assessed the calculated model and satellite observa-
tions of the shoreline change rate for 2021 by using RMSE 
values (Equation 11). 

Land loss and land gain computation

The areas identified as water or non-water in the images were 
compared to find out the values of land loss and gain, using 
the ArcGIS raster calculator tool (Mullick et al. 2019). The 
changes in land, both lost and gained, were measured over 
four years in a row, covering a total period of 30 years from 
1991 to 2021.

Results and discussion

The general view begins by describing the analysis of 179 
transects, with 174 considered active, along an approximate-
ly 25 km shoreline. This study utilized Weighted Linear 
Regression Rate (WLR) and Linear Regression Rate (LRR) 
for long-term analysis (1991–2021) and End Point Rate 
(EPR) and Net Shoreline Movement (NSM) for short-term 
intervals (1991–2000, 2000–2010, and 2010–2021).

Long term observation

Long-term observation includes overall analyses over the 
past 30 years from 1991 to 2021. There are a number of 
statistical methods developed to analyze long-term observa-
tion (more than two years) involving LRR, WLR, SCE, etc.

Shoreline change envelope

The highest distance range, from 590.78 to 495.79, belongs 
to the eastern region of shorelines (Graph 1, Fig 4). The 
farthest distance from the baseline belongs to the range of 
transect ID from 170 to 150. The nearest distance from the 
graph lies to the most eastward crossed 170 transect Id 
(Graph 1, Fig. 4).

Rate of shoreline movement

The Weighted Linear Regression (WLR) method shows 
varying rates of shoreline change along the studied coastal 
stretch. The spatial and temporal assessment of shoreline 
change across zones AB (Western), BC (Central), and CD 
(Eastern) of the Bay of Bengal reveals distinct patterns of 
erosion and accretion over the 30-year study period 
(1991-2021).

Spatial variation in shoreline dynamics

As shown in Fig. 6, the Bay of Bengal coastline demon-
strates significant zonal heterogeneity in shoreline change. 
Zone AB (Western Zone) exhibits a mixed pattern with 
predominantly erosional transects (73.33%), particularly in 
its central segment, though some accretional areas 
(15.56%) appear toward the boundaries. Zone BC (Central 
Zone) represents the most severely eroded region, with an 
overwhelming 98.31% of transects classified as erosional 
and no accretional transects observed. In contrast, Zone 
CD (Eastern Zone) displays a markedly different pattern 
with a majority of accretional transects (54.29%) concen-
trated in its central portion, though erosional processes still 
affect 28.57% of the area.

Quantitative assessment of shoreline change

The magnitude of shoreline change varies considerably 
across the study area, as illustrated in Table III. Zone BC 
exhibits the highest mean erosion rate (-9.48 m/yr), followed 
by Zone AB (-5.87 m/yr), while Zone CD shows net accre-

tion with a mean shoreline change of +5.88 m/yr. Maximum 
shoreline retreat was recorded in Zone BC (-13.8 m/yr), 
closely followed by Zone AB (-13.12 m/yr). Conversely, 
Zone CD registered the most substantial accretion, with a 
maximum shoreline advance of +25.58 m/yr, highlighting the 
dynamic nature of this eastern segment.

Transect-wise analysis

Graph 2 provides a detailed transect-by-transect visualization 
of erosion versus deposition patterns. The predominance of 
erosional processes (red areas) is evident across transects 

1-120, corresponding primarily to Zones AB and BC. The 
pronounced erosional trough between transects 43-64 corre-
sponds to the area of maximum retreat in Zone AB.

A dramatic shift occurs around transect 127, where 
substantial depositional processes (green areas) begin to 
dominate, reaching peak values exceeding +20 m/yr at 
transects 148-152, which aligns with the central portion 
of Zone CD. Notable interruptions in the accretional 
pattern occur around transects 155-158 and 168-169, 
indicating localized erosional hotspots within the general-
ly accretional eastern zone.

Short term observation

Shoreline variation is observed for each 10-year period 
from 1991 to 2021. The Fig. 6 shows seaward and 
landward movement at Kuakata area, Bay of Bengal, 
across three periods: 1991–2000, 2000–2010, and 
2010–2021. Accretion dominates in the eastern region, 
while erosion is prevalent in the western section, particu-
larly post-2000. In terms of short-period observation, the 
number of green transects is increasing both eastward 
and It reaches a peak point in 2021 from both the east and 
west portions, as shown in graph. 3 and Fig. 6. The 
method for frequent analyses is followed by NSM (Net 
Shoreline Movement) and EPR (End Point Rate).

Quantitative analysis using the EPR (End Point Rate) method

The End Point Rate (EPR) analysis is presented across 
three time periods: 1991-2000, 2000-2010, and 2010-2021. 
The Graph 3 and the Table IV demonstrate predominantly 
erosional rates with peaks reaching more than -20 meters/-
year, though a notable accretion peak of about more than 
30 meters/year appears around transect 125 between 1991 
and 2000.

The 2000-2010 period exhibits similar erosional trends in the 
central part of the transects but displays a significant accre-
tion peak of nearly 40 meters/year around transect 125 (Table 
IV). The most recent period (2010-2021) shows a more 
variable pattern with two distinct accretion peaks: one at the 
beginning of the stretch (around transect 15) reaching 
approximately 35 meters/year (Graph 3), and another more 

pronounced peak near transect 175 reaching about 44.9 
meters/year, as shown in Table IV, and Graph 3. All three 
time periods demonstrate fluctuating patterns of shoreline 
change rates across the study area, with the magnitude and 
location of peaks varying between periods. The average 
rate of shoreline change shows a progressive shift from 
erosional dominance to accretional tendency, changing 
from -9.68 m/year (1991-2000) to -0.98 m/year 
(2000-2010), and finally to 2.1 m/year (2010-2021), in 
Table IV, which supports Fig. 8.

The number of erosional transects decreased over time 
from 123 (87.86%) in 1991-2000 to 99 (61.11%) in 
2010-2021, while depositional transects increased from 17 
(12.14%) to 63 (38.89%) during the same period. Maxi-
mum erosion rates decreased from -24.5 m/year to -14.64 
m/year, while maximum accretion rates increased from 
33.49 m/year to 44.9 m/year. The average erosional rates 
moderated from -13.11 m/year to -8.38 m/year, while 

average depositional rates increased from 15.09 m/year to 
18.56 m/year across the study period.

Computation of land loss and land gain

In Fig. 7, the analysis of shoreline movement (NSM) along 
the Bay of Bengal coast revealed distinct patterns of morpho-
logical changes across three temporal periods: 1991-2000, 

2000-2010, and 2010-2021. The shoreline exhibited both 
erosional and accretional trends, with varying intensities 
along different coastal segments. During 1991-2000, the 
coastline was predominantly characterized by erosion 
(indicated in red), particularly along the central portion of the 
study area.

A small section in the eastern segment showed accretion 
(shown in green), while isolated stable areas (indicated in 
grey) were observed intermittently along the shoreline. The 
period 2000-2010 demonstrated a similar erosional pattern, 
though with some notable changes. The extent of erosion 
remained significant along the western and central sections, 
while the eastern portion showed increased accretional 
tendencies compared to the previous decade. The stable zones 
appeared to be more fragmentary during this period.

The most recent period (2010-2021) exhibited a continuation 
of the erosional trend along the western and central coastline. 
However, the eastern section displayed enhanced accretion, 
suggesting a persistent pattern of sediment accumulation in 
this area. The transition between erosional and accretional 
zones appeared more distinct compared to earlier periods. The 
analysis of shoreline movement (NSM) along the Bay of 
Bengal coast revealed significant morphological changes 
across three temporal periods: 1991-2000, 2000 2010, and 
2010-2021. The total affected area over the entire study 
period was 13.27 km², indicating substantial coastal dynamics 
in the region, as mentioned in Table V and Graph 4.

Expected shoreline position

According to Fig. 8, these historical trends manifest in 
distinct spatial patterns. The eastern portion, however, exhib-
its a significant landward movement, indicating persistent 
erosional processes despite the overall increase in previous 
erosional transects. 

This spatial variation in shoreline movement suggests that 
while accretional processes at the central zone have increased 
over time at a broader scale, localized erosional hotspots 
persist, particularly in the eastern section.

A remarkable morphological change along the coastline was 
observed with high fluctuation in some coastal zones from 
1991 to 2021. These physiological changes along the Bay 
of Bengal at Kuakata experienced both erosion and deposi-
tion, along with inward and outward movement of the 
shoreline. This study has highlighted both long-term obser-
vation over one period from 1991 to 2021 and short-term 
observation into three periods with a 10-year interval.

A comparable study conducted by Goswami et al. (2022) 
analyzed 1052 transects over a 55 km shoreline of Kuakata 
area, employing metrics such as EPR, NSM, and LRR 
while integrating SCE to assess shoreline variability over 
20 years from 2000 to 2020. Another study by Islam et al. 
(2014) found, in their study on Kutubdia Island, south 
eastern zone of Bangladesh, a strong correlation between 
EPR with WLR and LRR. However, their prime result of 
the transect rates is 0.29 m/yr, 2.91m/yr, and 3.53 for EPR, 
LRR, and WLR, respectively.

Similar studies conducted in the same location by Bushra 
et al.   (2021), their studies strongly supported our 
findings, though they chose a bit longer distance toward 
the north part from the Golachipa River at the eastern side. 
They got lost area of approximately 13.59 km2, over 30 
years from 1989 to 2020, likely, in my studies (Table V, 
Graph. 4) loss of area is more than 8 km2.

On the side of Red Crab Island in south eastern zone, it is 
literally being sedimentation from past years according to 
all previous publications and our research as well (Fig. 7). 
In this study, the shoreline dynamics along the Kuakata 

coast from 1991 to 2021 revealed significant erosion 
patterns, consistent with the findings of  Uddin & Niloy 
(2022). Their investigation results have clarified that red 
crab char, the eastern part of Kuakata beach, is more 
dynamic, demonstrating a vulnerable region and high 
SCE is 486m from  Uddin and Niloy (2022) and 490 in 
order to this report (Graph. 1, Fig. 4). My study found 
higher overall shoreline loss (~8.2 km²) and gain (~5.3 
km²) compared to their 6.11 km² loss and 3.26 km² gain. 
Differences may arise from data sources and methodolo-
gy, but both studies indicate a long-term erosional trend. 
On the side of statistical rate of shoreline variation, max, 
and min shoreline change rates regarding three zones 
(Table III) are homogenized by them, for instance, mean 
coastline variation -2.84 from our study and -3.11 in 
order to Uddin and Niloy (2022), similarly, highest accre-
tion rate from CD altered section shows insignificant 
difference as from my study is 25.58 and 23.88 from their 
study. Overall, it can be observed that no significant 
variation is found between the studies. 

Coastal districts are evaluated considering temporal shore-
line change analyses by Shamsuzzoha and Tofael (2023), 
and they analyzed the whole southern part of Bangladesh 
altogether, with a different approach, which poses 
challenges to making comparisons.

Shoreline forecasting has been limited, primarily for 
identifying critical areas. Rahman and Ferdous (2019) and 
Uddin & Niloy (2022) predicted shorelines for 2028 and 
2041, while this study forecasts 2050 (Fig. 8). Rahman and 
Ferdous (2019) analyzed the entire northern Bay of Bengal, 
making a Kalapara-specific evaluation difficult. Uddin and 
Niloy (2022) used DSAS beta forecasting, differing from 
this study’s equation-based model (equation_10), which 
aligns with observed short-term trends (1991–2021). The 
central part of Kuakata is predicted to shift seaward, which 
is in contrast findings of Uddin and Niloy (2022), while the 
eastern part will experience significant landward move-
ment, partially aligning with previous findings. However, 
uncertainties remain due to the long projection period (29 
years) and using a different prediction model, making the 
forecast probabilistic rather than absolute. 

Notably, the southeastern zone, which includes Red Crab 
Island (or char), appears to be highly dynamic, with signif-
icant landward shoreline movement indicating erosion. 
This region’s vulnerability may stem from its exposure to 
high-energy tidal forces and sediment-starved conditions, 

leading to the gradual loss of land (Uddin and Niloy, 
2022). The ecological significance of Red Crab Island, 
coupled with its role as a potential buffer against coastal 
erosion, makes it a critical area for focused conservation 
and monitoring efforts.

Conclusion

This study provides a comprehensive analysis of shoreline 
dynamics along the Kuakata coast, Bangladesh, over a 
30-year period (1991–2021). Using multi-temporal Land-
sat imagery and the Digital Shoreline Analysis System 
(DSAS), key findings revealed the highest erosion rate of 
-13.8 m/year in the central BC part and the highest accre-
tion rate of +25.58 m/year in the southeastern zone.

These findings underscore the dynamic nature of the 
Kuakata coastline, and due to our ignoring a direct field 
visit, we could not detect the exact reason among many 
probable reasons, including climate change, anthropogenic 
activities, tidal flux, etc. The study highlights the vulnera-
bility of coastal communities and infrastructure, necessi-
tating immediate action to mitigate erosion risks and 
promote sustainable development.

Future research should focus on discontinuous areas, deep 
social impact with accurate reasons, and detecting the 
exact reason by integrating higher-resolution satellite 
imagery, field validation, and hydrodynamic modeling.
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Bangladesh has increased from 144 million in 2011 to  
165.16 million in 2022, according to the latest population 
and housing census, and is projected to reach 175 million 
by 2024 (BBS, 2022; MacroTrends, 2024) with many 
living in low-lying floodplains vulnerable to monsoon 
flooding and tidal surges (BBS, 2011). The global average 
sea level rose by 0.21 meters from 1902 to 2015, but the 
Ganges Delta has experienced a much higher rate of 5–15 
mm per year (Mullick et al. 2019; Anwar et al. 2022).

Tidal dynamics play a critical role in shoreline changes, 
particularly in Bangladesh’s semi-diurnal tidal regime, where 
two high and two low tides occur daily (Rose and Bhaskaran, 
2017). They, additionally, mentioned that the average tidal 
range is 1.86 to 2.47 meters, transitioning from microtidal to 
mesotidal conditions. Tide data, sourced from UHSLC 
Stations (2024) and the Bangladesh Tide Table, is essential 
for accurate shoreline delineation, especially when consider-
ing neap and spring tides. Spring tides, representing the 
highest flood levels, and neap tides, the lowest, help avoid 
biases in shoreline change analysis (UHSLC, 2024).

Remote sensing and GIS technologies, such as Landsat imag-
ery and the Digital Shoreline Analysis System (DSAS), are 
essential for monitoring shoreline changes (Himmelstoss et 
al. 2021; Bushra et al. 2021). DSAS Tool, widely accepted 
for statistical analyses, includes a number of methods, 
including WLR (Weighted Linear Regression), LRR (Linear 
Regression Rate), NSM (Net Shoreline Movement), etc. 
Tools like Sentinel-2 imagery and water indices (e.g., NDWI, 
MNDWI) enable accurate shoreline extraction and analysis 
(Astiti et al. 2019; Fejjari et al. 2023). Studies have used 
these methods to analyze shoreline changes over decades, 
employing statistical techniques like linear regression to 
predict future trends (Crowell et al. 1997; Maiti and 
Bhattacharya, 2009). 

This study focuses on Kuakata Beach, a vulnerable area in 
south-central Bangladesh, to analyze shoreline changes over 
the past 30 years using Landsat imagery, GIS, and DSAS. 
The Landsat images for analysis are collected from USGS 
Earth Explorer (https://earthexplorer.usgs.gov). This 
research highlights the critical need for integrated geospatial 
analyses and field validation in understanding coastal 
dynamics. By integrating tide data and advanced remote 
sensing techniques, the study aims to provide insights into 
erosion, accretion, and shoreline stabilization processes, 
contributing to effective coastal management and policy 
development.

This research attempts to assess quantitative factors, includ-
ing annual shoreline movement rate, land loss and land gain 

over 30 years from 1991 to 2021, and find vulnerable and 
critical areas by predicted graphical shoreline visualization, 
by integrating GIS and Remote Sensing techniques.

Materials and methods

Study area

The dynamic coastal region of Bangladesh, situated at the 
southernmost area along the Bay of Bengal, is continuously 
deformed by multiple factors, including sediment accumula-
tion from three mighty rivers source; Ganges River, the 
Meghna River, and the Brahmaputra, wave action, etc. The 
deltaic stability majorly depends on the sediment deposition 
and becomes a shelter for biodiversity. Kuakata sea coastline 
is situated in the central zone of the coast of Bangladesh, 
which contains two major estuaries: the estuaries of Andar-
manik River at the western zone, and the estuaries of Gola-
chipa River at the eastern portion (Fig. 1). This study area 
belongs to Kalapara Upazila in the Patuakhali district, and it 
covers from 21° 48’ 33.23” N to 21° 52’ 16.03” N latitude 
and 90° 6’ 16.45” E to 90° 12’ 48.46” E longitudes (Fig. 1). 
The study area get experience the high- est temperature in 
January (25.1°C) and 33.8°C in April (BMD, 2020), with a 
mean annual rainfall of 2580 mm/year.

The variation of wave height can be observed based on two 
major season, during monsoon season, the wave height is 
typically around 1.8m, on the other hand, during the summer 
season from January to March, the wave height is very small; 
however, in general, the wave height stays 1m. Tides in the 
beach region are semi-diurnal, with daily tide levels ranging 
from 1 to 1.5 m (Uddin and Niloy, 2022).

Data source

Multi-temporal Landsat images, including TM, ETM+, and 
OLI/TRIS sensors, were utilized from 1990 to 2021 to 
analyze the shoreline dynamics of Kuakata. Specifically, four 
satellite images were selected at 10- Multi-temporal Landsat 
images, including TM, ETM+, and OLI/TRIS sensors, were 
utilized from 1990 to 2021 to analyze the shoreline dynamics 
of Kuakata. Specifically, four satellite images were selected 
year intervals from 1991 to 2021 (as shown in Table I). The 
images were acquired from reliable platforms such as USGS 
Earth Explorer (https://earthexplorer.usgs.gov) and GLOVIS  
(www.glovis.gov.us), ensuring a cloud cover of less than 5% 
to maintain data quality and accuracy (Islam et al. 2022).

Here, ECurrent   represents the total positional error for the 
current year, and ENext  represents the total positional error for 
the following year.  

All the metadata of satellite images are shown in Table I. 
To ensure accuracy in shoreline change detection, tide data 
were collected from two main sources: UHSLC (2024) and 
Bangladesh Tide Times (2024). The uncertainty in shore-
line position for each time interval was calculated using 
Equation 1 (Himmelstoss et al. 2021), and the values are 
added in Table 1.

Data preparation

Four key steps were used to study the changes along the 
shoreline. These steps included: (1) processing images 
with Arc-GIS, which involved correcting the images and 
calculating the NDWI to separate the images into water 

and non-water categories, (2) using Otsu’s Binary 
Thresholding to create a binary image and to outline the 
shoreline between water and non-water areas, (3) 
estimating the errors in the LANDSAT images, and (4) 
using DSAS to measure the statistics of the changes 
(Mullick et al. 2019). Shoreline change is measured 
using the WLR, EPR, and LRR methods. This study 
looked at the dividing line between land and water by 
using a binary threshold method. While separating the 
land pixels from the water pixels, the shoreline was 
identified without including the tidal wave. As a result, 
the land boundary line considered in this study is less 
likely to have been mistakenly caused by waves and 
tides. To calculate the rate of shoreline change, we 
looked at four different shorelines from the study area 
over 30 years: 1991, 2000, 2010, and 2021. Where incon-
sistency has been found, the shoreline has been digitized 
on a scale of 1:1000, which indicates a very high accura-
cy (Kabir and Tanvir, 2020). Table II displays major 
attributes regarding shorelines and baselines, including 
their length, uncertainty, date, etc.

The baseline has been taken 200 meters away from the most 
ancient shoreline position, and transect spacing has been 
chosen to be 150m, where the number of transects is 179 
along the coastline.

Image correction

Landsat imagery captures pixel values as digital numbers 

(DN), which, as highlighted by (Chander et al. 2009) 
Top-Of-Atmosphere (TOA, serve as the foundation for 
radiometric adjustments that convert raw satellite data into 
calibrated units like radiance or reflectance, ensuring 
consistency and precision for scientific analyses across 
varying sensors, times, and atmospheric conditions.

Chander et al. (2009) Top-Of-Atmosphere (TOA suggested 
changing DN to Radiance for images taken by the Landsat 
MSS, TM, and ETM sensors by using these equations (2, 3).

Where Lλ is the radiance of a spectral unit of“W/(m2 sr. μ
m),” Qcal is the pixel value of quantized calibrated [DN], 
Qcalmin is the Minimum Qcal, Qcalmax is the Maximum Qcal, 
LMINλ = Minimum Lλ scaled to Qcalmin [W/(m2 sr μm)], LMAXλ 
= Maximum Lλ scaled to Qcalmax [W/(m2 sr μm)]. The follow-
ing formula is used to convert radiance to ToA reflectance as

where Pλ = ToA reflectance [unitless], π = 3.14159, d is the 
Earth-Sun distance [astronomical units], ESUNλ is the mean 
exo-atmospheric solar irradiance [W/(m2 μm)], Ɵz is the 
Solar zenith angle [degrees].

For images from Landsat OLI, you can directly convert DN 
into ToA reflectance according to equation 4 (U.S. Geologi-
cal Survey, 2019).

where Mp is the reflectance multiplicative scaling factor for 
the band [unitless], and Ap is the reflectance additive scaling 
factor for the band [unitless]. The metadata file associated 
with LANDSAT imagery includes values for parameters such 
as Qcal, Qcalmax, Qcalmin, LMINλ, LMAXλ, Mp, Ap, and Ɵz (U.S. 
Geological Survey, 2019).

Digital index

The NDWI index is a useful tool for spotting water bodies on 
the Earth's surface. The NDWI was determined by using the 
green and near-infrared bands, as shown in equation 5 (Hos-
sain et al. 2021).

The NDWI can range from -1 to +1. The NDWI image 
typically indicates a good result for areas with water and a 
bad result for areas without water. To show the boundary 
between land and water as a coastline, we marked the land 
features with a 0 and the water features with a 1.

DSAS tool for shoreline change analysis

The Digital Shoreline Analysis System (DSAS) Version 6 is 
the latest standalone software developed for shoreline change 
analysis. Unlike its earlier versions, which operated as an 
extension of ArcGIS, DSAS v6 is no longer tied to ArcGIS, 
offering users more flexibility and independence from GIS 
software constraints. This modern version integrates a 
user-friendly interface with enhanced features, making it a 
powerful and comfortable tool for analyzing coastal changes. 
It requires pre-processed shoreline data and a baseline in 
GeoJSON format, ensuring standardized and efficient input 
handling. With updated algorithms and capabilities, DSAS 
v6 delivers accurate results, making it ideal for shoreline 
management and research applications. It estimates common 
uncertainty 10 and provides 13 types of statistical results that 
are so effective for analysts.

Varieties of Statistical Methods applied for understanding the 
Rate of Shoreline Movement

The Shoreline Change Envelope (SCE) and the rate of shore-
line change were measured using the EPR, NSM, LRR, and 
WLR methods as outlined in the Digital Shoreline Analysis 
System (DSAS). These measurements are commonly used in 
statistics that track changes along the shoreline.

The End Point Rate (EPR) is the best method when it is 
calculated using just two shoreline positions at different 
times (Sarwar and Woodroffe, 2013). The EPR method calcu-
lates how much the shoreline changes by dividing the 
distance by the number of years, as shown in equation six.

The distance (m) between the newest and oldest shoreline is 
represented by D1 − D2, and the time gap (years) between the 
two shoreline positions is shown as t1 − t0.

On the other hand, LRR (Linear regression method) is more 
appropriate when the number of shorelines exceeds two. 
OBrien et al. (2014) utilized the following LRR formula 
(Equation 7) for long-term shoreline analysis

Y = a + bX              (7)

In this equation, y represents the distance (in meters) from the 
baseline. The variable is the starting point of y, while b shows the 
slope of the line that describes how the shoreline changes over time.  

The variable x stands for the shoreline position in various years. 
A ±5 m uncertainty and a 95% confidence interval were set as 
default parameters for statistical calculations. Linear regression 
involves several key aspects: (1) it uses all available data, no 
matter if there are changes in trends or accuracy, (2) it relies 
entirely on calculations, (3) it follows recognized statistical 
principles, and (4) it is simple to use (Crowell et al. 2018). The 
linear regression method can be affected by outliers and often 
underestimates how quickly things change compared to other 
statistics, like EPR (Dolan, 1991). 

The Weighted Linear Regression (WLR) method employs a 
linear regression approach similar to the Linear Regression 
Rate (LRR) method but incorporates a weighting factor 
(Equation 8) applied to Equation seven to account for 
positional uncertainty (Himmelstoss et al. 2021).

In the DSAS tool, Hossain et al. (2021) utilized the R2 value 
to be determined for LRR and WLR methods as presented in 
Eq.9, and it represents the accuracy and perfection between 
linear regression rate and weighted linear regression rate.

Where y = distance from baseline and known shoreline 
position, y′= predicted value of the best-fit regression line 
according to the equation, y = mean of the shoreline position 
data. The R-squared value, denoted as LR2, evaluates how 
well the shoreline position data fits the linear regression line.

Forecasting model

This model (Equation 10) calculates the adjusted shoreline 
position by incorporating the rate of shoreline movement 
(LRR) over a given time period. It uses the original inter-
sect point position and adjusts it by multiplying the Linear 
Regression Rate (LRR), which represents the rate of 
shoreline change per year, by the time elapsed. This 
adjustment accounts for both erosion (negative LRR) and 
accretion (positive LRR), ensuring that the shoreline's 
movement landward or seaward is accurately represented 
(Crowell et al. 1997). The model can be applied separately 
to the X and Y coordinates, allowing for a comprehensive 
adjustment in both directions, and is useful in predicting 
future shoreline positions or validating trends of coastal 
change observed over time.

Where:

Xnew  : Adjusted shoreline position.
Xoriginal  : Original intersect point position.
LRR: Linear Regression Rate (rate of change in shoreline 
position per year).
Δt represents the time span.

Validation of the Shoreline Prediction Model

The root mean square error is the square root of the variance 
of the residuals. It shows how well the model fits the data, 
i.e., how close the actual data points are to what the model 
predicted Lower RMSE values indicate a better fit, while 
higher values mean there is more error. The RMSE was used 
to check how well the actual coastline change rates matched 
the predicted ones. In shoreline observation, Uddin and Niloy 
(2022) assessed the calculated model and satellite observa-
tions of the shoreline change rate for 2021 by using RMSE 
values (Equation 11). 

Land loss and land gain computation

The areas identified as water or non-water in the images were 
compared to find out the values of land loss and gain, using 
the ArcGIS raster calculator tool (Mullick et al. 2019). The 
changes in land, both lost and gained, were measured over 
four years in a row, covering a total period of 30 years from 
1991 to 2021.

Results and discussion

The general view begins by describing the analysis of 179 
transects, with 174 considered active, along an approximate-
ly 25 km shoreline. This study utilized Weighted Linear 
Regression Rate (WLR) and Linear Regression Rate (LRR) 
for long-term analysis (1991–2021) and End Point Rate 
(EPR) and Net Shoreline Movement (NSM) for short-term 
intervals (1991–2000, 2000–2010, and 2010–2021).

Long term observation

Long-term observation includes overall analyses over the 
past 30 years from 1991 to 2021. There are a number of 
statistical methods developed to analyze long-term observa-
tion (more than two years) involving LRR, WLR, SCE, etc.

Shoreline change envelope

The highest distance range, from 590.78 to 495.79, belongs 
to the eastern region of shorelines (Graph 1, Fig 4). The 
farthest distance from the baseline belongs to the range of 
transect ID from 170 to 150. The nearest distance from the 
graph lies to the most eastward crossed 170 transect Id 
(Graph 1, Fig. 4).

Rate of shoreline movement

The Weighted Linear Regression (WLR) method shows 
varying rates of shoreline change along the studied coastal 
stretch. The spatial and temporal assessment of shoreline 
change across zones AB (Western), BC (Central), and CD 
(Eastern) of the Bay of Bengal reveals distinct patterns of 
erosion and accretion over the 30-year study period 
(1991-2021).

Spatial variation in shoreline dynamics

As shown in Fig. 6, the Bay of Bengal coastline demon-
strates significant zonal heterogeneity in shoreline change. 
Zone AB (Western Zone) exhibits a mixed pattern with 
predominantly erosional transects (73.33%), particularly in 
its central segment, though some accretional areas 
(15.56%) appear toward the boundaries. Zone BC (Central 
Zone) represents the most severely eroded region, with an 
overwhelming 98.31% of transects classified as erosional 
and no accretional transects observed. In contrast, Zone 
CD (Eastern Zone) displays a markedly different pattern 
with a majority of accretional transects (54.29%) concen-
trated in its central portion, though erosional processes still 
affect 28.57% of the area.

Quantitative assessment of shoreline change

The magnitude of shoreline change varies considerably 
across the study area, as illustrated in Table III. Zone BC 
exhibits the highest mean erosion rate (-9.48 m/yr), followed 
by Zone AB (-5.87 m/yr), while Zone CD shows net accre-

tion with a mean shoreline change of +5.88 m/yr. Maximum 
shoreline retreat was recorded in Zone BC (-13.8 m/yr), 
closely followed by Zone AB (-13.12 m/yr). Conversely, 
Zone CD registered the most substantial accretion, with a 
maximum shoreline advance of +25.58 m/yr, highlighting the 
dynamic nature of this eastern segment.

Transect-wise analysis

Graph 2 provides a detailed transect-by-transect visualization 
of erosion versus deposition patterns. The predominance of 
erosional processes (red areas) is evident across transects 

1-120, corresponding primarily to Zones AB and BC. The 
pronounced erosional trough between transects 43-64 corre-
sponds to the area of maximum retreat in Zone AB.

A dramatic shift occurs around transect 127, where 
substantial depositional processes (green areas) begin to 
dominate, reaching peak values exceeding +20 m/yr at 
transects 148-152, which aligns with the central portion 
of Zone CD. Notable interruptions in the accretional 
pattern occur around transects 155-158 and 168-169, 
indicating localized erosional hotspots within the general-
ly accretional eastern zone.

Short term observation

Shoreline variation is observed for each 10-year period 
from 1991 to 2021. The Fig. 6 shows seaward and 
landward movement at Kuakata area, Bay of Bengal, 
across three periods: 1991–2000, 2000–2010, and 
2010–2021. Accretion dominates in the eastern region, 
while erosion is prevalent in the western section, particu-
larly post-2000. In terms of short-period observation, the 
number of green transects is increasing both eastward 
and It reaches a peak point in 2021 from both the east and 
west portions, as shown in graph. 3 and Fig. 6. The 
method for frequent analyses is followed by NSM (Net 
Shoreline Movement) and EPR (End Point Rate).

Quantitative analysis using the EPR (End Point Rate) method

The End Point Rate (EPR) analysis is presented across 
three time periods: 1991-2000, 2000-2010, and 2010-2021. 
The Graph 3 and the Table IV demonstrate predominantly 
erosional rates with peaks reaching more than -20 meters/-
year, though a notable accretion peak of about more than 
30 meters/year appears around transect 125 between 1991 
and 2000.

The 2000-2010 period exhibits similar erosional trends in the 
central part of the transects but displays a significant accre-
tion peak of nearly 40 meters/year around transect 125 (Table 
IV). The most recent period (2010-2021) shows a more 
variable pattern with two distinct accretion peaks: one at the 
beginning of the stretch (around transect 15) reaching 
approximately 35 meters/year (Graph 3), and another more 

pronounced peak near transect 175 reaching about 44.9 
meters/year, as shown in Table IV, and Graph 3. All three 
time periods demonstrate fluctuating patterns of shoreline 
change rates across the study area, with the magnitude and 
location of peaks varying between periods. The average 
rate of shoreline change shows a progressive shift from 
erosional dominance to accretional tendency, changing 
from -9.68 m/year (1991-2000) to -0.98 m/year 
(2000-2010), and finally to 2.1 m/year (2010-2021), in 
Table IV, which supports Fig. 8.

The number of erosional transects decreased over time 
from 123 (87.86%) in 1991-2000 to 99 (61.11%) in 
2010-2021, while depositional transects increased from 17 
(12.14%) to 63 (38.89%) during the same period. Maxi-
mum erosion rates decreased from -24.5 m/year to -14.64 
m/year, while maximum accretion rates increased from 
33.49 m/year to 44.9 m/year. The average erosional rates 
moderated from -13.11 m/year to -8.38 m/year, while 

average depositional rates increased from 15.09 m/year to 
18.56 m/year across the study period.

Computation of land loss and land gain

In Fig. 7, the analysis of shoreline movement (NSM) along 
the Bay of Bengal coast revealed distinct patterns of morpho-
logical changes across three temporal periods: 1991-2000, 

2000-2010, and 2010-2021. The shoreline exhibited both 
erosional and accretional trends, with varying intensities 
along different coastal segments. During 1991-2000, the 
coastline was predominantly characterized by erosion 
(indicated in red), particularly along the central portion of the 
study area.

A small section in the eastern segment showed accretion 
(shown in green), while isolated stable areas (indicated in 
grey) were observed intermittently along the shoreline. The 
period 2000-2010 demonstrated a similar erosional pattern, 
though with some notable changes. The extent of erosion 
remained significant along the western and central sections, 
while the eastern portion showed increased accretional 
tendencies compared to the previous decade. The stable zones 
appeared to be more fragmentary during this period.

The most recent period (2010-2021) exhibited a continuation 
of the erosional trend along the western and central coastline. 
However, the eastern section displayed enhanced accretion, 
suggesting a persistent pattern of sediment accumulation in 
this area. The transition between erosional and accretional 
zones appeared more distinct compared to earlier periods. The 
analysis of shoreline movement (NSM) along the Bay of 
Bengal coast revealed significant morphological changes 
across three temporal periods: 1991-2000, 2000 2010, and 
2010-2021. The total affected area over the entire study 
period was 13.27 km², indicating substantial coastal dynamics 
in the region, as mentioned in Table V and Graph 4.

Expected shoreline position

According to Fig. 8, these historical trends manifest in 
distinct spatial patterns. The eastern portion, however, exhib-
its a significant landward movement, indicating persistent 
erosional processes despite the overall increase in previous 
erosional transects. 

This spatial variation in shoreline movement suggests that 
while accretional processes at the central zone have increased 
over time at a broader scale, localized erosional hotspots 
persist, particularly in the eastern section.

A remarkable morphological change along the coastline was 
observed with high fluctuation in some coastal zones from 
1991 to 2021. These physiological changes along the Bay 
of Bengal at Kuakata experienced both erosion and deposi-
tion, along with inward and outward movement of the 
shoreline. This study has highlighted both long-term obser-
vation over one period from 1991 to 2021 and short-term 
observation into three periods with a 10-year interval.

A comparable study conducted by Goswami et al. (2022) 
analyzed 1052 transects over a 55 km shoreline of Kuakata 
area, employing metrics such as EPR, NSM, and LRR 
while integrating SCE to assess shoreline variability over 
20 years from 2000 to 2020. Another study by Islam et al. 
(2014) found, in their study on Kutubdia Island, south 
eastern zone of Bangladesh, a strong correlation between 
EPR with WLR and LRR. However, their prime result of 
the transect rates is 0.29 m/yr, 2.91m/yr, and 3.53 for EPR, 
LRR, and WLR, respectively.

Similar studies conducted in the same location by Bushra 
et al.   (2021), their studies strongly supported our 
findings, though they chose a bit longer distance toward 
the north part from the Golachipa River at the eastern side. 
They got lost area of approximately 13.59 km2, over 30 
years from 1989 to 2020, likely, in my studies (Table V, 
Graph. 4) loss of area is more than 8 km2.

On the side of Red Crab Island in south eastern zone, it is 
literally being sedimentation from past years according to 
all previous publications and our research as well (Fig. 7). 
In this study, the shoreline dynamics along the Kuakata 

coast from 1991 to 2021 revealed significant erosion 
patterns, consistent with the findings of  Uddin & Niloy 
(2022). Their investigation results have clarified that red 
crab char, the eastern part of Kuakata beach, is more 
dynamic, demonstrating a vulnerable region and high 
SCE is 486m from  Uddin and Niloy (2022) and 490 in 
order to this report (Graph. 1, Fig. 4). My study found 
higher overall shoreline loss (~8.2 km²) and gain (~5.3 
km²) compared to their 6.11 km² loss and 3.26 km² gain. 
Differences may arise from data sources and methodolo-
gy, but both studies indicate a long-term erosional trend. 
On the side of statistical rate of shoreline variation, max, 
and min shoreline change rates regarding three zones 
(Table III) are homogenized by them, for instance, mean 
coastline variation -2.84 from our study and -3.11 in 
order to Uddin and Niloy (2022), similarly, highest accre-
tion rate from CD altered section shows insignificant 
difference as from my study is 25.58 and 23.88 from their 
study. Overall, it can be observed that no significant 
variation is found between the studies. 

Coastal districts are evaluated considering temporal shore-
line change analyses by Shamsuzzoha and Tofael (2023), 
and they analyzed the whole southern part of Bangladesh 
altogether, with a different approach, which poses 
challenges to making comparisons.

Shoreline forecasting has been limited, primarily for 
identifying critical areas. Rahman and Ferdous (2019) and 
Uddin & Niloy (2022) predicted shorelines for 2028 and 
2041, while this study forecasts 2050 (Fig. 8). Rahman and 
Ferdous (2019) analyzed the entire northern Bay of Bengal, 
making a Kalapara-specific evaluation difficult. Uddin and 
Niloy (2022) used DSAS beta forecasting, differing from 
this study’s equation-based model (equation_10), which 
aligns with observed short-term trends (1991–2021). The 
central part of Kuakata is predicted to shift seaward, which 
is in contrast findings of Uddin and Niloy (2022), while the 
eastern part will experience significant landward move-
ment, partially aligning with previous findings. However, 
uncertainties remain due to the long projection period (29 
years) and using a different prediction model, making the 
forecast probabilistic rather than absolute. 

Notably, the southeastern zone, which includes Red Crab 
Island (or char), appears to be highly dynamic, with signif-
icant landward shoreline movement indicating erosion. 
This region’s vulnerability may stem from its exposure to 
high-energy tidal forces and sediment-starved conditions, 

leading to the gradual loss of land (Uddin and Niloy, 
2022). The ecological significance of Red Crab Island, 
coupled with its role as a potential buffer against coastal 
erosion, makes it a critical area for focused conservation 
and monitoring efforts.

Conclusion

This study provides a comprehensive analysis of shoreline 
dynamics along the Kuakata coast, Bangladesh, over a 
30-year period (1991–2021). Using multi-temporal Land-
sat imagery and the Digital Shoreline Analysis System 
(DSAS), key findings revealed the highest erosion rate of 
-13.8 m/year in the central BC part and the highest accre-
tion rate of +25.58 m/year in the southeastern zone.

These findings underscore the dynamic nature of the 
Kuakata coastline, and due to our ignoring a direct field 
visit, we could not detect the exact reason among many 
probable reasons, including climate change, anthropogenic 
activities, tidal flux, etc. The study highlights the vulnera-
bility of coastal communities and infrastructure, necessi-
tating immediate action to mitigate erosion risks and 
promote sustainable development.

Future research should focus on discontinuous areas, deep 
social impact with accurate reasons, and detecting the 
exact reason by integrating higher-resolution satellite 
imagery, field validation, and hydrodynamic modeling.
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Table I. Showing major metadata for four different satellite images

Satellite Seasonal 
Error 

Spatial 
resolution 

Pixel 
Error 

Tide 
Gauge(m) 

Digitation 
Error Uncertainty 

Landsat 8 0 30 0 0.95 15 7.02 

Landsat 7 0 30 0 0.62 15 6.33 

Landsat 7 0 30 0 1.80 15 5.77 

Landsat 8 0 30 0 1.50 15 2.11 
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Bangladesh has increased from 144 million in 2011 to  
165.16 million in 2022, according to the latest population 
and housing census, and is projected to reach 175 million 
by 2024 (BBS, 2022; MacroTrends, 2024) with many 
living in low-lying floodplains vulnerable to monsoon 
flooding and tidal surges (BBS, 2011). The global average 
sea level rose by 0.21 meters from 1902 to 2015, but the 
Ganges Delta has experienced a much higher rate of 5–15 
mm per year (Mullick et al. 2019; Anwar et al. 2022).

Tidal dynamics play a critical role in shoreline changes, 
particularly in Bangladesh’s semi-diurnal tidal regime, where 
two high and two low tides occur daily (Rose and Bhaskaran, 
2017). They, additionally, mentioned that the average tidal 
range is 1.86 to 2.47 meters, transitioning from microtidal to 
mesotidal conditions. Tide data, sourced from UHSLC 
Stations (2024) and the Bangladesh Tide Table, is essential 
for accurate shoreline delineation, especially when consider-
ing neap and spring tides. Spring tides, representing the 
highest flood levels, and neap tides, the lowest, help avoid 
biases in shoreline change analysis (UHSLC, 2024).

Remote sensing and GIS technologies, such as Landsat imag-
ery and the Digital Shoreline Analysis System (DSAS), are 
essential for monitoring shoreline changes (Himmelstoss et 
al. 2021; Bushra et al. 2021). DSAS Tool, widely accepted 
for statistical analyses, includes a number of methods, 
including WLR (Weighted Linear Regression), LRR (Linear 
Regression Rate), NSM (Net Shoreline Movement), etc. 
Tools like Sentinel-2 imagery and water indices (e.g., NDWI, 
MNDWI) enable accurate shoreline extraction and analysis 
(Astiti et al. 2019; Fejjari et al. 2023). Studies have used 
these methods to analyze shoreline changes over decades, 
employing statistical techniques like linear regression to 
predict future trends (Crowell et al. 1997; Maiti and 
Bhattacharya, 2009). 

This study focuses on Kuakata Beach, a vulnerable area in 
south-central Bangladesh, to analyze shoreline changes over 
the past 30 years using Landsat imagery, GIS, and DSAS. 
The Landsat images for analysis are collected from USGS 
Earth Explorer (https://earthexplorer.usgs.gov). This 
research highlights the critical need for integrated geospatial 
analyses and field validation in understanding coastal 
dynamics. By integrating tide data and advanced remote 
sensing techniques, the study aims to provide insights into 
erosion, accretion, and shoreline stabilization processes, 
contributing to effective coastal management and policy 
development.

This research attempts to assess quantitative factors, includ-
ing annual shoreline movement rate, land loss and land gain 

over 30 years from 1991 to 2021, and find vulnerable and 
critical areas by predicted graphical shoreline visualization, 
by integrating GIS and Remote Sensing techniques.

Materials and methods

Study area

The dynamic coastal region of Bangladesh, situated at the 
southernmost area along the Bay of Bengal, is continuously 
deformed by multiple factors, including sediment accumula-
tion from three mighty rivers source; Ganges River, the 
Meghna River, and the Brahmaputra, wave action, etc. The 
deltaic stability majorly depends on the sediment deposition 
and becomes a shelter for biodiversity. Kuakata sea coastline 
is situated in the central zone of the coast of Bangladesh, 
which contains two major estuaries: the estuaries of Andar-
manik River at the western zone, and the estuaries of Gola-
chipa River at the eastern portion (Fig. 1). This study area 
belongs to Kalapara Upazila in the Patuakhali district, and it 
covers from 21° 48’ 33.23” N to 21° 52’ 16.03” N latitude 
and 90° 6’ 16.45” E to 90° 12’ 48.46” E longitudes (Fig. 1). 
The study area get experience the high- est temperature in 
January (25.1°C) and 33.8°C in April (BMD, 2020), with a 
mean annual rainfall of 2580 mm/year.

The variation of wave height can be observed based on two 
major season, during monsoon season, the wave height is 
typically around 1.8m, on the other hand, during the summer 
season from January to March, the wave height is very small; 
however, in general, the wave height stays 1m. Tides in the 
beach region are semi-diurnal, with daily tide levels ranging 
from 1 to 1.5 m (Uddin and Niloy, 2022).

Data source

Multi-temporal Landsat images, including TM, ETM+, and 
OLI/TRIS sensors, were utilized from 1990 to 2021 to 
analyze the shoreline dynamics of Kuakata. Specifically, four 
satellite images were selected at 10- Multi-temporal Landsat 
images, including TM, ETM+, and OLI/TRIS sensors, were 
utilized from 1990 to 2021 to analyze the shoreline dynamics 
of Kuakata. Specifically, four satellite images were selected 
year intervals from 1991 to 2021 (as shown in Table I). The 
images were acquired from reliable platforms such as USGS 
Earth Explorer (https://earthexplorer.usgs.gov) and GLOVIS  
(www.glovis.gov.us), ensuring a cloud cover of less than 5% 
to maintain data quality and accuracy (Islam et al. 2022).

Here, ECurrent   represents the total positional error for the 
current year, and ENext  represents the total positional error for 
the following year.  

All the metadata of satellite images are shown in Table I. 
To ensure accuracy in shoreline change detection, tide data 
were collected from two main sources: UHSLC (2024) and 
Bangladesh Tide Times (2024). The uncertainty in shore-
line position for each time interval was calculated using 
Equation 1 (Himmelstoss et al. 2021), and the values are 
added in Table 1.

Data preparation

Four key steps were used to study the changes along the 
shoreline. These steps included: (1) processing images 
with Arc-GIS, which involved correcting the images and 
calculating the NDWI to separate the images into water 

and non-water categories, (2) using Otsu’s Binary 
Thresholding to create a binary image and to outline the 
shoreline between water and non-water areas, (3) 
estimating the errors in the LANDSAT images, and (4) 
using DSAS to measure the statistics of the changes 
(Mullick et al. 2019). Shoreline change is measured 
using the WLR, EPR, and LRR methods. This study 
looked at the dividing line between land and water by 
using a binary threshold method. While separating the 
land pixels from the water pixels, the shoreline was 
identified without including the tidal wave. As a result, 
the land boundary line considered in this study is less 
likely to have been mistakenly caused by waves and 
tides. To calculate the rate of shoreline change, we 
looked at four different shorelines from the study area 
over 30 years: 1991, 2000, 2010, and 2021. Where incon-
sistency has been found, the shoreline has been digitized 
on a scale of 1:1000, which indicates a very high accura-
cy (Kabir and Tanvir, 2020). Table II displays major 
attributes regarding shorelines and baselines, including 
their length, uncertainty, date, etc.

The baseline has been taken 200 meters away from the most 
ancient shoreline position, and transect spacing has been 
chosen to be 150m, where the number of transects is 179 
along the coastline.

Image correction

Landsat imagery captures pixel values as digital numbers 

(DN), which, as highlighted by (Chander et al. 2009) 
Top-Of-Atmosphere (TOA, serve as the foundation for 
radiometric adjustments that convert raw satellite data into 
calibrated units like radiance or reflectance, ensuring 
consistency and precision for scientific analyses across 
varying sensors, times, and atmospheric conditions.

Chander et al. (2009) Top-Of-Atmosphere (TOA suggested 
changing DN to Radiance for images taken by the Landsat 
MSS, TM, and ETM sensors by using these equations (2, 3).

Where Lλ is the radiance of a spectral unit of“W/(m2 sr. μ
m),” Qcal is the pixel value of quantized calibrated [DN], 
Qcalmin is the Minimum Qcal, Qcalmax is the Maximum Qcal, 
LMINλ = Minimum Lλ scaled to Qcalmin [W/(m2 sr μm)], LMAXλ 
= Maximum Lλ scaled to Qcalmax [W/(m2 sr μm)]. The follow-
ing formula is used to convert radiance to ToA reflectance as

where Pλ = ToA reflectance [unitless], π = 3.14159, d is the 
Earth-Sun distance [astronomical units], ESUNλ is the mean 
exo-atmospheric solar irradiance [W/(m2 μm)], Ɵz is the 
Solar zenith angle [degrees].

For images from Landsat OLI, you can directly convert DN 
into ToA reflectance according to equation 4 (U.S. Geologi-
cal Survey, 2019).

where Mp is the reflectance multiplicative scaling factor for 
the band [unitless], and Ap is the reflectance additive scaling 
factor for the band [unitless]. The metadata file associated 
with LANDSAT imagery includes values for parameters such 
as Qcal, Qcalmax, Qcalmin, LMINλ, LMAXλ, Mp, Ap, and Ɵz (U.S. 
Geological Survey, 2019).

Digital index

The NDWI index is a useful tool for spotting water bodies on 
the Earth's surface. The NDWI was determined by using the 
green and near-infrared bands, as shown in equation 5 (Hos-
sain et al. 2021).

The NDWI can range from -1 to +1. The NDWI image 
typically indicates a good result for areas with water and a 
bad result for areas without water. To show the boundary 
between land and water as a coastline, we marked the land 
features with a 0 and the water features with a 1.

DSAS tool for shoreline change analysis

The Digital Shoreline Analysis System (DSAS) Version 6 is 
the latest standalone software developed for shoreline change 
analysis. Unlike its earlier versions, which operated as an 
extension of ArcGIS, DSAS v6 is no longer tied to ArcGIS, 
offering users more flexibility and independence from GIS 
software constraints. This modern version integrates a 
user-friendly interface with enhanced features, making it a 
powerful and comfortable tool for analyzing coastal changes. 
It requires pre-processed shoreline data and a baseline in 
GeoJSON format, ensuring standardized and efficient input 
handling. With updated algorithms and capabilities, DSAS 
v6 delivers accurate results, making it ideal for shoreline 
management and research applications. It estimates common 
uncertainty 10 and provides 13 types of statistical results that 
are so effective for analysts.

Varieties of Statistical Methods applied for understanding the 
Rate of Shoreline Movement

The Shoreline Change Envelope (SCE) and the rate of shore-
line change were measured using the EPR, NSM, LRR, and 
WLR methods as outlined in the Digital Shoreline Analysis 
System (DSAS). These measurements are commonly used in 
statistics that track changes along the shoreline.

The End Point Rate (EPR) is the best method when it is 
calculated using just two shoreline positions at different 
times (Sarwar and Woodroffe, 2013). The EPR method calcu-
lates how much the shoreline changes by dividing the 
distance by the number of years, as shown in equation six.

The distance (m) between the newest and oldest shoreline is 
represented by D1 − D2, and the time gap (years) between the 
two shoreline positions is shown as t1 − t0.

On the other hand, LRR (Linear regression method) is more 
appropriate when the number of shorelines exceeds two. 
OBrien et al. (2014) utilized the following LRR formula 
(Equation 7) for long-term shoreline analysis

Y = a + bX              (7)

In this equation, y represents the distance (in meters) from the 
baseline. The variable is the starting point of y, while b shows the 
slope of the line that describes how the shoreline changes over time.  

The variable x stands for the shoreline position in various years. 
A ±5 m uncertainty and a 95% confidence interval were set as 
default parameters for statistical calculations. Linear regression 
involves several key aspects: (1) it uses all available data, no 
matter if there are changes in trends or accuracy, (2) it relies 
entirely on calculations, (3) it follows recognized statistical 
principles, and (4) it is simple to use (Crowell et al. 2018). The 
linear regression method can be affected by outliers and often 
underestimates how quickly things change compared to other 
statistics, like EPR (Dolan, 1991). 

The Weighted Linear Regression (WLR) method employs a 
linear regression approach similar to the Linear Regression 
Rate (LRR) method but incorporates a weighting factor 
(Equation 8) applied to Equation seven to account for 
positional uncertainty (Himmelstoss et al. 2021).

In the DSAS tool, Hossain et al. (2021) utilized the R2 value 
to be determined for LRR and WLR methods as presented in 
Eq.9, and it represents the accuracy and perfection between 
linear regression rate and weighted linear regression rate.

Where y = distance from baseline and known shoreline 
position, y′= predicted value of the best-fit regression line 
according to the equation, y = mean of the shoreline position 
data. The R-squared value, denoted as LR2, evaluates how 
well the shoreline position data fits the linear regression line.

Forecasting model

This model (Equation 10) calculates the adjusted shoreline 
position by incorporating the rate of shoreline movement 
(LRR) over a given time period. It uses the original inter-
sect point position and adjusts it by multiplying the Linear 
Regression Rate (LRR), which represents the rate of 
shoreline change per year, by the time elapsed. This 
adjustment accounts for both erosion (negative LRR) and 
accretion (positive LRR), ensuring that the shoreline's 
movement landward or seaward is accurately represented 
(Crowell et al. 1997). The model can be applied separately 
to the X and Y coordinates, allowing for a comprehensive 
adjustment in both directions, and is useful in predicting 
future shoreline positions or validating trends of coastal 
change observed over time.

Where:

Xnew  : Adjusted shoreline position.
Xoriginal  : Original intersect point position.
LRR: Linear Regression Rate (rate of change in shoreline 
position per year).
Δt represents the time span.

Validation of the Shoreline Prediction Model

The root mean square error is the square root of the variance 
of the residuals. It shows how well the model fits the data, 
i.e., how close the actual data points are to what the model 
predicted Lower RMSE values indicate a better fit, while 
higher values mean there is more error. The RMSE was used 
to check how well the actual coastline change rates matched 
the predicted ones. In shoreline observation, Uddin and Niloy 
(2022) assessed the calculated model and satellite observa-
tions of the shoreline change rate for 2021 by using RMSE 
values (Equation 11). 

Land loss and land gain computation

The areas identified as water or non-water in the images were 
compared to find out the values of land loss and gain, using 
the ArcGIS raster calculator tool (Mullick et al. 2019). The 
changes in land, both lost and gained, were measured over 
four years in a row, covering a total period of 30 years from 
1991 to 2021.

Results and discussion

The general view begins by describing the analysis of 179 
transects, with 174 considered active, along an approximate-
ly 25 km shoreline. This study utilized Weighted Linear 
Regression Rate (WLR) and Linear Regression Rate (LRR) 
for long-term analysis (1991–2021) and End Point Rate 
(EPR) and Net Shoreline Movement (NSM) for short-term 
intervals (1991–2000, 2000–2010, and 2010–2021).

Long term observation

Long-term observation includes overall analyses over the 
past 30 years from 1991 to 2021. There are a number of 
statistical methods developed to analyze long-term observa-
tion (more than two years) involving LRR, WLR, SCE, etc.

Shoreline change envelope

The highest distance range, from 590.78 to 495.79, belongs 
to the eastern region of shorelines (Graph 1, Fig 4). The 
farthest distance from the baseline belongs to the range of 
transect ID from 170 to 150. The nearest distance from the 
graph lies to the most eastward crossed 170 transect Id 
(Graph 1, Fig. 4).

Rate of shoreline movement

The Weighted Linear Regression (WLR) method shows 
varying rates of shoreline change along the studied coastal 
stretch. The spatial and temporal assessment of shoreline 
change across zones AB (Western), BC (Central), and CD 
(Eastern) of the Bay of Bengal reveals distinct patterns of 
erosion and accretion over the 30-year study period 
(1991-2021).

Spatial variation in shoreline dynamics

As shown in Fig. 6, the Bay of Bengal coastline demon-
strates significant zonal heterogeneity in shoreline change. 
Zone AB (Western Zone) exhibits a mixed pattern with 
predominantly erosional transects (73.33%), particularly in 
its central segment, though some accretional areas 
(15.56%) appear toward the boundaries. Zone BC (Central 
Zone) represents the most severely eroded region, with an 
overwhelming 98.31% of transects classified as erosional 
and no accretional transects observed. In contrast, Zone 
CD (Eastern Zone) displays a markedly different pattern 
with a majority of accretional transects (54.29%) concen-
trated in its central portion, though erosional processes still 
affect 28.57% of the area.

Quantitative assessment of shoreline change

The magnitude of shoreline change varies considerably 
across the study area, as illustrated in Table III. Zone BC 
exhibits the highest mean erosion rate (-9.48 m/yr), followed 
by Zone AB (-5.87 m/yr), while Zone CD shows net accre-

tion with a mean shoreline change of +5.88 m/yr. Maximum 
shoreline retreat was recorded in Zone BC (-13.8 m/yr), 
closely followed by Zone AB (-13.12 m/yr). Conversely, 
Zone CD registered the most substantial accretion, with a 
maximum shoreline advance of +25.58 m/yr, highlighting the 
dynamic nature of this eastern segment.

Transect-wise analysis

Graph 2 provides a detailed transect-by-transect visualization 
of erosion versus deposition patterns. The predominance of 
erosional processes (red areas) is evident across transects 

1-120, corresponding primarily to Zones AB and BC. The 
pronounced erosional trough between transects 43-64 corre-
sponds to the area of maximum retreat in Zone AB.

A dramatic shift occurs around transect 127, where 
substantial depositional processes (green areas) begin to 
dominate, reaching peak values exceeding +20 m/yr at 
transects 148-152, which aligns with the central portion 
of Zone CD. Notable interruptions in the accretional 
pattern occur around transects 155-158 and 168-169, 
indicating localized erosional hotspots within the general-
ly accretional eastern zone.

Short term observation

Shoreline variation is observed for each 10-year period 
from 1991 to 2021. The Fig. 6 shows seaward and 
landward movement at Kuakata area, Bay of Bengal, 
across three periods: 1991–2000, 2000–2010, and 
2010–2021. Accretion dominates in the eastern region, 
while erosion is prevalent in the western section, particu-
larly post-2000. In terms of short-period observation, the 
number of green transects is increasing both eastward 
and It reaches a peak point in 2021 from both the east and 
west portions, as shown in graph. 3 and Fig. 6. The 
method for frequent analyses is followed by NSM (Net 
Shoreline Movement) and EPR (End Point Rate).

Quantitative analysis using the EPR (End Point Rate) method

The End Point Rate (EPR) analysis is presented across 
three time periods: 1991-2000, 2000-2010, and 2010-2021. 
The Graph 3 and the Table IV demonstrate predominantly 
erosional rates with peaks reaching more than -20 meters/-
year, though a notable accretion peak of about more than 
30 meters/year appears around transect 125 between 1991 
and 2000.

The 2000-2010 period exhibits similar erosional trends in the 
central part of the transects but displays a significant accre-
tion peak of nearly 40 meters/year around transect 125 (Table 
IV). The most recent period (2010-2021) shows a more 
variable pattern with two distinct accretion peaks: one at the 
beginning of the stretch (around transect 15) reaching 
approximately 35 meters/year (Graph 3), and another more 

pronounced peak near transect 175 reaching about 44.9 
meters/year, as shown in Table IV, and Graph 3. All three 
time periods demonstrate fluctuating patterns of shoreline 
change rates across the study area, with the magnitude and 
location of peaks varying between periods. The average 
rate of shoreline change shows a progressive shift from 
erosional dominance to accretional tendency, changing 
from -9.68 m/year (1991-2000) to -0.98 m/year 
(2000-2010), and finally to 2.1 m/year (2010-2021), in 
Table IV, which supports Fig. 8.

The number of erosional transects decreased over time 
from 123 (87.86%) in 1991-2000 to 99 (61.11%) in 
2010-2021, while depositional transects increased from 17 
(12.14%) to 63 (38.89%) during the same period. Maxi-
mum erosion rates decreased from -24.5 m/year to -14.64 
m/year, while maximum accretion rates increased from 
33.49 m/year to 44.9 m/year. The average erosional rates 
moderated from -13.11 m/year to -8.38 m/year, while 

average depositional rates increased from 15.09 m/year to 
18.56 m/year across the study period.

Computation of land loss and land gain

In Fig. 7, the analysis of shoreline movement (NSM) along 
the Bay of Bengal coast revealed distinct patterns of morpho-
logical changes across three temporal periods: 1991-2000, 

2000-2010, and 2010-2021. The shoreline exhibited both 
erosional and accretional trends, with varying intensities 
along different coastal segments. During 1991-2000, the 
coastline was predominantly characterized by erosion 
(indicated in red), particularly along the central portion of the 
study area.

A small section in the eastern segment showed accretion 
(shown in green), while isolated stable areas (indicated in 
grey) were observed intermittently along the shoreline. The 
period 2000-2010 demonstrated a similar erosional pattern, 
though with some notable changes. The extent of erosion 
remained significant along the western and central sections, 
while the eastern portion showed increased accretional 
tendencies compared to the previous decade. The stable zones 
appeared to be more fragmentary during this period.

The most recent period (2010-2021) exhibited a continuation 
of the erosional trend along the western and central coastline. 
However, the eastern section displayed enhanced accretion, 
suggesting a persistent pattern of sediment accumulation in 
this area. The transition between erosional and accretional 
zones appeared more distinct compared to earlier periods. The 
analysis of shoreline movement (NSM) along the Bay of 
Bengal coast revealed significant morphological changes 
across three temporal periods: 1991-2000, 2000 2010, and 
2010-2021. The total affected area over the entire study 
period was 13.27 km², indicating substantial coastal dynamics 
in the region, as mentioned in Table V and Graph 4.

Expected shoreline position

According to Fig. 8, these historical trends manifest in 
distinct spatial patterns. The eastern portion, however, exhib-
its a significant landward movement, indicating persistent 
erosional processes despite the overall increase in previous 
erosional transects. 

This spatial variation in shoreline movement suggests that 
while accretional processes at the central zone have increased 
over time at a broader scale, localized erosional hotspots 
persist, particularly in the eastern section.

A remarkable morphological change along the coastline was 
observed with high fluctuation in some coastal zones from 
1991 to 2021. These physiological changes along the Bay 
of Bengal at Kuakata experienced both erosion and deposi-
tion, along with inward and outward movement of the 
shoreline. This study has highlighted both long-term obser-
vation over one period from 1991 to 2021 and short-term 
observation into three periods with a 10-year interval.

A comparable study conducted by Goswami et al. (2022) 
analyzed 1052 transects over a 55 km shoreline of Kuakata 
area, employing metrics such as EPR, NSM, and LRR 
while integrating SCE to assess shoreline variability over 
20 years from 2000 to 2020. Another study by Islam et al. 
(2014) found, in their study on Kutubdia Island, south 
eastern zone of Bangladesh, a strong correlation between 
EPR with WLR and LRR. However, their prime result of 
the transect rates is 0.29 m/yr, 2.91m/yr, and 3.53 for EPR, 
LRR, and WLR, respectively.

Similar studies conducted in the same location by Bushra 
et al.   (2021), their studies strongly supported our 
findings, though they chose a bit longer distance toward 
the north part from the Golachipa River at the eastern side. 
They got lost area of approximately 13.59 km2, over 30 
years from 1989 to 2020, likely, in my studies (Table V, 
Graph. 4) loss of area is more than 8 km2.

On the side of Red Crab Island in south eastern zone, it is 
literally being sedimentation from past years according to 
all previous publications and our research as well (Fig. 7). 
In this study, the shoreline dynamics along the Kuakata 

coast from 1991 to 2021 revealed significant erosion 
patterns, consistent with the findings of  Uddin & Niloy 
(2022). Their investigation results have clarified that red 
crab char, the eastern part of Kuakata beach, is more 
dynamic, demonstrating a vulnerable region and high 
SCE is 486m from  Uddin and Niloy (2022) and 490 in 
order to this report (Graph. 1, Fig. 4). My study found 
higher overall shoreline loss (~8.2 km²) and gain (~5.3 
km²) compared to their 6.11 km² loss and 3.26 km² gain. 
Differences may arise from data sources and methodolo-
gy, but both studies indicate a long-term erosional trend. 
On the side of statistical rate of shoreline variation, max, 
and min shoreline change rates regarding three zones 
(Table III) are homogenized by them, for instance, mean 
coastline variation -2.84 from our study and -3.11 in 
order to Uddin and Niloy (2022), similarly, highest accre-
tion rate from CD altered section shows insignificant 
difference as from my study is 25.58 and 23.88 from their 
study. Overall, it can be observed that no significant 
variation is found between the studies. 

Coastal districts are evaluated considering temporal shore-
line change analyses by Shamsuzzoha and Tofael (2023), 
and they analyzed the whole southern part of Bangladesh 
altogether, with a different approach, which poses 
challenges to making comparisons.

Shoreline forecasting has been limited, primarily for 
identifying critical areas. Rahman and Ferdous (2019) and 
Uddin & Niloy (2022) predicted shorelines for 2028 and 
2041, while this study forecasts 2050 (Fig. 8). Rahman and 
Ferdous (2019) analyzed the entire northern Bay of Bengal, 
making a Kalapara-specific evaluation difficult. Uddin and 
Niloy (2022) used DSAS beta forecasting, differing from 
this study’s equation-based model (equation_10), which 
aligns with observed short-term trends (1991–2021). The 
central part of Kuakata is predicted to shift seaward, which 
is in contrast findings of Uddin and Niloy (2022), while the 
eastern part will experience significant landward move-
ment, partially aligning with previous findings. However, 
uncertainties remain due to the long projection period (29 
years) and using a different prediction model, making the 
forecast probabilistic rather than absolute. 

Notably, the southeastern zone, which includes Red Crab 
Island (or char), appears to be highly dynamic, with signif-
icant landward shoreline movement indicating erosion. 
This region’s vulnerability may stem from its exposure to 
high-energy tidal forces and sediment-starved conditions, 

leading to the gradual loss of land (Uddin and Niloy, 
2022). The ecological significance of Red Crab Island, 
coupled with its role as a potential buffer against coastal 
erosion, makes it a critical area for focused conservation 
and monitoring efforts.

Conclusion

This study provides a comprehensive analysis of shoreline 
dynamics along the Kuakata coast, Bangladesh, over a 
30-year period (1991–2021). Using multi-temporal Land-
sat imagery and the Digital Shoreline Analysis System 
(DSAS), key findings revealed the highest erosion rate of 
-13.8 m/year in the central BC part and the highest accre-
tion rate of +25.58 m/year in the southeastern zone.

These findings underscore the dynamic nature of the 
Kuakata coastline, and due to our ignoring a direct field 
visit, we could not detect the exact reason among many 
probable reasons, including climate change, anthropogenic 
activities, tidal flux, etc. The study highlights the vulnera-
bility of coastal communities and infrastructure, necessi-
tating immediate action to mitigate erosion risks and 
promote sustainable development.

Future research should focus on discontinuous areas, deep 
social impact with accurate reasons, and detecting the 
exact reason by integrating higher-resolution satellite 
imagery, field validation, and hydrodynamic modeling.
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Bangladesh has increased from 144 million in 2011 to  
165.16 million in 2022, according to the latest population 
and housing census, and is projected to reach 175 million 
by 2024 (BBS, 2022; MacroTrends, 2024) with many 
living in low-lying floodplains vulnerable to monsoon 
flooding and tidal surges (BBS, 2011). The global average 
sea level rose by 0.21 meters from 1902 to 2015, but the 
Ganges Delta has experienced a much higher rate of 5–15 
mm per year (Mullick et al. 2019; Anwar et al. 2022).

Tidal dynamics play a critical role in shoreline changes, 
particularly in Bangladesh’s semi-diurnal tidal regime, where 
two high and two low tides occur daily (Rose and Bhaskaran, 
2017). They, additionally, mentioned that the average tidal 
range is 1.86 to 2.47 meters, transitioning from microtidal to 
mesotidal conditions. Tide data, sourced from UHSLC 
Stations (2024) and the Bangladesh Tide Table, is essential 
for accurate shoreline delineation, especially when consider-
ing neap and spring tides. Spring tides, representing the 
highest flood levels, and neap tides, the lowest, help avoid 
biases in shoreline change analysis (UHSLC, 2024).

Remote sensing and GIS technologies, such as Landsat imag-
ery and the Digital Shoreline Analysis System (DSAS), are 
essential for monitoring shoreline changes (Himmelstoss et 
al. 2021; Bushra et al. 2021). DSAS Tool, widely accepted 
for statistical analyses, includes a number of methods, 
including WLR (Weighted Linear Regression), LRR (Linear 
Regression Rate), NSM (Net Shoreline Movement), etc. 
Tools like Sentinel-2 imagery and water indices (e.g., NDWI, 
MNDWI) enable accurate shoreline extraction and analysis 
(Astiti et al. 2019; Fejjari et al. 2023). Studies have used 
these methods to analyze shoreline changes over decades, 
employing statistical techniques like linear regression to 
predict future trends (Crowell et al. 1997; Maiti and 
Bhattacharya, 2009). 

This study focuses on Kuakata Beach, a vulnerable area in 
south-central Bangladesh, to analyze shoreline changes over 
the past 30 years using Landsat imagery, GIS, and DSAS. 
The Landsat images for analysis are collected from USGS 
Earth Explorer (https://earthexplorer.usgs.gov). This 
research highlights the critical need for integrated geospatial 
analyses and field validation in understanding coastal 
dynamics. By integrating tide data and advanced remote 
sensing techniques, the study aims to provide insights into 
erosion, accretion, and shoreline stabilization processes, 
contributing to effective coastal management and policy 
development.

This research attempts to assess quantitative factors, includ-
ing annual shoreline movement rate, land loss and land gain 

over 30 years from 1991 to 2021, and find vulnerable and 
critical areas by predicted graphical shoreline visualization, 
by integrating GIS and Remote Sensing techniques.

Materials and methods

Study area

The dynamic coastal region of Bangladesh, situated at the 
southernmost area along the Bay of Bengal, is continuously 
deformed by multiple factors, including sediment accumula-
tion from three mighty rivers source; Ganges River, the 
Meghna River, and the Brahmaputra, wave action, etc. The 
deltaic stability majorly depends on the sediment deposition 
and becomes a shelter for biodiversity. Kuakata sea coastline 
is situated in the central zone of the coast of Bangladesh, 
which contains two major estuaries: the estuaries of Andar-
manik River at the western zone, and the estuaries of Gola-
chipa River at the eastern portion (Fig. 1). This study area 
belongs to Kalapara Upazila in the Patuakhali district, and it 
covers from 21° 48’ 33.23” N to 21° 52’ 16.03” N latitude 
and 90° 6’ 16.45” E to 90° 12’ 48.46” E longitudes (Fig. 1). 
The study area get experience the high- est temperature in 
January (25.1°C) and 33.8°C in April (BMD, 2020), with a 
mean annual rainfall of 2580 mm/year.

The variation of wave height can be observed based on two 
major season, during monsoon season, the wave height is 
typically around 1.8m, on the other hand, during the summer 
season from January to March, the wave height is very small; 
however, in general, the wave height stays 1m. Tides in the 
beach region are semi-diurnal, with daily tide levels ranging 
from 1 to 1.5 m (Uddin and Niloy, 2022).

Data source

Multi-temporal Landsat images, including TM, ETM+, and 
OLI/TRIS sensors, were utilized from 1990 to 2021 to 
analyze the shoreline dynamics of Kuakata. Specifically, four 
satellite images were selected at 10- Multi-temporal Landsat 
images, including TM, ETM+, and OLI/TRIS sensors, were 
utilized from 1990 to 2021 to analyze the shoreline dynamics 
of Kuakata. Specifically, four satellite images were selected 
year intervals from 1991 to 2021 (as shown in Table I). The 
images were acquired from reliable platforms such as USGS 
Earth Explorer (https://earthexplorer.usgs.gov) and GLOVIS  
(www.glovis.gov.us), ensuring a cloud cover of less than 5% 
to maintain data quality and accuracy (Islam et al. 2022).

Here, ECurrent   represents the total positional error for the 
current year, and ENext  represents the total positional error for 
the following year.  

All the metadata of satellite images are shown in Table I. 
To ensure accuracy in shoreline change detection, tide data 
were collected from two main sources: UHSLC (2024) and 
Bangladesh Tide Times (2024). The uncertainty in shore-
line position for each time interval was calculated using 
Equation 1 (Himmelstoss et al. 2021), and the values are 
added in Table 1.

Data preparation

Four key steps were used to study the changes along the 
shoreline. These steps included: (1) processing images 
with Arc-GIS, which involved correcting the images and 
calculating the NDWI to separate the images into water 

and non-water categories, (2) using Otsu’s Binary 
Thresholding to create a binary image and to outline the 
shoreline between water and non-water areas, (3) 
estimating the errors in the LANDSAT images, and (4) 
using DSAS to measure the statistics of the changes 
(Mullick et al. 2019). Shoreline change is measured 
using the WLR, EPR, and LRR methods. This study 
looked at the dividing line between land and water by 
using a binary threshold method. While separating the 
land pixels from the water pixels, the shoreline was 
identified without including the tidal wave. As a result, 
the land boundary line considered in this study is less 
likely to have been mistakenly caused by waves and 
tides. To calculate the rate of shoreline change, we 
looked at four different shorelines from the study area 
over 30 years: 1991, 2000, 2010, and 2021. Where incon-
sistency has been found, the shoreline has been digitized 
on a scale of 1:1000, which indicates a very high accura-
cy (Kabir and Tanvir, 2020). Table II displays major 
attributes regarding shorelines and baselines, including 
their length, uncertainty, date, etc.

The baseline has been taken 200 meters away from the most 
ancient shoreline position, and transect spacing has been 
chosen to be 150m, where the number of transects is 179 
along the coastline.

Image correction

Landsat imagery captures pixel values as digital numbers 

(DN), which, as highlighted by (Chander et al. 2009) 
Top-Of-Atmosphere (TOA, serve as the foundation for 
radiometric adjustments that convert raw satellite data into 
calibrated units like radiance or reflectance, ensuring 
consistency and precision for scientific analyses across 
varying sensors, times, and atmospheric conditions.

Chander et al. (2009) Top-Of-Atmosphere (TOA suggested 
changing DN to Radiance for images taken by the Landsat 
MSS, TM, and ETM sensors by using these equations (2, 3).

Where Lλ is the radiance of a spectral unit of“W/(m2 sr. μ
m),” Qcal is the pixel value of quantized calibrated [DN], 
Qcalmin is the Minimum Qcal, Qcalmax is the Maximum Qcal, 
LMINλ = Minimum Lλ scaled to Qcalmin [W/(m2 sr μm)], LMAXλ 
= Maximum Lλ scaled to Qcalmax [W/(m2 sr μm)]. The follow-
ing formula is used to convert radiance to ToA reflectance as

where Pλ = ToA reflectance [unitless], π = 3.14159, d is the 
Earth-Sun distance [astronomical units], ESUNλ is the mean 
exo-atmospheric solar irradiance [W/(m2 μm)], Ɵz is the 
Solar zenith angle [degrees].

For images from Landsat OLI, you can directly convert DN 
into ToA reflectance according to equation 4 (U.S. Geologi-
cal Survey, 2019).

where Mp is the reflectance multiplicative scaling factor for 
the band [unitless], and Ap is the reflectance additive scaling 
factor for the band [unitless]. The metadata file associated 
with LANDSAT imagery includes values for parameters such 
as Qcal, Qcalmax, Qcalmin, LMINλ, LMAXλ, Mp, Ap, and Ɵz (U.S. 
Geological Survey, 2019).

Digital index

The NDWI index is a useful tool for spotting water bodies on 
the Earth's surface. The NDWI was determined by using the 
green and near-infrared bands, as shown in equation 5 (Hos-
sain et al. 2021).

The NDWI can range from -1 to +1. The NDWI image 
typically indicates a good result for areas with water and a 
bad result for areas without water. To show the boundary 
between land and water as a coastline, we marked the land 
features with a 0 and the water features with a 1.

DSAS tool for shoreline change analysis

The Digital Shoreline Analysis System (DSAS) Version 6 is 
the latest standalone software developed for shoreline change 
analysis. Unlike its earlier versions, which operated as an 
extension of ArcGIS, DSAS v6 is no longer tied to ArcGIS, 
offering users more flexibility and independence from GIS 
software constraints. This modern version integrates a 
user-friendly interface with enhanced features, making it a 
powerful and comfortable tool for analyzing coastal changes. 
It requires pre-processed shoreline data and a baseline in 
GeoJSON format, ensuring standardized and efficient input 
handling. With updated algorithms and capabilities, DSAS 
v6 delivers accurate results, making it ideal for shoreline 
management and research applications. It estimates common 
uncertainty 10 and provides 13 types of statistical results that 
are so effective for analysts.

Varieties of Statistical Methods applied for understanding the 
Rate of Shoreline Movement

The Shoreline Change Envelope (SCE) and the rate of shore-
line change were measured using the EPR, NSM, LRR, and 
WLR methods as outlined in the Digital Shoreline Analysis 
System (DSAS). These measurements are commonly used in 
statistics that track changes along the shoreline.

The End Point Rate (EPR) is the best method when it is 
calculated using just two shoreline positions at different 
times (Sarwar and Woodroffe, 2013). The EPR method calcu-
lates how much the shoreline changes by dividing the 
distance by the number of years, as shown in equation six.

The distance (m) between the newest and oldest shoreline is 
represented by D1 − D2, and the time gap (years) between the 
two shoreline positions is shown as t1 − t0.

On the other hand, LRR (Linear regression method) is more 
appropriate when the number of shorelines exceeds two. 
OBrien et al. (2014) utilized the following LRR formula 
(Equation 7) for long-term shoreline analysis

Y = a + bX              (7)

In this equation, y represents the distance (in meters) from the 
baseline. The variable is the starting point of y, while b shows the 
slope of the line that describes how the shoreline changes over time.  

The variable x stands for the shoreline position in various years. 
A ±5 m uncertainty and a 95% confidence interval were set as 
default parameters for statistical calculations. Linear regression 
involves several key aspects: (1) it uses all available data, no 
matter if there are changes in trends or accuracy, (2) it relies 
entirely on calculations, (3) it follows recognized statistical 
principles, and (4) it is simple to use (Crowell et al. 2018). The 
linear regression method can be affected by outliers and often 
underestimates how quickly things change compared to other 
statistics, like EPR (Dolan, 1991). 

The Weighted Linear Regression (WLR) method employs a 
linear regression approach similar to the Linear Regression 
Rate (LRR) method but incorporates a weighting factor 
(Equation 8) applied to Equation seven to account for 
positional uncertainty (Himmelstoss et al. 2021).

In the DSAS tool, Hossain et al. (2021) utilized the R2 value 
to be determined for LRR and WLR methods as presented in 
Eq.9, and it represents the accuracy and perfection between 
linear regression rate and weighted linear regression rate.

Where y = distance from baseline and known shoreline 
position, y′= predicted value of the best-fit regression line 
according to the equation, y = mean of the shoreline position 
data. The R-squared value, denoted as LR2, evaluates how 
well the shoreline position data fits the linear regression line.

Forecasting model

This model (Equation 10) calculates the adjusted shoreline 
position by incorporating the rate of shoreline movement 
(LRR) over a given time period. It uses the original inter-
sect point position and adjusts it by multiplying the Linear 
Regression Rate (LRR), which represents the rate of 
shoreline change per year, by the time elapsed. This 
adjustment accounts for both erosion (negative LRR) and 
accretion (positive LRR), ensuring that the shoreline's 
movement landward or seaward is accurately represented 
(Crowell et al. 1997). The model can be applied separately 
to the X and Y coordinates, allowing for a comprehensive 
adjustment in both directions, and is useful in predicting 
future shoreline positions or validating trends of coastal 
change observed over time.

Where:

Xnew  : Adjusted shoreline position.
Xoriginal  : Original intersect point position.
LRR: Linear Regression Rate (rate of change in shoreline 
position per year).
Δt represents the time span.

Validation of the Shoreline Prediction Model

The root mean square error is the square root of the variance 
of the residuals. It shows how well the model fits the data, 
i.e., how close the actual data points are to what the model 
predicted Lower RMSE values indicate a better fit, while 
higher values mean there is more error. The RMSE was used 
to check how well the actual coastline change rates matched 
the predicted ones. In shoreline observation, Uddin and Niloy 
(2022) assessed the calculated model and satellite observa-
tions of the shoreline change rate for 2021 by using RMSE 
values (Equation 11). 

Land loss and land gain computation

The areas identified as water or non-water in the images were 
compared to find out the values of land loss and gain, using 
the ArcGIS raster calculator tool (Mullick et al. 2019). The 
changes in land, both lost and gained, were measured over 
four years in a row, covering a total period of 30 years from 
1991 to 2021.

Results and discussion

The general view begins by describing the analysis of 179 
transects, with 174 considered active, along an approximate-
ly 25 km shoreline. This study utilized Weighted Linear 
Regression Rate (WLR) and Linear Regression Rate (LRR) 
for long-term analysis (1991–2021) and End Point Rate 
(EPR) and Net Shoreline Movement (NSM) for short-term 
intervals (1991–2000, 2000–2010, and 2010–2021).

Long term observation

Long-term observation includes overall analyses over the 
past 30 years from 1991 to 2021. There are a number of 
statistical methods developed to analyze long-term observa-
tion (more than two years) involving LRR, WLR, SCE, etc.

Shoreline change envelope

The highest distance range, from 590.78 to 495.79, belongs 
to the eastern region of shorelines (Graph 1, Fig 4). The 
farthest distance from the baseline belongs to the range of 
transect ID from 170 to 150. The nearest distance from the 
graph lies to the most eastward crossed 170 transect Id 
(Graph 1, Fig. 4).

Rate of shoreline movement

The Weighted Linear Regression (WLR) method shows 
varying rates of shoreline change along the studied coastal 
stretch. The spatial and temporal assessment of shoreline 
change across zones AB (Western), BC (Central), and CD 
(Eastern) of the Bay of Bengal reveals distinct patterns of 
erosion and accretion over the 30-year study period 
(1991-2021).

Spatial variation in shoreline dynamics

As shown in Fig. 6, the Bay of Bengal coastline demon-
strates significant zonal heterogeneity in shoreline change. 
Zone AB (Western Zone) exhibits a mixed pattern with 
predominantly erosional transects (73.33%), particularly in 
its central segment, though some accretional areas 
(15.56%) appear toward the boundaries. Zone BC (Central 
Zone) represents the most severely eroded region, with an 
overwhelming 98.31% of transects classified as erosional 
and no accretional transects observed. In contrast, Zone 
CD (Eastern Zone) displays a markedly different pattern 
with a majority of accretional transects (54.29%) concen-
trated in its central portion, though erosional processes still 
affect 28.57% of the area.

Quantitative assessment of shoreline change

The magnitude of shoreline change varies considerably 
across the study area, as illustrated in Table III. Zone BC 
exhibits the highest mean erosion rate (-9.48 m/yr), followed 
by Zone AB (-5.87 m/yr), while Zone CD shows net accre-

tion with a mean shoreline change of +5.88 m/yr. Maximum 
shoreline retreat was recorded in Zone BC (-13.8 m/yr), 
closely followed by Zone AB (-13.12 m/yr). Conversely, 
Zone CD registered the most substantial accretion, with a 
maximum shoreline advance of +25.58 m/yr, highlighting the 
dynamic nature of this eastern segment.

Transect-wise analysis

Graph 2 provides a detailed transect-by-transect visualization 
of erosion versus deposition patterns. The predominance of 
erosional processes (red areas) is evident across transects 

1-120, corresponding primarily to Zones AB and BC. The 
pronounced erosional trough between transects 43-64 corre-
sponds to the area of maximum retreat in Zone AB.

A dramatic shift occurs around transect 127, where 
substantial depositional processes (green areas) begin to 
dominate, reaching peak values exceeding +20 m/yr at 
transects 148-152, which aligns with the central portion 
of Zone CD. Notable interruptions in the accretional 
pattern occur around transects 155-158 and 168-169, 
indicating localized erosional hotspots within the general-
ly accretional eastern zone.

Short term observation

Shoreline variation is observed for each 10-year period 
from 1991 to 2021. The Fig. 6 shows seaward and 
landward movement at Kuakata area, Bay of Bengal, 
across three periods: 1991–2000, 2000–2010, and 
2010–2021. Accretion dominates in the eastern region, 
while erosion is prevalent in the western section, particu-
larly post-2000. In terms of short-period observation, the 
number of green transects is increasing both eastward 
and It reaches a peak point in 2021 from both the east and 
west portions, as shown in graph. 3 and Fig. 6. The 
method for frequent analyses is followed by NSM (Net 
Shoreline Movement) and EPR (End Point Rate).

Quantitative analysis using the EPR (End Point Rate) method

The End Point Rate (EPR) analysis is presented across 
three time periods: 1991-2000, 2000-2010, and 2010-2021. 
The Graph 3 and the Table IV demonstrate predominantly 
erosional rates with peaks reaching more than -20 meters/-
year, though a notable accretion peak of about more than 
30 meters/year appears around transect 125 between 1991 
and 2000.

The 2000-2010 period exhibits similar erosional trends in the 
central part of the transects but displays a significant accre-
tion peak of nearly 40 meters/year around transect 125 (Table 
IV). The most recent period (2010-2021) shows a more 
variable pattern with two distinct accretion peaks: one at the 
beginning of the stretch (around transect 15) reaching 
approximately 35 meters/year (Graph 3), and another more 

pronounced peak near transect 175 reaching about 44.9 
meters/year, as shown in Table IV, and Graph 3. All three 
time periods demonstrate fluctuating patterns of shoreline 
change rates across the study area, with the magnitude and 
location of peaks varying between periods. The average 
rate of shoreline change shows a progressive shift from 
erosional dominance to accretional tendency, changing 
from -9.68 m/year (1991-2000) to -0.98 m/year 
(2000-2010), and finally to 2.1 m/year (2010-2021), in 
Table IV, which supports Fig. 8.

The number of erosional transects decreased over time 
from 123 (87.86%) in 1991-2000 to 99 (61.11%) in 
2010-2021, while depositional transects increased from 17 
(12.14%) to 63 (38.89%) during the same period. Maxi-
mum erosion rates decreased from -24.5 m/year to -14.64 
m/year, while maximum accretion rates increased from 
33.49 m/year to 44.9 m/year. The average erosional rates 
moderated from -13.11 m/year to -8.38 m/year, while 

average depositional rates increased from 15.09 m/year to 
18.56 m/year across the study period.

Computation of land loss and land gain

In Fig. 7, the analysis of shoreline movement (NSM) along 
the Bay of Bengal coast revealed distinct patterns of morpho-
logical changes across three temporal periods: 1991-2000, 

2000-2010, and 2010-2021. The shoreline exhibited both 
erosional and accretional trends, with varying intensities 
along different coastal segments. During 1991-2000, the 
coastline was predominantly characterized by erosion 
(indicated in red), particularly along the central portion of the 
study area.

A small section in the eastern segment showed accretion 
(shown in green), while isolated stable areas (indicated in 
grey) were observed intermittently along the shoreline. The 
period 2000-2010 demonstrated a similar erosional pattern, 
though with some notable changes. The extent of erosion 
remained significant along the western and central sections, 
while the eastern portion showed increased accretional 
tendencies compared to the previous decade. The stable zones 
appeared to be more fragmentary during this period.

The most recent period (2010-2021) exhibited a continuation 
of the erosional trend along the western and central coastline. 
However, the eastern section displayed enhanced accretion, 
suggesting a persistent pattern of sediment accumulation in 
this area. The transition between erosional and accretional 
zones appeared more distinct compared to earlier periods. The 
analysis of shoreline movement (NSM) along the Bay of 
Bengal coast revealed significant morphological changes 
across three temporal periods: 1991-2000, 2000 2010, and 
2010-2021. The total affected area over the entire study 
period was 13.27 km², indicating substantial coastal dynamics 
in the region, as mentioned in Table V and Graph 4.

Expected shoreline position

According to Fig. 8, these historical trends manifest in 
distinct spatial patterns. The eastern portion, however, exhib-
its a significant landward movement, indicating persistent 
erosional processes despite the overall increase in previous 
erosional transects. 

This spatial variation in shoreline movement suggests that 
while accretional processes at the central zone have increased 
over time at a broader scale, localized erosional hotspots 
persist, particularly in the eastern section.

A remarkable morphological change along the coastline was 
observed with high fluctuation in some coastal zones from 
1991 to 2021. These physiological changes along the Bay 
of Bengal at Kuakata experienced both erosion and deposi-
tion, along with inward and outward movement of the 
shoreline. This study has highlighted both long-term obser-
vation over one period from 1991 to 2021 and short-term 
observation into three periods with a 10-year interval.

A comparable study conducted by Goswami et al. (2022) 
analyzed 1052 transects over a 55 km shoreline of Kuakata 
area, employing metrics such as EPR, NSM, and LRR 
while integrating SCE to assess shoreline variability over 
20 years from 2000 to 2020. Another study by Islam et al. 
(2014) found, in their study on Kutubdia Island, south 
eastern zone of Bangladesh, a strong correlation between 
EPR with WLR and LRR. However, their prime result of 
the transect rates is 0.29 m/yr, 2.91m/yr, and 3.53 for EPR, 
LRR, and WLR, respectively.

Similar studies conducted in the same location by Bushra 
et al.   (2021), their studies strongly supported our 
findings, though they chose a bit longer distance toward 
the north part from the Golachipa River at the eastern side. 
They got lost area of approximately 13.59 km2, over 30 
years from 1989 to 2020, likely, in my studies (Table V, 
Graph. 4) loss of area is more than 8 km2.

On the side of Red Crab Island in south eastern zone, it is 
literally being sedimentation from past years according to 
all previous publications and our research as well (Fig. 7). 
In this study, the shoreline dynamics along the Kuakata 

coast from 1991 to 2021 revealed significant erosion 
patterns, consistent with the findings of  Uddin & Niloy 
(2022). Their investigation results have clarified that red 
crab char, the eastern part of Kuakata beach, is more 
dynamic, demonstrating a vulnerable region and high 
SCE is 486m from  Uddin and Niloy (2022) and 490 in 
order to this report (Graph. 1, Fig. 4). My study found 
higher overall shoreline loss (~8.2 km²) and gain (~5.3 
km²) compared to their 6.11 km² loss and 3.26 km² gain. 
Differences may arise from data sources and methodolo-
gy, but both studies indicate a long-term erosional trend. 
On the side of statistical rate of shoreline variation, max, 
and min shoreline change rates regarding three zones 
(Table III) are homogenized by them, for instance, mean 
coastline variation -2.84 from our study and -3.11 in 
order to Uddin and Niloy (2022), similarly, highest accre-
tion rate from CD altered section shows insignificant 
difference as from my study is 25.58 and 23.88 from their 
study. Overall, it can be observed that no significant 
variation is found between the studies. 

Coastal districts are evaluated considering temporal shore-
line change analyses by Shamsuzzoha and Tofael (2023), 
and they analyzed the whole southern part of Bangladesh 
altogether, with a different approach, which poses 
challenges to making comparisons.

Shoreline forecasting has been limited, primarily for 
identifying critical areas. Rahman and Ferdous (2019) and 
Uddin & Niloy (2022) predicted shorelines for 2028 and 
2041, while this study forecasts 2050 (Fig. 8). Rahman and 
Ferdous (2019) analyzed the entire northern Bay of Bengal, 
making a Kalapara-specific evaluation difficult. Uddin and 
Niloy (2022) used DSAS beta forecasting, differing from 
this study’s equation-based model (equation_10), which 
aligns with observed short-term trends (1991–2021). The 
central part of Kuakata is predicted to shift seaward, which 
is in contrast findings of Uddin and Niloy (2022), while the 
eastern part will experience significant landward move-
ment, partially aligning with previous findings. However, 
uncertainties remain due to the long projection period (29 
years) and using a different prediction model, making the 
forecast probabilistic rather than absolute. 

Notably, the southeastern zone, which includes Red Crab 
Island (or char), appears to be highly dynamic, with signif-
icant landward shoreline movement indicating erosion. 
This region’s vulnerability may stem from its exposure to 
high-energy tidal forces and sediment-starved conditions, 

leading to the gradual loss of land (Uddin and Niloy, 
2022). The ecological significance of Red Crab Island, 
coupled with its role as a potential buffer against coastal 
erosion, makes it a critical area for focused conservation 
and monitoring efforts.

Conclusion

This study provides a comprehensive analysis of shoreline 
dynamics along the Kuakata coast, Bangladesh, over a 
30-year period (1991–2021). Using multi-temporal Land-
sat imagery and the Digital Shoreline Analysis System 
(DSAS), key findings revealed the highest erosion rate of 
-13.8 m/year in the central BC part and the highest accre-
tion rate of +25.58 m/year in the southeastern zone.

These findings underscore the dynamic nature of the 
Kuakata coastline, and due to our ignoring a direct field 
visit, we could not detect the exact reason among many 
probable reasons, including climate change, anthropogenic 
activities, tidal flux, etc. The study highlights the vulnera-
bility of coastal communities and infrastructure, necessi-
tating immediate action to mitigate erosion risks and 
promote sustainable development.

Future research should focus on discontinuous areas, deep 
social impact with accurate reasons, and detecting the 
exact reason by integrating higher-resolution satellite 
imagery, field validation, and hydrodynamic modeling.
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Fig. 3. Schematic flow chart of the overall approach
          for this research

Table II. Major attributes of shoreline and Baseline, uncertainty zero is held as the default value on the DSAS 
application, and the baseline has been manually created using ArcMap.

OBJECT ID OBJECT NAME DATE UNCERTAINTY SHAPE 
LENGTH(m) 

1 Shoreline 11/10/1991 0 24387.26 
2 Shoreline 11/26/2000 0 22155.80 
3 Shoreline 11/22/2010 0 23498.42 
4 Shoreline 12/22/2021 0 24309.16 
5 Baseline NA 0 27335.50 
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Bangladesh has increased from 144 million in 2011 to  
165.16 million in 2022, according to the latest population 
and housing census, and is projected to reach 175 million 
by 2024 (BBS, 2022; MacroTrends, 2024) with many 
living in low-lying floodplains vulnerable to monsoon 
flooding and tidal surges (BBS, 2011). The global average 
sea level rose by 0.21 meters from 1902 to 2015, but the 
Ganges Delta has experienced a much higher rate of 5–15 
mm per year (Mullick et al. 2019; Anwar et al. 2022).

Tidal dynamics play a critical role in shoreline changes, 
particularly in Bangladesh’s semi-diurnal tidal regime, where 
two high and two low tides occur daily (Rose and Bhaskaran, 
2017). They, additionally, mentioned that the average tidal 
range is 1.86 to 2.47 meters, transitioning from microtidal to 
mesotidal conditions. Tide data, sourced from UHSLC 
Stations (2024) and the Bangladesh Tide Table, is essential 
for accurate shoreline delineation, especially when consider-
ing neap and spring tides. Spring tides, representing the 
highest flood levels, and neap tides, the lowest, help avoid 
biases in shoreline change analysis (UHSLC, 2024).

Remote sensing and GIS technologies, such as Landsat imag-
ery and the Digital Shoreline Analysis System (DSAS), are 
essential for monitoring shoreline changes (Himmelstoss et 
al. 2021; Bushra et al. 2021). DSAS Tool, widely accepted 
for statistical analyses, includes a number of methods, 
including WLR (Weighted Linear Regression), LRR (Linear 
Regression Rate), NSM (Net Shoreline Movement), etc. 
Tools like Sentinel-2 imagery and water indices (e.g., NDWI, 
MNDWI) enable accurate shoreline extraction and analysis 
(Astiti et al. 2019; Fejjari et al. 2023). Studies have used 
these methods to analyze shoreline changes over decades, 
employing statistical techniques like linear regression to 
predict future trends (Crowell et al. 1997; Maiti and 
Bhattacharya, 2009). 

This study focuses on Kuakata Beach, a vulnerable area in 
south-central Bangladesh, to analyze shoreline changes over 
the past 30 years using Landsat imagery, GIS, and DSAS. 
The Landsat images for analysis are collected from USGS 
Earth Explorer (https://earthexplorer.usgs.gov). This 
research highlights the critical need for integrated geospatial 
analyses and field validation in understanding coastal 
dynamics. By integrating tide data and advanced remote 
sensing techniques, the study aims to provide insights into 
erosion, accretion, and shoreline stabilization processes, 
contributing to effective coastal management and policy 
development.

This research attempts to assess quantitative factors, includ-
ing annual shoreline movement rate, land loss and land gain 

over 30 years from 1991 to 2021, and find vulnerable and 
critical areas by predicted graphical shoreline visualization, 
by integrating GIS and Remote Sensing techniques.

Materials and methods

Study area

The dynamic coastal region of Bangladesh, situated at the 
southernmost area along the Bay of Bengal, is continuously 
deformed by multiple factors, including sediment accumula-
tion from three mighty rivers source; Ganges River, the 
Meghna River, and the Brahmaputra, wave action, etc. The 
deltaic stability majorly depends on the sediment deposition 
and becomes a shelter for biodiversity. Kuakata sea coastline 
is situated in the central zone of the coast of Bangladesh, 
which contains two major estuaries: the estuaries of Andar-
manik River at the western zone, and the estuaries of Gola-
chipa River at the eastern portion (Fig. 1). This study area 
belongs to Kalapara Upazila in the Patuakhali district, and it 
covers from 21° 48’ 33.23” N to 21° 52’ 16.03” N latitude 
and 90° 6’ 16.45” E to 90° 12’ 48.46” E longitudes (Fig. 1). 
The study area get experience the high- est temperature in 
January (25.1°C) and 33.8°C in April (BMD, 2020), with a 
mean annual rainfall of 2580 mm/year.

The variation of wave height can be observed based on two 
major season, during monsoon season, the wave height is 
typically around 1.8m, on the other hand, during the summer 
season from January to March, the wave height is very small; 
however, in general, the wave height stays 1m. Tides in the 
beach region are semi-diurnal, with daily tide levels ranging 
from 1 to 1.5 m (Uddin and Niloy, 2022).

Data source

Multi-temporal Landsat images, including TM, ETM+, and 
OLI/TRIS sensors, were utilized from 1990 to 2021 to 
analyze the shoreline dynamics of Kuakata. Specifically, four 
satellite images were selected at 10- Multi-temporal Landsat 
images, including TM, ETM+, and OLI/TRIS sensors, were 
utilized from 1990 to 2021 to analyze the shoreline dynamics 
of Kuakata. Specifically, four satellite images were selected 
year intervals from 1991 to 2021 (as shown in Table I). The 
images were acquired from reliable platforms such as USGS 
Earth Explorer (https://earthexplorer.usgs.gov) and GLOVIS  
(www.glovis.gov.us), ensuring a cloud cover of less than 5% 
to maintain data quality and accuracy (Islam et al. 2022).

Here, ECurrent   represents the total positional error for the 
current year, and ENext  represents the total positional error for 
the following year.  

All the metadata of satellite images are shown in Table I. 
To ensure accuracy in shoreline change detection, tide data 
were collected from two main sources: UHSLC (2024) and 
Bangladesh Tide Times (2024). The uncertainty in shore-
line position for each time interval was calculated using 
Equation 1 (Himmelstoss et al. 2021), and the values are 
added in Table 1.

Data preparation

Four key steps were used to study the changes along the 
shoreline. These steps included: (1) processing images 
with Arc-GIS, which involved correcting the images and 
calculating the NDWI to separate the images into water 

and non-water categories, (2) using Otsu’s Binary 
Thresholding to create a binary image and to outline the 
shoreline between water and non-water areas, (3) 
estimating the errors in the LANDSAT images, and (4) 
using DSAS to measure the statistics of the changes 
(Mullick et al. 2019). Shoreline change is measured 
using the WLR, EPR, and LRR methods. This study 
looked at the dividing line between land and water by 
using a binary threshold method. While separating the 
land pixels from the water pixels, the shoreline was 
identified without including the tidal wave. As a result, 
the land boundary line considered in this study is less 
likely to have been mistakenly caused by waves and 
tides. To calculate the rate of shoreline change, we 
looked at four different shorelines from the study area 
over 30 years: 1991, 2000, 2010, and 2021. Where incon-
sistency has been found, the shoreline has been digitized 
on a scale of 1:1000, which indicates a very high accura-
cy (Kabir and Tanvir, 2020). Table II displays major 
attributes regarding shorelines and baselines, including 
their length, uncertainty, date, etc.

The baseline has been taken 200 meters away from the most 
ancient shoreline position, and transect spacing has been 
chosen to be 150m, where the number of transects is 179 
along the coastline.

Image correction

Landsat imagery captures pixel values as digital numbers 

(DN), which, as highlighted by (Chander et al. 2009) 
Top-Of-Atmosphere (TOA, serve as the foundation for 
radiometric adjustments that convert raw satellite data into 
calibrated units like radiance or reflectance, ensuring 
consistency and precision for scientific analyses across 
varying sensors, times, and atmospheric conditions.

Chander et al. (2009) Top-Of-Atmosphere (TOA suggested 
changing DN to Radiance for images taken by the Landsat 
MSS, TM, and ETM sensors by using these equations (2, 3).

Where Lλ is the radiance of a spectral unit of“W/(m2 sr. μ
m),” Qcal is the pixel value of quantized calibrated [DN], 
Qcalmin is the Minimum Qcal, Qcalmax is the Maximum Qcal, 
LMINλ = Minimum Lλ scaled to Qcalmin [W/(m2 sr μm)], LMAXλ 
= Maximum Lλ scaled to Qcalmax [W/(m2 sr μm)]. The follow-
ing formula is used to convert radiance to ToA reflectance as

where Pλ = ToA reflectance [unitless], π = 3.14159, d is the 
Earth-Sun distance [astronomical units], ESUNλ is the mean 
exo-atmospheric solar irradiance [W/(m2 μm)], Ɵz is the 
Solar zenith angle [degrees].

For images from Landsat OLI, you can directly convert DN 
into ToA reflectance according to equation 4 (U.S. Geologi-
cal Survey, 2019).

where Mp is the reflectance multiplicative scaling factor for 
the band [unitless], and Ap is the reflectance additive scaling 
factor for the band [unitless]. The metadata file associated 
with LANDSAT imagery includes values for parameters such 
as Qcal, Qcalmax, Qcalmin, LMINλ, LMAXλ, Mp, Ap, and Ɵz (U.S. 
Geological Survey, 2019).

Digital index

The NDWI index is a useful tool for spotting water bodies on 
the Earth's surface. The NDWI was determined by using the 
green and near-infrared bands, as shown in equation 5 (Hos-
sain et al. 2021).

The NDWI can range from -1 to +1. The NDWI image 
typically indicates a good result for areas with water and a 
bad result for areas without water. To show the boundary 
between land and water as a coastline, we marked the land 
features with a 0 and the water features with a 1.

DSAS tool for shoreline change analysis

The Digital Shoreline Analysis System (DSAS) Version 6 is 
the latest standalone software developed for shoreline change 
analysis. Unlike its earlier versions, which operated as an 
extension of ArcGIS, DSAS v6 is no longer tied to ArcGIS, 
offering users more flexibility and independence from GIS 
software constraints. This modern version integrates a 
user-friendly interface with enhanced features, making it a 
powerful and comfortable tool for analyzing coastal changes. 
It requires pre-processed shoreline data and a baseline in 
GeoJSON format, ensuring standardized and efficient input 
handling. With updated algorithms and capabilities, DSAS 
v6 delivers accurate results, making it ideal for shoreline 
management and research applications. It estimates common 
uncertainty 10 and provides 13 types of statistical results that 
are so effective for analysts.

Varieties of Statistical Methods applied for understanding the 
Rate of Shoreline Movement

The Shoreline Change Envelope (SCE) and the rate of shore-
line change were measured using the EPR, NSM, LRR, and 
WLR methods as outlined in the Digital Shoreline Analysis 
System (DSAS). These measurements are commonly used in 
statistics that track changes along the shoreline.

The End Point Rate (EPR) is the best method when it is 
calculated using just two shoreline positions at different 
times (Sarwar and Woodroffe, 2013). The EPR method calcu-
lates how much the shoreline changes by dividing the 
distance by the number of years, as shown in equation six.

The distance (m) between the newest and oldest shoreline is 
represented by D1 − D2, and the time gap (years) between the 
two shoreline positions is shown as t1 − t0.

On the other hand, LRR (Linear regression method) is more 
appropriate when the number of shorelines exceeds two. 
OBrien et al. (2014) utilized the following LRR formula 
(Equation 7) for long-term shoreline analysis

Y = a + bX              (7)

In this equation, y represents the distance (in meters) from the 
baseline. The variable is the starting point of y, while b shows the 
slope of the line that describes how the shoreline changes over time.  

The variable x stands for the shoreline position in various years. 
A ±5 m uncertainty and a 95% confidence interval were set as 
default parameters for statistical calculations. Linear regression 
involves several key aspects: (1) it uses all available data, no 
matter if there are changes in trends or accuracy, (2) it relies 
entirely on calculations, (3) it follows recognized statistical 
principles, and (4) it is simple to use (Crowell et al. 2018). The 
linear regression method can be affected by outliers and often 
underestimates how quickly things change compared to other 
statistics, like EPR (Dolan, 1991). 

The Weighted Linear Regression (WLR) method employs a 
linear regression approach similar to the Linear Regression 
Rate (LRR) method but incorporates a weighting factor 
(Equation 8) applied to Equation seven to account for 
positional uncertainty (Himmelstoss et al. 2021).

In the DSAS tool, Hossain et al. (2021) utilized the R2 value 
to be determined for LRR and WLR methods as presented in 
Eq.9, and it represents the accuracy and perfection between 
linear regression rate and weighted linear regression rate.

Where y = distance from baseline and known shoreline 
position, y′= predicted value of the best-fit regression line 
according to the equation, y = mean of the shoreline position 
data. The R-squared value, denoted as LR2, evaluates how 
well the shoreline position data fits the linear regression line.

Forecasting model

This model (Equation 10) calculates the adjusted shoreline 
position by incorporating the rate of shoreline movement 
(LRR) over a given time period. It uses the original inter-
sect point position and adjusts it by multiplying the Linear 
Regression Rate (LRR), which represents the rate of 
shoreline change per year, by the time elapsed. This 
adjustment accounts for both erosion (negative LRR) and 
accretion (positive LRR), ensuring that the shoreline's 
movement landward or seaward is accurately represented 
(Crowell et al. 1997). The model can be applied separately 
to the X and Y coordinates, allowing for a comprehensive 
adjustment in both directions, and is useful in predicting 
future shoreline positions or validating trends of coastal 
change observed over time.

Where:

Xnew  : Adjusted shoreline position.
Xoriginal  : Original intersect point position.
LRR: Linear Regression Rate (rate of change in shoreline 
position per year).
Δt represents the time span.

Validation of the Shoreline Prediction Model

The root mean square error is the square root of the variance 
of the residuals. It shows how well the model fits the data, 
i.e., how close the actual data points are to what the model 
predicted Lower RMSE values indicate a better fit, while 
higher values mean there is more error. The RMSE was used 
to check how well the actual coastline change rates matched 
the predicted ones. In shoreline observation, Uddin and Niloy 
(2022) assessed the calculated model and satellite observa-
tions of the shoreline change rate for 2021 by using RMSE 
values (Equation 11). 

Land loss and land gain computation

The areas identified as water or non-water in the images were 
compared to find out the values of land loss and gain, using 
the ArcGIS raster calculator tool (Mullick et al. 2019). The 
changes in land, both lost and gained, were measured over 
four years in a row, covering a total period of 30 years from 
1991 to 2021.

Results and discussion

The general view begins by describing the analysis of 179 
transects, with 174 considered active, along an approximate-
ly 25 km shoreline. This study utilized Weighted Linear 
Regression Rate (WLR) and Linear Regression Rate (LRR) 
for long-term analysis (1991–2021) and End Point Rate 
(EPR) and Net Shoreline Movement (NSM) for short-term 
intervals (1991–2000, 2000–2010, and 2010–2021).

Long term observation

Long-term observation includes overall analyses over the 
past 30 years from 1991 to 2021. There are a number of 
statistical methods developed to analyze long-term observa-
tion (more than two years) involving LRR, WLR, SCE, etc.

Shoreline change envelope

The highest distance range, from 590.78 to 495.79, belongs 
to the eastern region of shorelines (Graph 1, Fig 4). The 
farthest distance from the baseline belongs to the range of 
transect ID from 170 to 150. The nearest distance from the 
graph lies to the most eastward crossed 170 transect Id 
(Graph 1, Fig. 4).

Rate of shoreline movement

The Weighted Linear Regression (WLR) method shows 
varying rates of shoreline change along the studied coastal 
stretch. The spatial and temporal assessment of shoreline 
change across zones AB (Western), BC (Central), and CD 
(Eastern) of the Bay of Bengal reveals distinct patterns of 
erosion and accretion over the 30-year study period 
(1991-2021).

Spatial variation in shoreline dynamics

As shown in Fig. 6, the Bay of Bengal coastline demon-
strates significant zonal heterogeneity in shoreline change. 
Zone AB (Western Zone) exhibits a mixed pattern with 
predominantly erosional transects (73.33%), particularly in 
its central segment, though some accretional areas 
(15.56%) appear toward the boundaries. Zone BC (Central 
Zone) represents the most severely eroded region, with an 
overwhelming 98.31% of transects classified as erosional 
and no accretional transects observed. In contrast, Zone 
CD (Eastern Zone) displays a markedly different pattern 
with a majority of accretional transects (54.29%) concen-
trated in its central portion, though erosional processes still 
affect 28.57% of the area.

Quantitative assessment of shoreline change

The magnitude of shoreline change varies considerably 
across the study area, as illustrated in Table III. Zone BC 
exhibits the highest mean erosion rate (-9.48 m/yr), followed 
by Zone AB (-5.87 m/yr), while Zone CD shows net accre-

tion with a mean shoreline change of +5.88 m/yr. Maximum 
shoreline retreat was recorded in Zone BC (-13.8 m/yr), 
closely followed by Zone AB (-13.12 m/yr). Conversely, 
Zone CD registered the most substantial accretion, with a 
maximum shoreline advance of +25.58 m/yr, highlighting the 
dynamic nature of this eastern segment.

Transect-wise analysis

Graph 2 provides a detailed transect-by-transect visualization 
of erosion versus deposition patterns. The predominance of 
erosional processes (red areas) is evident across transects 

1-120, corresponding primarily to Zones AB and BC. The 
pronounced erosional trough between transects 43-64 corre-
sponds to the area of maximum retreat in Zone AB.

A dramatic shift occurs around transect 127, where 
substantial depositional processes (green areas) begin to 
dominate, reaching peak values exceeding +20 m/yr at 
transects 148-152, which aligns with the central portion 
of Zone CD. Notable interruptions in the accretional 
pattern occur around transects 155-158 and 168-169, 
indicating localized erosional hotspots within the general-
ly accretional eastern zone.

Short term observation

Shoreline variation is observed for each 10-year period 
from 1991 to 2021. The Fig. 6 shows seaward and 
landward movement at Kuakata area, Bay of Bengal, 
across three periods: 1991–2000, 2000–2010, and 
2010–2021. Accretion dominates in the eastern region, 
while erosion is prevalent in the western section, particu-
larly post-2000. In terms of short-period observation, the 
number of green transects is increasing both eastward 
and It reaches a peak point in 2021 from both the east and 
west portions, as shown in graph. 3 and Fig. 6. The 
method for frequent analyses is followed by NSM (Net 
Shoreline Movement) and EPR (End Point Rate).

Quantitative analysis using the EPR (End Point Rate) method

The End Point Rate (EPR) analysis is presented across 
three time periods: 1991-2000, 2000-2010, and 2010-2021. 
The Graph 3 and the Table IV demonstrate predominantly 
erosional rates with peaks reaching more than -20 meters/-
year, though a notable accretion peak of about more than 
30 meters/year appears around transect 125 between 1991 
and 2000.

The 2000-2010 period exhibits similar erosional trends in the 
central part of the transects but displays a significant accre-
tion peak of nearly 40 meters/year around transect 125 (Table 
IV). The most recent period (2010-2021) shows a more 
variable pattern with two distinct accretion peaks: one at the 
beginning of the stretch (around transect 15) reaching 
approximately 35 meters/year (Graph 3), and another more 

pronounced peak near transect 175 reaching about 44.9 
meters/year, as shown in Table IV, and Graph 3. All three 
time periods demonstrate fluctuating patterns of shoreline 
change rates across the study area, with the magnitude and 
location of peaks varying between periods. The average 
rate of shoreline change shows a progressive shift from 
erosional dominance to accretional tendency, changing 
from -9.68 m/year (1991-2000) to -0.98 m/year 
(2000-2010), and finally to 2.1 m/year (2010-2021), in 
Table IV, which supports Fig. 8.

The number of erosional transects decreased over time 
from 123 (87.86%) in 1991-2000 to 99 (61.11%) in 
2010-2021, while depositional transects increased from 17 
(12.14%) to 63 (38.89%) during the same period. Maxi-
mum erosion rates decreased from -24.5 m/year to -14.64 
m/year, while maximum accretion rates increased from 
33.49 m/year to 44.9 m/year. The average erosional rates 
moderated from -13.11 m/year to -8.38 m/year, while 

average depositional rates increased from 15.09 m/year to 
18.56 m/year across the study period.

Computation of land loss and land gain

In Fig. 7, the analysis of shoreline movement (NSM) along 
the Bay of Bengal coast revealed distinct patterns of morpho-
logical changes across three temporal periods: 1991-2000, 

2000-2010, and 2010-2021. The shoreline exhibited both 
erosional and accretional trends, with varying intensities 
along different coastal segments. During 1991-2000, the 
coastline was predominantly characterized by erosion 
(indicated in red), particularly along the central portion of the 
study area.

A small section in the eastern segment showed accretion 
(shown in green), while isolated stable areas (indicated in 
grey) were observed intermittently along the shoreline. The 
period 2000-2010 demonstrated a similar erosional pattern, 
though with some notable changes. The extent of erosion 
remained significant along the western and central sections, 
while the eastern portion showed increased accretional 
tendencies compared to the previous decade. The stable zones 
appeared to be more fragmentary during this period.

The most recent period (2010-2021) exhibited a continuation 
of the erosional trend along the western and central coastline. 
However, the eastern section displayed enhanced accretion, 
suggesting a persistent pattern of sediment accumulation in 
this area. The transition between erosional and accretional 
zones appeared more distinct compared to earlier periods. The 
analysis of shoreline movement (NSM) along the Bay of 
Bengal coast revealed significant morphological changes 
across three temporal periods: 1991-2000, 2000 2010, and 
2010-2021. The total affected area over the entire study 
period was 13.27 km², indicating substantial coastal dynamics 
in the region, as mentioned in Table V and Graph 4.

Expected shoreline position

According to Fig. 8, these historical trends manifest in 
distinct spatial patterns. The eastern portion, however, exhib-
its a significant landward movement, indicating persistent 
erosional processes despite the overall increase in previous 
erosional transects. 

This spatial variation in shoreline movement suggests that 
while accretional processes at the central zone have increased 
over time at a broader scale, localized erosional hotspots 
persist, particularly in the eastern section.

A remarkable morphological change along the coastline was 
observed with high fluctuation in some coastal zones from 
1991 to 2021. These physiological changes along the Bay 
of Bengal at Kuakata experienced both erosion and deposi-
tion, along with inward and outward movement of the 
shoreline. This study has highlighted both long-term obser-
vation over one period from 1991 to 2021 and short-term 
observation into three periods with a 10-year interval.

A comparable study conducted by Goswami et al. (2022) 
analyzed 1052 transects over a 55 km shoreline of Kuakata 
area, employing metrics such as EPR, NSM, and LRR 
while integrating SCE to assess shoreline variability over 
20 years from 2000 to 2020. Another study by Islam et al. 
(2014) found, in their study on Kutubdia Island, south 
eastern zone of Bangladesh, a strong correlation between 
EPR with WLR and LRR. However, their prime result of 
the transect rates is 0.29 m/yr, 2.91m/yr, and 3.53 for EPR, 
LRR, and WLR, respectively.

Similar studies conducted in the same location by Bushra 
et al.   (2021), their studies strongly supported our 
findings, though they chose a bit longer distance toward 
the north part from the Golachipa River at the eastern side. 
They got lost area of approximately 13.59 km2, over 30 
years from 1989 to 2020, likely, in my studies (Table V, 
Graph. 4) loss of area is more than 8 km2.

On the side of Red Crab Island in south eastern zone, it is 
literally being sedimentation from past years according to 
all previous publications and our research as well (Fig. 7). 
In this study, the shoreline dynamics along the Kuakata 

coast from 1991 to 2021 revealed significant erosion 
patterns, consistent with the findings of  Uddin & Niloy 
(2022). Their investigation results have clarified that red 
crab char, the eastern part of Kuakata beach, is more 
dynamic, demonstrating a vulnerable region and high 
SCE is 486m from  Uddin and Niloy (2022) and 490 in 
order to this report (Graph. 1, Fig. 4). My study found 
higher overall shoreline loss (~8.2 km²) and gain (~5.3 
km²) compared to their 6.11 km² loss and 3.26 km² gain. 
Differences may arise from data sources and methodolo-
gy, but both studies indicate a long-term erosional trend. 
On the side of statistical rate of shoreline variation, max, 
and min shoreline change rates regarding three zones 
(Table III) are homogenized by them, for instance, mean 
coastline variation -2.84 from our study and -3.11 in 
order to Uddin and Niloy (2022), similarly, highest accre-
tion rate from CD altered section shows insignificant 
difference as from my study is 25.58 and 23.88 from their 
study. Overall, it can be observed that no significant 
variation is found between the studies. 

Coastal districts are evaluated considering temporal shore-
line change analyses by Shamsuzzoha and Tofael (2023), 
and they analyzed the whole southern part of Bangladesh 
altogether, with a different approach, which poses 
challenges to making comparisons.

Shoreline forecasting has been limited, primarily for 
identifying critical areas. Rahman and Ferdous (2019) and 
Uddin & Niloy (2022) predicted shorelines for 2028 and 
2041, while this study forecasts 2050 (Fig. 8). Rahman and 
Ferdous (2019) analyzed the entire northern Bay of Bengal, 
making a Kalapara-specific evaluation difficult. Uddin and 
Niloy (2022) used DSAS beta forecasting, differing from 
this study’s equation-based model (equation_10), which 
aligns with observed short-term trends (1991–2021). The 
central part of Kuakata is predicted to shift seaward, which 
is in contrast findings of Uddin and Niloy (2022), while the 
eastern part will experience significant landward move-
ment, partially aligning with previous findings. However, 
uncertainties remain due to the long projection period (29 
years) and using a different prediction model, making the 
forecast probabilistic rather than absolute. 

Notably, the southeastern zone, which includes Red Crab 
Island (or char), appears to be highly dynamic, with signif-
icant landward shoreline movement indicating erosion. 
This region’s vulnerability may stem from its exposure to 
high-energy tidal forces and sediment-starved conditions, 

leading to the gradual loss of land (Uddin and Niloy, 
2022). The ecological significance of Red Crab Island, 
coupled with its role as a potential buffer against coastal 
erosion, makes it a critical area for focused conservation 
and monitoring efforts.

Conclusion

This study provides a comprehensive analysis of shoreline 
dynamics along the Kuakata coast, Bangladesh, over a 
30-year period (1991–2021). Using multi-temporal Land-
sat imagery and the Digital Shoreline Analysis System 
(DSAS), key findings revealed the highest erosion rate of 
-13.8 m/year in the central BC part and the highest accre-
tion rate of +25.58 m/year in the southeastern zone.

These findings underscore the dynamic nature of the 
Kuakata coastline, and due to our ignoring a direct field 
visit, we could not detect the exact reason among many 
probable reasons, including climate change, anthropogenic 
activities, tidal flux, etc. The study highlights the vulnera-
bility of coastal communities and infrastructure, necessi-
tating immediate action to mitigate erosion risks and 
promote sustainable development.

Future research should focus on discontinuous areas, deep 
social impact with accurate reasons, and detecting the 
exact reason by integrating higher-resolution satellite 
imagery, field validation, and hydrodynamic modeling.
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Bangladesh has increased from 144 million in 2011 to  
165.16 million in 2022, according to the latest population 
and housing census, and is projected to reach 175 million 
by 2024 (BBS, 2022; MacroTrends, 2024) with many 
living in low-lying floodplains vulnerable to monsoon 
flooding and tidal surges (BBS, 2011). The global average 
sea level rose by 0.21 meters from 1902 to 2015, but the 
Ganges Delta has experienced a much higher rate of 5–15 
mm per year (Mullick et al. 2019; Anwar et al. 2022).

Tidal dynamics play a critical role in shoreline changes, 
particularly in Bangladesh’s semi-diurnal tidal regime, where 
two high and two low tides occur daily (Rose and Bhaskaran, 
2017). They, additionally, mentioned that the average tidal 
range is 1.86 to 2.47 meters, transitioning from microtidal to 
mesotidal conditions. Tide data, sourced from UHSLC 
Stations (2024) and the Bangladesh Tide Table, is essential 
for accurate shoreline delineation, especially when consider-
ing neap and spring tides. Spring tides, representing the 
highest flood levels, and neap tides, the lowest, help avoid 
biases in shoreline change analysis (UHSLC, 2024).

Remote sensing and GIS technologies, such as Landsat imag-
ery and the Digital Shoreline Analysis System (DSAS), are 
essential for monitoring shoreline changes (Himmelstoss et 
al. 2021; Bushra et al. 2021). DSAS Tool, widely accepted 
for statistical analyses, includes a number of methods, 
including WLR (Weighted Linear Regression), LRR (Linear 
Regression Rate), NSM (Net Shoreline Movement), etc. 
Tools like Sentinel-2 imagery and water indices (e.g., NDWI, 
MNDWI) enable accurate shoreline extraction and analysis 
(Astiti et al. 2019; Fejjari et al. 2023). Studies have used 
these methods to analyze shoreline changes over decades, 
employing statistical techniques like linear regression to 
predict future trends (Crowell et al. 1997; Maiti and 
Bhattacharya, 2009). 

This study focuses on Kuakata Beach, a vulnerable area in 
south-central Bangladesh, to analyze shoreline changes over 
the past 30 years using Landsat imagery, GIS, and DSAS. 
The Landsat images for analysis are collected from USGS 
Earth Explorer (https://earthexplorer.usgs.gov). This 
research highlights the critical need for integrated geospatial 
analyses and field validation in understanding coastal 
dynamics. By integrating tide data and advanced remote 
sensing techniques, the study aims to provide insights into 
erosion, accretion, and shoreline stabilization processes, 
contributing to effective coastal management and policy 
development.

This research attempts to assess quantitative factors, includ-
ing annual shoreline movement rate, land loss and land gain 

over 30 years from 1991 to 2021, and find vulnerable and 
critical areas by predicted graphical shoreline visualization, 
by integrating GIS and Remote Sensing techniques.

Materials and methods

Study area

The dynamic coastal region of Bangladesh, situated at the 
southernmost area along the Bay of Bengal, is continuously 
deformed by multiple factors, including sediment accumula-
tion from three mighty rivers source; Ganges River, the 
Meghna River, and the Brahmaputra, wave action, etc. The 
deltaic stability majorly depends on the sediment deposition 
and becomes a shelter for biodiversity. Kuakata sea coastline 
is situated in the central zone of the coast of Bangladesh, 
which contains two major estuaries: the estuaries of Andar-
manik River at the western zone, and the estuaries of Gola-
chipa River at the eastern portion (Fig. 1). This study area 
belongs to Kalapara Upazila in the Patuakhali district, and it 
covers from 21° 48’ 33.23” N to 21° 52’ 16.03” N latitude 
and 90° 6’ 16.45” E to 90° 12’ 48.46” E longitudes (Fig. 1). 
The study area get experience the high- est temperature in 
January (25.1°C) and 33.8°C in April (BMD, 2020), with a 
mean annual rainfall of 2580 mm/year.

The variation of wave height can be observed based on two 
major season, during monsoon season, the wave height is 
typically around 1.8m, on the other hand, during the summer 
season from January to March, the wave height is very small; 
however, in general, the wave height stays 1m. Tides in the 
beach region are semi-diurnal, with daily tide levels ranging 
from 1 to 1.5 m (Uddin and Niloy, 2022).

Data source

Multi-temporal Landsat images, including TM, ETM+, and 
OLI/TRIS sensors, were utilized from 1990 to 2021 to 
analyze the shoreline dynamics of Kuakata. Specifically, four 
satellite images were selected at 10- Multi-temporal Landsat 
images, including TM, ETM+, and OLI/TRIS sensors, were 
utilized from 1990 to 2021 to analyze the shoreline dynamics 
of Kuakata. Specifically, four satellite images were selected 
year intervals from 1991 to 2021 (as shown in Table I). The 
images were acquired from reliable platforms such as USGS 
Earth Explorer (https://earthexplorer.usgs.gov) and GLOVIS  
(www.glovis.gov.us), ensuring a cloud cover of less than 5% 
to maintain data quality and accuracy (Islam et al. 2022).

Here, ECurrent   represents the total positional error for the 
current year, and ENext  represents the total positional error for 
the following year.  

All the metadata of satellite images are shown in Table I. 
To ensure accuracy in shoreline change detection, tide data 
were collected from two main sources: UHSLC (2024) and 
Bangladesh Tide Times (2024). The uncertainty in shore-
line position for each time interval was calculated using 
Equation 1 (Himmelstoss et al. 2021), and the values are 
added in Table 1.

Data preparation

Four key steps were used to study the changes along the 
shoreline. These steps included: (1) processing images 
with Arc-GIS, which involved correcting the images and 
calculating the NDWI to separate the images into water 

and non-water categories, (2) using Otsu’s Binary 
Thresholding to create a binary image and to outline the 
shoreline between water and non-water areas, (3) 
estimating the errors in the LANDSAT images, and (4) 
using DSAS to measure the statistics of the changes 
(Mullick et al. 2019). Shoreline change is measured 
using the WLR, EPR, and LRR methods. This study 
looked at the dividing line between land and water by 
using a binary threshold method. While separating the 
land pixels from the water pixels, the shoreline was 
identified without including the tidal wave. As a result, 
the land boundary line considered in this study is less 
likely to have been mistakenly caused by waves and 
tides. To calculate the rate of shoreline change, we 
looked at four different shorelines from the study area 
over 30 years: 1991, 2000, 2010, and 2021. Where incon-
sistency has been found, the shoreline has been digitized 
on a scale of 1:1000, which indicates a very high accura-
cy (Kabir and Tanvir, 2020). Table II displays major 
attributes regarding shorelines and baselines, including 
their length, uncertainty, date, etc.

The baseline has been taken 200 meters away from the most 
ancient shoreline position, and transect spacing has been 
chosen to be 150m, where the number of transects is 179 
along the coastline.

Image correction

Landsat imagery captures pixel values as digital numbers 

(DN), which, as highlighted by (Chander et al. 2009) 
Top-Of-Atmosphere (TOA, serve as the foundation for 
radiometric adjustments that convert raw satellite data into 
calibrated units like radiance or reflectance, ensuring 
consistency and precision for scientific analyses across 
varying sensors, times, and atmospheric conditions.

Chander et al. (2009) Top-Of-Atmosphere (TOA suggested 
changing DN to Radiance for images taken by the Landsat 
MSS, TM, and ETM sensors by using these equations (2, 3).

Where Lλ is the radiance of a spectral unit of“W/(m2 sr. μ
m),” Qcal is the pixel value of quantized calibrated [DN], 
Qcalmin is the Minimum Qcal, Qcalmax is the Maximum Qcal, 
LMINλ = Minimum Lλ scaled to Qcalmin [W/(m2 sr μm)], LMAXλ 
= Maximum Lλ scaled to Qcalmax [W/(m2 sr μm)]. The follow-
ing formula is used to convert radiance to ToA reflectance as

where Pλ = ToA reflectance [unitless], π = 3.14159, d is the 
Earth-Sun distance [astronomical units], ESUNλ is the mean 
exo-atmospheric solar irradiance [W/(m2 μm)], Ɵz is the 
Solar zenith angle [degrees].

For images from Landsat OLI, you can directly convert DN 
into ToA reflectance according to equation 4 (U.S. Geologi-
cal Survey, 2019).

where Mp is the reflectance multiplicative scaling factor for 
the band [unitless], and Ap is the reflectance additive scaling 
factor for the band [unitless]. The metadata file associated 
with LANDSAT imagery includes values for parameters such 
as Qcal, Qcalmax, Qcalmin, LMINλ, LMAXλ, Mp, Ap, and Ɵz (U.S. 
Geological Survey, 2019).

Digital index

The NDWI index is a useful tool for spotting water bodies on 
the Earth's surface. The NDWI was determined by using the 
green and near-infrared bands, as shown in equation 5 (Hos-
sain et al. 2021).

The NDWI can range from -1 to +1. The NDWI image 
typically indicates a good result for areas with water and a 
bad result for areas without water. To show the boundary 
between land and water as a coastline, we marked the land 
features with a 0 and the water features with a 1.

DSAS tool for shoreline change analysis

The Digital Shoreline Analysis System (DSAS) Version 6 is 
the latest standalone software developed for shoreline change 
analysis. Unlike its earlier versions, which operated as an 
extension of ArcGIS, DSAS v6 is no longer tied to ArcGIS, 
offering users more flexibility and independence from GIS 
software constraints. This modern version integrates a 
user-friendly interface with enhanced features, making it a 
powerful and comfortable tool for analyzing coastal changes. 
It requires pre-processed shoreline data and a baseline in 
GeoJSON format, ensuring standardized and efficient input 
handling. With updated algorithms and capabilities, DSAS 
v6 delivers accurate results, making it ideal for shoreline 
management and research applications. It estimates common 
uncertainty 10 and provides 13 types of statistical results that 
are so effective for analysts.

Varieties of Statistical Methods applied for understanding the 
Rate of Shoreline Movement

The Shoreline Change Envelope (SCE) and the rate of shore-
line change were measured using the EPR, NSM, LRR, and 
WLR methods as outlined in the Digital Shoreline Analysis 
System (DSAS). These measurements are commonly used in 
statistics that track changes along the shoreline.

The End Point Rate (EPR) is the best method when it is 
calculated using just two shoreline positions at different 
times (Sarwar and Woodroffe, 2013). The EPR method calcu-
lates how much the shoreline changes by dividing the 
distance by the number of years, as shown in equation six.

The distance (m) between the newest and oldest shoreline is 
represented by D1 − D2, and the time gap (years) between the 
two shoreline positions is shown as t1 − t0.

On the other hand, LRR (Linear regression method) is more 
appropriate when the number of shorelines exceeds two. 
OBrien et al. (2014) utilized the following LRR formula 
(Equation 7) for long-term shoreline analysis

Y = a + bX              (7)

In this equation, y represents the distance (in meters) from the 
baseline. The variable is the starting point of y, while b shows the 
slope of the line that describes how the shoreline changes over time.  

The variable x stands for the shoreline position in various years. 
A ±5 m uncertainty and a 95% confidence interval were set as 
default parameters for statistical calculations. Linear regression 
involves several key aspects: (1) it uses all available data, no 
matter if there are changes in trends or accuracy, (2) it relies 
entirely on calculations, (3) it follows recognized statistical 
principles, and (4) it is simple to use (Crowell et al. 2018). The 
linear regression method can be affected by outliers and often 
underestimates how quickly things change compared to other 
statistics, like EPR (Dolan, 1991). 

The Weighted Linear Regression (WLR) method employs a 
linear regression approach similar to the Linear Regression 
Rate (LRR) method but incorporates a weighting factor 
(Equation 8) applied to Equation seven to account for 
positional uncertainty (Himmelstoss et al. 2021).

In the DSAS tool, Hossain et al. (2021) utilized the R2 value 
to be determined for LRR and WLR methods as presented in 
Eq.9, and it represents the accuracy and perfection between 
linear regression rate and weighted linear regression rate.

Where y = distance from baseline and known shoreline 
position, y′= predicted value of the best-fit regression line 
according to the equation, y = mean of the shoreline position 
data. The R-squared value, denoted as LR2, evaluates how 
well the shoreline position data fits the linear regression line.

Forecasting model

This model (Equation 10) calculates the adjusted shoreline 
position by incorporating the rate of shoreline movement 
(LRR) over a given time period. It uses the original inter-
sect point position and adjusts it by multiplying the Linear 
Regression Rate (LRR), which represents the rate of 
shoreline change per year, by the time elapsed. This 
adjustment accounts for both erosion (negative LRR) and 
accretion (positive LRR), ensuring that the shoreline's 
movement landward or seaward is accurately represented 
(Crowell et al. 1997). The model can be applied separately 
to the X and Y coordinates, allowing for a comprehensive 
adjustment in both directions, and is useful in predicting 
future shoreline positions or validating trends of coastal 
change observed over time.

Where:

Xnew  : Adjusted shoreline position.
Xoriginal  : Original intersect point position.
LRR: Linear Regression Rate (rate of change in shoreline 
position per year).
Δt represents the time span.

Validation of the Shoreline Prediction Model

The root mean square error is the square root of the variance 
of the residuals. It shows how well the model fits the data, 
i.e., how close the actual data points are to what the model 
predicted Lower RMSE values indicate a better fit, while 
higher values mean there is more error. The RMSE was used 
to check how well the actual coastline change rates matched 
the predicted ones. In shoreline observation, Uddin and Niloy 
(2022) assessed the calculated model and satellite observa-
tions of the shoreline change rate for 2021 by using RMSE 
values (Equation 11). 

Land loss and land gain computation

The areas identified as water or non-water in the images were 
compared to find out the values of land loss and gain, using 
the ArcGIS raster calculator tool (Mullick et al. 2019). The 
changes in land, both lost and gained, were measured over 
four years in a row, covering a total period of 30 years from 
1991 to 2021.

Results and discussion

The general view begins by describing the analysis of 179 
transects, with 174 considered active, along an approximate-
ly 25 km shoreline. This study utilized Weighted Linear 
Regression Rate (WLR) and Linear Regression Rate (LRR) 
for long-term analysis (1991–2021) and End Point Rate 
(EPR) and Net Shoreline Movement (NSM) for short-term 
intervals (1991–2000, 2000–2010, and 2010–2021).

Long term observation

Long-term observation includes overall analyses over the 
past 30 years from 1991 to 2021. There are a number of 
statistical methods developed to analyze long-term observa-
tion (more than two years) involving LRR, WLR, SCE, etc.

Shoreline change envelope

The highest distance range, from 590.78 to 495.79, belongs 
to the eastern region of shorelines (Graph 1, Fig 4). The 
farthest distance from the baseline belongs to the range of 
transect ID from 170 to 150. The nearest distance from the 
graph lies to the most eastward crossed 170 transect Id 
(Graph 1, Fig. 4).

Rate of shoreline movement

The Weighted Linear Regression (WLR) method shows 
varying rates of shoreline change along the studied coastal 
stretch. The spatial and temporal assessment of shoreline 
change across zones AB (Western), BC (Central), and CD 
(Eastern) of the Bay of Bengal reveals distinct patterns of 
erosion and accretion over the 30-year study period 
(1991-2021).

Spatial variation in shoreline dynamics

As shown in Fig. 6, the Bay of Bengal coastline demon-
strates significant zonal heterogeneity in shoreline change. 
Zone AB (Western Zone) exhibits a mixed pattern with 
predominantly erosional transects (73.33%), particularly in 
its central segment, though some accretional areas 
(15.56%) appear toward the boundaries. Zone BC (Central 
Zone) represents the most severely eroded region, with an 
overwhelming 98.31% of transects classified as erosional 
and no accretional transects observed. In contrast, Zone 
CD (Eastern Zone) displays a markedly different pattern 
with a majority of accretional transects (54.29%) concen-
trated in its central portion, though erosional processes still 
affect 28.57% of the area.

Quantitative assessment of shoreline change

The magnitude of shoreline change varies considerably 
across the study area, as illustrated in Table III. Zone BC 
exhibits the highest mean erosion rate (-9.48 m/yr), followed 
by Zone AB (-5.87 m/yr), while Zone CD shows net accre-

tion with a mean shoreline change of +5.88 m/yr. Maximum 
shoreline retreat was recorded in Zone BC (-13.8 m/yr), 
closely followed by Zone AB (-13.12 m/yr). Conversely, 
Zone CD registered the most substantial accretion, with a 
maximum shoreline advance of +25.58 m/yr, highlighting the 
dynamic nature of this eastern segment.

Transect-wise analysis

Graph 2 provides a detailed transect-by-transect visualization 
of erosion versus deposition patterns. The predominance of 
erosional processes (red areas) is evident across transects 

1-120, corresponding primarily to Zones AB and BC. The 
pronounced erosional trough between transects 43-64 corre-
sponds to the area of maximum retreat in Zone AB.

A dramatic shift occurs around transect 127, where 
substantial depositional processes (green areas) begin to 
dominate, reaching peak values exceeding +20 m/yr at 
transects 148-152, which aligns with the central portion 
of Zone CD. Notable interruptions in the accretional 
pattern occur around transects 155-158 and 168-169, 
indicating localized erosional hotspots within the general-
ly accretional eastern zone.

Short term observation

Shoreline variation is observed for each 10-year period 
from 1991 to 2021. The Fig. 6 shows seaward and 
landward movement at Kuakata area, Bay of Bengal, 
across three periods: 1991–2000, 2000–2010, and 
2010–2021. Accretion dominates in the eastern region, 
while erosion is prevalent in the western section, particu-
larly post-2000. In terms of short-period observation, the 
number of green transects is increasing both eastward 
and It reaches a peak point in 2021 from both the east and 
west portions, as shown in graph. 3 and Fig. 6. The 
method for frequent analyses is followed by NSM (Net 
Shoreline Movement) and EPR (End Point Rate).

Quantitative analysis using the EPR (End Point Rate) method

The End Point Rate (EPR) analysis is presented across 
three time periods: 1991-2000, 2000-2010, and 2010-2021. 
The Graph 3 and the Table IV demonstrate predominantly 
erosional rates with peaks reaching more than -20 meters/-
year, though a notable accretion peak of about more than 
30 meters/year appears around transect 125 between 1991 
and 2000.

The 2000-2010 period exhibits similar erosional trends in the 
central part of the transects but displays a significant accre-
tion peak of nearly 40 meters/year around transect 125 (Table 
IV). The most recent period (2010-2021) shows a more 
variable pattern with two distinct accretion peaks: one at the 
beginning of the stretch (around transect 15) reaching 
approximately 35 meters/year (Graph 3), and another more 

pronounced peak near transect 175 reaching about 44.9 
meters/year, as shown in Table IV, and Graph 3. All three 
time periods demonstrate fluctuating patterns of shoreline 
change rates across the study area, with the magnitude and 
location of peaks varying between periods. The average 
rate of shoreline change shows a progressive shift from 
erosional dominance to accretional tendency, changing 
from -9.68 m/year (1991-2000) to -0.98 m/year 
(2000-2010), and finally to 2.1 m/year (2010-2021), in 
Table IV, which supports Fig. 8.

The number of erosional transects decreased over time 
from 123 (87.86%) in 1991-2000 to 99 (61.11%) in 
2010-2021, while depositional transects increased from 17 
(12.14%) to 63 (38.89%) during the same period. Maxi-
mum erosion rates decreased from -24.5 m/year to -14.64 
m/year, while maximum accretion rates increased from 
33.49 m/year to 44.9 m/year. The average erosional rates 
moderated from -13.11 m/year to -8.38 m/year, while 

average depositional rates increased from 15.09 m/year to 
18.56 m/year across the study period.

Computation of land loss and land gain

In Fig. 7, the analysis of shoreline movement (NSM) along 
the Bay of Bengal coast revealed distinct patterns of morpho-
logical changes across three temporal periods: 1991-2000, 

2000-2010, and 2010-2021. The shoreline exhibited both 
erosional and accretional trends, with varying intensities 
along different coastal segments. During 1991-2000, the 
coastline was predominantly characterized by erosion 
(indicated in red), particularly along the central portion of the 
study area.

A small section in the eastern segment showed accretion 
(shown in green), while isolated stable areas (indicated in 
grey) were observed intermittently along the shoreline. The 
period 2000-2010 demonstrated a similar erosional pattern, 
though with some notable changes. The extent of erosion 
remained significant along the western and central sections, 
while the eastern portion showed increased accretional 
tendencies compared to the previous decade. The stable zones 
appeared to be more fragmentary during this period.

The most recent period (2010-2021) exhibited a continuation 
of the erosional trend along the western and central coastline. 
However, the eastern section displayed enhanced accretion, 
suggesting a persistent pattern of sediment accumulation in 
this area. The transition between erosional and accretional 
zones appeared more distinct compared to earlier periods. The 
analysis of shoreline movement (NSM) along the Bay of 
Bengal coast revealed significant morphological changes 
across three temporal periods: 1991-2000, 2000 2010, and 
2010-2021. The total affected area over the entire study 
period was 13.27 km², indicating substantial coastal dynamics 
in the region, as mentioned in Table V and Graph 4.

Expected shoreline position

According to Fig. 8, these historical trends manifest in 
distinct spatial patterns. The eastern portion, however, exhib-
its a significant landward movement, indicating persistent 
erosional processes despite the overall increase in previous 
erosional transects. 

This spatial variation in shoreline movement suggests that 
while accretional processes at the central zone have increased 
over time at a broader scale, localized erosional hotspots 
persist, particularly in the eastern section.

A remarkable morphological change along the coastline was 
observed with high fluctuation in some coastal zones from 
1991 to 2021. These physiological changes along the Bay 
of Bengal at Kuakata experienced both erosion and deposi-
tion, along with inward and outward movement of the 
shoreline. This study has highlighted both long-term obser-
vation over one period from 1991 to 2021 and short-term 
observation into three periods with a 10-year interval.

A comparable study conducted by Goswami et al. (2022) 
analyzed 1052 transects over a 55 km shoreline of Kuakata 
area, employing metrics such as EPR, NSM, and LRR 
while integrating SCE to assess shoreline variability over 
20 years from 2000 to 2020. Another study by Islam et al. 
(2014) found, in their study on Kutubdia Island, south 
eastern zone of Bangladesh, a strong correlation between 
EPR with WLR and LRR. However, their prime result of 
the transect rates is 0.29 m/yr, 2.91m/yr, and 3.53 for EPR, 
LRR, and WLR, respectively.

Similar studies conducted in the same location by Bushra 
et al.   (2021), their studies strongly supported our 
findings, though they chose a bit longer distance toward 
the north part from the Golachipa River at the eastern side. 
They got lost area of approximately 13.59 km2, over 30 
years from 1989 to 2020, likely, in my studies (Table V, 
Graph. 4) loss of area is more than 8 km2.

On the side of Red Crab Island in south eastern zone, it is 
literally being sedimentation from past years according to 
all previous publications and our research as well (Fig. 7). 
In this study, the shoreline dynamics along the Kuakata 

coast from 1991 to 2021 revealed significant erosion 
patterns, consistent with the findings of  Uddin & Niloy 
(2022). Their investigation results have clarified that red 
crab char, the eastern part of Kuakata beach, is more 
dynamic, demonstrating a vulnerable region and high 
SCE is 486m from  Uddin and Niloy (2022) and 490 in 
order to this report (Graph. 1, Fig. 4). My study found 
higher overall shoreline loss (~8.2 km²) and gain (~5.3 
km²) compared to their 6.11 km² loss and 3.26 km² gain. 
Differences may arise from data sources and methodolo-
gy, but both studies indicate a long-term erosional trend. 
On the side of statistical rate of shoreline variation, max, 
and min shoreline change rates regarding three zones 
(Table III) are homogenized by them, for instance, mean 
coastline variation -2.84 from our study and -3.11 in 
order to Uddin and Niloy (2022), similarly, highest accre-
tion rate from CD altered section shows insignificant 
difference as from my study is 25.58 and 23.88 from their 
study. Overall, it can be observed that no significant 
variation is found between the studies. 

Coastal districts are evaluated considering temporal shore-
line change analyses by Shamsuzzoha and Tofael (2023), 
and they analyzed the whole southern part of Bangladesh 
altogether, with a different approach, which poses 
challenges to making comparisons.

Shoreline forecasting has been limited, primarily for 
identifying critical areas. Rahman and Ferdous (2019) and 
Uddin & Niloy (2022) predicted shorelines for 2028 and 
2041, while this study forecasts 2050 (Fig. 8). Rahman and 
Ferdous (2019) analyzed the entire northern Bay of Bengal, 
making a Kalapara-specific evaluation difficult. Uddin and 
Niloy (2022) used DSAS beta forecasting, differing from 
this study’s equation-based model (equation_10), which 
aligns with observed short-term trends (1991–2021). The 
central part of Kuakata is predicted to shift seaward, which 
is in contrast findings of Uddin and Niloy (2022), while the 
eastern part will experience significant landward move-
ment, partially aligning with previous findings. However, 
uncertainties remain due to the long projection period (29 
years) and using a different prediction model, making the 
forecast probabilistic rather than absolute. 

Notably, the southeastern zone, which includes Red Crab 
Island (or char), appears to be highly dynamic, with signif-
icant landward shoreline movement indicating erosion. 
This region’s vulnerability may stem from its exposure to 
high-energy tidal forces and sediment-starved conditions, 

leading to the gradual loss of land (Uddin and Niloy, 
2022). The ecological significance of Red Crab Island, 
coupled with its role as a potential buffer against coastal 
erosion, makes it a critical area for focused conservation 
and monitoring efforts.

Conclusion

This study provides a comprehensive analysis of shoreline 
dynamics along the Kuakata coast, Bangladesh, over a 
30-year period (1991–2021). Using multi-temporal Land-
sat imagery and the Digital Shoreline Analysis System 
(DSAS), key findings revealed the highest erosion rate of 
-13.8 m/year in the central BC part and the highest accre-
tion rate of +25.58 m/year in the southeastern zone.

These findings underscore the dynamic nature of the 
Kuakata coastline, and due to our ignoring a direct field 
visit, we could not detect the exact reason among many 
probable reasons, including climate change, anthropogenic 
activities, tidal flux, etc. The study highlights the vulnera-
bility of coastal communities and infrastructure, necessi-
tating immediate action to mitigate erosion risks and 
promote sustainable development.

Future research should focus on discontinuous areas, deep 
social impact with accurate reasons, and detecting the 
exact reason by integrating higher-resolution satellite 
imagery, field validation, and hydrodynamic modeling.
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Fig. 4. Graphical visualization of the map of shoreline change frequency over 30 years, demonstrating the level of 
fluctuation. The map has been shown into two major areas, one is the western zone (left) and another one is 
the eastern zone (right)

Graph 1. Shown furthest and nearest change over
              30 years
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Bangladesh has increased from 144 million in 2011 to  
165.16 million in 2022, according to the latest population 
and housing census, and is projected to reach 175 million 
by 2024 (BBS, 2022; MacroTrends, 2024) with many 
living in low-lying floodplains vulnerable to monsoon 
flooding and tidal surges (BBS, 2011). The global average 
sea level rose by 0.21 meters from 1902 to 2015, but the 
Ganges Delta has experienced a much higher rate of 5–15 
mm per year (Mullick et al. 2019; Anwar et al. 2022).

Tidal dynamics play a critical role in shoreline changes, 
particularly in Bangladesh’s semi-diurnal tidal regime, where 
two high and two low tides occur daily (Rose and Bhaskaran, 
2017). They, additionally, mentioned that the average tidal 
range is 1.86 to 2.47 meters, transitioning from microtidal to 
mesotidal conditions. Tide data, sourced from UHSLC 
Stations (2024) and the Bangladesh Tide Table, is essential 
for accurate shoreline delineation, especially when consider-
ing neap and spring tides. Spring tides, representing the 
highest flood levels, and neap tides, the lowest, help avoid 
biases in shoreline change analysis (UHSLC, 2024).

Remote sensing and GIS technologies, such as Landsat imag-
ery and the Digital Shoreline Analysis System (DSAS), are 
essential for monitoring shoreline changes (Himmelstoss et 
al. 2021; Bushra et al. 2021). DSAS Tool, widely accepted 
for statistical analyses, includes a number of methods, 
including WLR (Weighted Linear Regression), LRR (Linear 
Regression Rate), NSM (Net Shoreline Movement), etc. 
Tools like Sentinel-2 imagery and water indices (e.g., NDWI, 
MNDWI) enable accurate shoreline extraction and analysis 
(Astiti et al. 2019; Fejjari et al. 2023). Studies have used 
these methods to analyze shoreline changes over decades, 
employing statistical techniques like linear regression to 
predict future trends (Crowell et al. 1997; Maiti and 
Bhattacharya, 2009). 

This study focuses on Kuakata Beach, a vulnerable area in 
south-central Bangladesh, to analyze shoreline changes over 
the past 30 years using Landsat imagery, GIS, and DSAS. 
The Landsat images for analysis are collected from USGS 
Earth Explorer (https://earthexplorer.usgs.gov). This 
research highlights the critical need for integrated geospatial 
analyses and field validation in understanding coastal 
dynamics. By integrating tide data and advanced remote 
sensing techniques, the study aims to provide insights into 
erosion, accretion, and shoreline stabilization processes, 
contributing to effective coastal management and policy 
development.

This research attempts to assess quantitative factors, includ-
ing annual shoreline movement rate, land loss and land gain 

over 30 years from 1991 to 2021, and find vulnerable and 
critical areas by predicted graphical shoreline visualization, 
by integrating GIS and Remote Sensing techniques.

Materials and methods

Study area

The dynamic coastal region of Bangladesh, situated at the 
southernmost area along the Bay of Bengal, is continuously 
deformed by multiple factors, including sediment accumula-
tion from three mighty rivers source; Ganges River, the 
Meghna River, and the Brahmaputra, wave action, etc. The 
deltaic stability majorly depends on the sediment deposition 
and becomes a shelter for biodiversity. Kuakata sea coastline 
is situated in the central zone of the coast of Bangladesh, 
which contains two major estuaries: the estuaries of Andar-
manik River at the western zone, and the estuaries of Gola-
chipa River at the eastern portion (Fig. 1). This study area 
belongs to Kalapara Upazila in the Patuakhali district, and it 
covers from 21° 48’ 33.23” N to 21° 52’ 16.03” N latitude 
and 90° 6’ 16.45” E to 90° 12’ 48.46” E longitudes (Fig. 1). 
The study area get experience the high- est temperature in 
January (25.1°C) and 33.8°C in April (BMD, 2020), with a 
mean annual rainfall of 2580 mm/year.

The variation of wave height can be observed based on two 
major season, during monsoon season, the wave height is 
typically around 1.8m, on the other hand, during the summer 
season from January to March, the wave height is very small; 
however, in general, the wave height stays 1m. Tides in the 
beach region are semi-diurnal, with daily tide levels ranging 
from 1 to 1.5 m (Uddin and Niloy, 2022).

Data source

Multi-temporal Landsat images, including TM, ETM+, and 
OLI/TRIS sensors, were utilized from 1990 to 2021 to 
analyze the shoreline dynamics of Kuakata. Specifically, four 
satellite images were selected at 10- Multi-temporal Landsat 
images, including TM, ETM+, and OLI/TRIS sensors, were 
utilized from 1990 to 2021 to analyze the shoreline dynamics 
of Kuakata. Specifically, four satellite images were selected 
year intervals from 1991 to 2021 (as shown in Table I). The 
images were acquired from reliable platforms such as USGS 
Earth Explorer (https://earthexplorer.usgs.gov) and GLOVIS  
(www.glovis.gov.us), ensuring a cloud cover of less than 5% 
to maintain data quality and accuracy (Islam et al. 2022).

Here, ECurrent   represents the total positional error for the 
current year, and ENext  represents the total positional error for 
the following year.  

All the metadata of satellite images are shown in Table I. 
To ensure accuracy in shoreline change detection, tide data 
were collected from two main sources: UHSLC (2024) and 
Bangladesh Tide Times (2024). The uncertainty in shore-
line position for each time interval was calculated using 
Equation 1 (Himmelstoss et al. 2021), and the values are 
added in Table 1.

Data preparation

Four key steps were used to study the changes along the 
shoreline. These steps included: (1) processing images 
with Arc-GIS, which involved correcting the images and 
calculating the NDWI to separate the images into water 

and non-water categories, (2) using Otsu’s Binary 
Thresholding to create a binary image and to outline the 
shoreline between water and non-water areas, (3) 
estimating the errors in the LANDSAT images, and (4) 
using DSAS to measure the statistics of the changes 
(Mullick et al. 2019). Shoreline change is measured 
using the WLR, EPR, and LRR methods. This study 
looked at the dividing line between land and water by 
using a binary threshold method. While separating the 
land pixels from the water pixels, the shoreline was 
identified without including the tidal wave. As a result, 
the land boundary line considered in this study is less 
likely to have been mistakenly caused by waves and 
tides. To calculate the rate of shoreline change, we 
looked at four different shorelines from the study area 
over 30 years: 1991, 2000, 2010, and 2021. Where incon-
sistency has been found, the shoreline has been digitized 
on a scale of 1:1000, which indicates a very high accura-
cy (Kabir and Tanvir, 2020). Table II displays major 
attributes regarding shorelines and baselines, including 
their length, uncertainty, date, etc.

The baseline has been taken 200 meters away from the most 
ancient shoreline position, and transect spacing has been 
chosen to be 150m, where the number of transects is 179 
along the coastline.

Image correction

Landsat imagery captures pixel values as digital numbers 

(DN), which, as highlighted by (Chander et al. 2009) 
Top-Of-Atmosphere (TOA, serve as the foundation for 
radiometric adjustments that convert raw satellite data into 
calibrated units like radiance or reflectance, ensuring 
consistency and precision for scientific analyses across 
varying sensors, times, and atmospheric conditions.

Chander et al. (2009) Top-Of-Atmosphere (TOA suggested 
changing DN to Radiance for images taken by the Landsat 
MSS, TM, and ETM sensors by using these equations (2, 3).

Where Lλ is the radiance of a spectral unit of“W/(m2 sr. μ
m),” Qcal is the pixel value of quantized calibrated [DN], 
Qcalmin is the Minimum Qcal, Qcalmax is the Maximum Qcal, 
LMINλ = Minimum Lλ scaled to Qcalmin [W/(m2 sr μm)], LMAXλ 
= Maximum Lλ scaled to Qcalmax [W/(m2 sr μm)]. The follow-
ing formula is used to convert radiance to ToA reflectance as

where Pλ = ToA reflectance [unitless], π = 3.14159, d is the 
Earth-Sun distance [astronomical units], ESUNλ is the mean 
exo-atmospheric solar irradiance [W/(m2 μm)], Ɵz is the 
Solar zenith angle [degrees].

For images from Landsat OLI, you can directly convert DN 
into ToA reflectance according to equation 4 (U.S. Geologi-
cal Survey, 2019).

where Mp is the reflectance multiplicative scaling factor for 
the band [unitless], and Ap is the reflectance additive scaling 
factor for the band [unitless]. The metadata file associated 
with LANDSAT imagery includes values for parameters such 
as Qcal, Qcalmax, Qcalmin, LMINλ, LMAXλ, Mp, Ap, and Ɵz (U.S. 
Geological Survey, 2019).

Digital index

The NDWI index is a useful tool for spotting water bodies on 
the Earth's surface. The NDWI was determined by using the 
green and near-infrared bands, as shown in equation 5 (Hos-
sain et al. 2021).

The NDWI can range from -1 to +1. The NDWI image 
typically indicates a good result for areas with water and a 
bad result for areas without water. To show the boundary 
between land and water as a coastline, we marked the land 
features with a 0 and the water features with a 1.

DSAS tool for shoreline change analysis

The Digital Shoreline Analysis System (DSAS) Version 6 is 
the latest standalone software developed for shoreline change 
analysis. Unlike its earlier versions, which operated as an 
extension of ArcGIS, DSAS v6 is no longer tied to ArcGIS, 
offering users more flexibility and independence from GIS 
software constraints. This modern version integrates a 
user-friendly interface with enhanced features, making it a 
powerful and comfortable tool for analyzing coastal changes. 
It requires pre-processed shoreline data and a baseline in 
GeoJSON format, ensuring standardized and efficient input 
handling. With updated algorithms and capabilities, DSAS 
v6 delivers accurate results, making it ideal for shoreline 
management and research applications. It estimates common 
uncertainty 10 and provides 13 types of statistical results that 
are so effective for analysts.

Varieties of Statistical Methods applied for understanding the 
Rate of Shoreline Movement

The Shoreline Change Envelope (SCE) and the rate of shore-
line change were measured using the EPR, NSM, LRR, and 
WLR methods as outlined in the Digital Shoreline Analysis 
System (DSAS). These measurements are commonly used in 
statistics that track changes along the shoreline.

The End Point Rate (EPR) is the best method when it is 
calculated using just two shoreline positions at different 
times (Sarwar and Woodroffe, 2013). The EPR method calcu-
lates how much the shoreline changes by dividing the 
distance by the number of years, as shown in equation six.

The distance (m) between the newest and oldest shoreline is 
represented by D1 − D2, and the time gap (years) between the 
two shoreline positions is shown as t1 − t0.

On the other hand, LRR (Linear regression method) is more 
appropriate when the number of shorelines exceeds two. 
OBrien et al. (2014) utilized the following LRR formula 
(Equation 7) for long-term shoreline analysis

Y = a + bX              (7)

In this equation, y represents the distance (in meters) from the 
baseline. The variable is the starting point of y, while b shows the 
slope of the line that describes how the shoreline changes over time.  

The variable x stands for the shoreline position in various years. 
A ±5 m uncertainty and a 95% confidence interval were set as 
default parameters for statistical calculations. Linear regression 
involves several key aspects: (1) it uses all available data, no 
matter if there are changes in trends or accuracy, (2) it relies 
entirely on calculations, (3) it follows recognized statistical 
principles, and (4) it is simple to use (Crowell et al. 2018). The 
linear regression method can be affected by outliers and often 
underestimates how quickly things change compared to other 
statistics, like EPR (Dolan, 1991). 

The Weighted Linear Regression (WLR) method employs a 
linear regression approach similar to the Linear Regression 
Rate (LRR) method but incorporates a weighting factor 
(Equation 8) applied to Equation seven to account for 
positional uncertainty (Himmelstoss et al. 2021).

In the DSAS tool, Hossain et al. (2021) utilized the R2 value 
to be determined for LRR and WLR methods as presented in 
Eq.9, and it represents the accuracy and perfection between 
linear regression rate and weighted linear regression rate.

Where y = distance from baseline and known shoreline 
position, y′= predicted value of the best-fit regression line 
according to the equation, y = mean of the shoreline position 
data. The R-squared value, denoted as LR2, evaluates how 
well the shoreline position data fits the linear regression line.

Forecasting model

This model (Equation 10) calculates the adjusted shoreline 
position by incorporating the rate of shoreline movement 
(LRR) over a given time period. It uses the original inter-
sect point position and adjusts it by multiplying the Linear 
Regression Rate (LRR), which represents the rate of 
shoreline change per year, by the time elapsed. This 
adjustment accounts for both erosion (negative LRR) and 
accretion (positive LRR), ensuring that the shoreline's 
movement landward or seaward is accurately represented 
(Crowell et al. 1997). The model can be applied separately 
to the X and Y coordinates, allowing for a comprehensive 
adjustment in both directions, and is useful in predicting 
future shoreline positions or validating trends of coastal 
change observed over time.

Where:

Xnew  : Adjusted shoreline position.
Xoriginal  : Original intersect point position.
LRR: Linear Regression Rate (rate of change in shoreline 
position per year).
Δt represents the time span.

Validation of the Shoreline Prediction Model

The root mean square error is the square root of the variance 
of the residuals. It shows how well the model fits the data, 
i.e., how close the actual data points are to what the model 
predicted Lower RMSE values indicate a better fit, while 
higher values mean there is more error. The RMSE was used 
to check how well the actual coastline change rates matched 
the predicted ones. In shoreline observation, Uddin and Niloy 
(2022) assessed the calculated model and satellite observa-
tions of the shoreline change rate for 2021 by using RMSE 
values (Equation 11). 

Land loss and land gain computation

The areas identified as water or non-water in the images were 
compared to find out the values of land loss and gain, using 
the ArcGIS raster calculator tool (Mullick et al. 2019). The 
changes in land, both lost and gained, were measured over 
four years in a row, covering a total period of 30 years from 
1991 to 2021.

Results and discussion

The general view begins by describing the analysis of 179 
transects, with 174 considered active, along an approximate-
ly 25 km shoreline. This study utilized Weighted Linear 
Regression Rate (WLR) and Linear Regression Rate (LRR) 
for long-term analysis (1991–2021) and End Point Rate 
(EPR) and Net Shoreline Movement (NSM) for short-term 
intervals (1991–2000, 2000–2010, and 2010–2021).

Long term observation

Long-term observation includes overall analyses over the 
past 30 years from 1991 to 2021. There are a number of 
statistical methods developed to analyze long-term observa-
tion (more than two years) involving LRR, WLR, SCE, etc.

Shoreline change envelope

The highest distance range, from 590.78 to 495.79, belongs 
to the eastern region of shorelines (Graph 1, Fig 4). The 
farthest distance from the baseline belongs to the range of 
transect ID from 170 to 150. The nearest distance from the 
graph lies to the most eastward crossed 170 transect Id 
(Graph 1, Fig. 4).

Rate of shoreline movement

The Weighted Linear Regression (WLR) method shows 
varying rates of shoreline change along the studied coastal 
stretch. The spatial and temporal assessment of shoreline 
change across zones AB (Western), BC (Central), and CD 
(Eastern) of the Bay of Bengal reveals distinct patterns of 
erosion and accretion over the 30-year study period 
(1991-2021).

Spatial variation in shoreline dynamics

As shown in Fig. 6, the Bay of Bengal coastline demon-
strates significant zonal heterogeneity in shoreline change. 
Zone AB (Western Zone) exhibits a mixed pattern with 
predominantly erosional transects (73.33%), particularly in 
its central segment, though some accretional areas 
(15.56%) appear toward the boundaries. Zone BC (Central 
Zone) represents the most severely eroded region, with an 
overwhelming 98.31% of transects classified as erosional 
and no accretional transects observed. In contrast, Zone 
CD (Eastern Zone) displays a markedly different pattern 
with a majority of accretional transects (54.29%) concen-
trated in its central portion, though erosional processes still 
affect 28.57% of the area.

Quantitative assessment of shoreline change

The magnitude of shoreline change varies considerably 
across the study area, as illustrated in Table III. Zone BC 
exhibits the highest mean erosion rate (-9.48 m/yr), followed 
by Zone AB (-5.87 m/yr), while Zone CD shows net accre-

tion with a mean shoreline change of +5.88 m/yr. Maximum 
shoreline retreat was recorded in Zone BC (-13.8 m/yr), 
closely followed by Zone AB (-13.12 m/yr). Conversely, 
Zone CD registered the most substantial accretion, with a 
maximum shoreline advance of +25.58 m/yr, highlighting the 
dynamic nature of this eastern segment.

Transect-wise analysis

Graph 2 provides a detailed transect-by-transect visualization 
of erosion versus deposition patterns. The predominance of 
erosional processes (red areas) is evident across transects 

1-120, corresponding primarily to Zones AB and BC. The 
pronounced erosional trough between transects 43-64 corre-
sponds to the area of maximum retreat in Zone AB.

A dramatic shift occurs around transect 127, where 
substantial depositional processes (green areas) begin to 
dominate, reaching peak values exceeding +20 m/yr at 
transects 148-152, which aligns with the central portion 
of Zone CD. Notable interruptions in the accretional 
pattern occur around transects 155-158 and 168-169, 
indicating localized erosional hotspots within the general-
ly accretional eastern zone.

Short term observation

Shoreline variation is observed for each 10-year period 
from 1991 to 2021. The Fig. 6 shows seaward and 
landward movement at Kuakata area, Bay of Bengal, 
across three periods: 1991–2000, 2000–2010, and 
2010–2021. Accretion dominates in the eastern region, 
while erosion is prevalent in the western section, particu-
larly post-2000. In terms of short-period observation, the 
number of green transects is increasing both eastward 
and It reaches a peak point in 2021 from both the east and 
west portions, as shown in graph. 3 and Fig. 6. The 
method for frequent analyses is followed by NSM (Net 
Shoreline Movement) and EPR (End Point Rate).

Quantitative analysis using the EPR (End Point Rate) method

The End Point Rate (EPR) analysis is presented across 
three time periods: 1991-2000, 2000-2010, and 2010-2021. 
The Graph 3 and the Table IV demonstrate predominantly 
erosional rates with peaks reaching more than -20 meters/-
year, though a notable accretion peak of about more than 
30 meters/year appears around transect 125 between 1991 
and 2000.

The 2000-2010 period exhibits similar erosional trends in the 
central part of the transects but displays a significant accre-
tion peak of nearly 40 meters/year around transect 125 (Table 
IV). The most recent period (2010-2021) shows a more 
variable pattern with two distinct accretion peaks: one at the 
beginning of the stretch (around transect 15) reaching 
approximately 35 meters/year (Graph 3), and another more 

pronounced peak near transect 175 reaching about 44.9 
meters/year, as shown in Table IV, and Graph 3. All three 
time periods demonstrate fluctuating patterns of shoreline 
change rates across the study area, with the magnitude and 
location of peaks varying between periods. The average 
rate of shoreline change shows a progressive shift from 
erosional dominance to accretional tendency, changing 
from -9.68 m/year (1991-2000) to -0.98 m/year 
(2000-2010), and finally to 2.1 m/year (2010-2021), in 
Table IV, which supports Fig. 8.

The number of erosional transects decreased over time 
from 123 (87.86%) in 1991-2000 to 99 (61.11%) in 
2010-2021, while depositional transects increased from 17 
(12.14%) to 63 (38.89%) during the same period. Maxi-
mum erosion rates decreased from -24.5 m/year to -14.64 
m/year, while maximum accretion rates increased from 
33.49 m/year to 44.9 m/year. The average erosional rates 
moderated from -13.11 m/year to -8.38 m/year, while 

average depositional rates increased from 15.09 m/year to 
18.56 m/year across the study period.

Computation of land loss and land gain

In Fig. 7, the analysis of shoreline movement (NSM) along 
the Bay of Bengal coast revealed distinct patterns of morpho-
logical changes across three temporal periods: 1991-2000, 

2000-2010, and 2010-2021. The shoreline exhibited both 
erosional and accretional trends, with varying intensities 
along different coastal segments. During 1991-2000, the 
coastline was predominantly characterized by erosion 
(indicated in red), particularly along the central portion of the 
study area.

A small section in the eastern segment showed accretion 
(shown in green), while isolated stable areas (indicated in 
grey) were observed intermittently along the shoreline. The 
period 2000-2010 demonstrated a similar erosional pattern, 
though with some notable changes. The extent of erosion 
remained significant along the western and central sections, 
while the eastern portion showed increased accretional 
tendencies compared to the previous decade. The stable zones 
appeared to be more fragmentary during this period.

The most recent period (2010-2021) exhibited a continuation 
of the erosional trend along the western and central coastline. 
However, the eastern section displayed enhanced accretion, 
suggesting a persistent pattern of sediment accumulation in 
this area. The transition between erosional and accretional 
zones appeared more distinct compared to earlier periods. The 
analysis of shoreline movement (NSM) along the Bay of 
Bengal coast revealed significant morphological changes 
across three temporal periods: 1991-2000, 2000 2010, and 
2010-2021. The total affected area over the entire study 
period was 13.27 km², indicating substantial coastal dynamics 
in the region, as mentioned in Table V and Graph 4.

Expected shoreline position

According to Fig. 8, these historical trends manifest in 
distinct spatial patterns. The eastern portion, however, exhib-
its a significant landward movement, indicating persistent 
erosional processes despite the overall increase in previous 
erosional transects. 

This spatial variation in shoreline movement suggests that 
while accretional processes at the central zone have increased 
over time at a broader scale, localized erosional hotspots 
persist, particularly in the eastern section.

A remarkable morphological change along the coastline was 
observed with high fluctuation in some coastal zones from 
1991 to 2021. These physiological changes along the Bay 
of Bengal at Kuakata experienced both erosion and deposi-
tion, along with inward and outward movement of the 
shoreline. This study has highlighted both long-term obser-
vation over one period from 1991 to 2021 and short-term 
observation into three periods with a 10-year interval.

A comparable study conducted by Goswami et al. (2022) 
analyzed 1052 transects over a 55 km shoreline of Kuakata 
area, employing metrics such as EPR, NSM, and LRR 
while integrating SCE to assess shoreline variability over 
20 years from 2000 to 2020. Another study by Islam et al. 
(2014) found, in their study on Kutubdia Island, south 
eastern zone of Bangladesh, a strong correlation between 
EPR with WLR and LRR. However, their prime result of 
the transect rates is 0.29 m/yr, 2.91m/yr, and 3.53 for EPR, 
LRR, and WLR, respectively.

Similar studies conducted in the same location by Bushra 
et al.   (2021), their studies strongly supported our 
findings, though they chose a bit longer distance toward 
the north part from the Golachipa River at the eastern side. 
They got lost area of approximately 13.59 km2, over 30 
years from 1989 to 2020, likely, in my studies (Table V, 
Graph. 4) loss of area is more than 8 km2.

On the side of Red Crab Island in south eastern zone, it is 
literally being sedimentation from past years according to 
all previous publications and our research as well (Fig. 7). 
In this study, the shoreline dynamics along the Kuakata 

coast from 1991 to 2021 revealed significant erosion 
patterns, consistent with the findings of  Uddin & Niloy 
(2022). Their investigation results have clarified that red 
crab char, the eastern part of Kuakata beach, is more 
dynamic, demonstrating a vulnerable region and high 
SCE is 486m from  Uddin and Niloy (2022) and 490 in 
order to this report (Graph. 1, Fig. 4). My study found 
higher overall shoreline loss (~8.2 km²) and gain (~5.3 
km²) compared to their 6.11 km² loss and 3.26 km² gain. 
Differences may arise from data sources and methodolo-
gy, but both studies indicate a long-term erosional trend. 
On the side of statistical rate of shoreline variation, max, 
and min shoreline change rates regarding three zones 
(Table III) are homogenized by them, for instance, mean 
coastline variation -2.84 from our study and -3.11 in 
order to Uddin and Niloy (2022), similarly, highest accre-
tion rate from CD altered section shows insignificant 
difference as from my study is 25.58 and 23.88 from their 
study. Overall, it can be observed that no significant 
variation is found between the studies. 

Coastal districts are evaluated considering temporal shore-
line change analyses by Shamsuzzoha and Tofael (2023), 
and they analyzed the whole southern part of Bangladesh 
altogether, with a different approach, which poses 
challenges to making comparisons.

Shoreline forecasting has been limited, primarily for 
identifying critical areas. Rahman and Ferdous (2019) and 
Uddin & Niloy (2022) predicted shorelines for 2028 and 
2041, while this study forecasts 2050 (Fig. 8). Rahman and 
Ferdous (2019) analyzed the entire northern Bay of Bengal, 
making a Kalapara-specific evaluation difficult. Uddin and 
Niloy (2022) used DSAS beta forecasting, differing from 
this study’s equation-based model (equation_10), which 
aligns with observed short-term trends (1991–2021). The 
central part of Kuakata is predicted to shift seaward, which 
is in contrast findings of Uddin and Niloy (2022), while the 
eastern part will experience significant landward move-
ment, partially aligning with previous findings. However, 
uncertainties remain due to the long projection period (29 
years) and using a different prediction model, making the 
forecast probabilistic rather than absolute. 

Notably, the southeastern zone, which includes Red Crab 
Island (or char), appears to be highly dynamic, with signif-
icant landward shoreline movement indicating erosion. 
This region’s vulnerability may stem from its exposure to 
high-energy tidal forces and sediment-starved conditions, 

leading to the gradual loss of land (Uddin and Niloy, 
2022). The ecological significance of Red Crab Island, 
coupled with its role as a potential buffer against coastal 
erosion, makes it a critical area for focused conservation 
and monitoring efforts.

Conclusion

This study provides a comprehensive analysis of shoreline 
dynamics along the Kuakata coast, Bangladesh, over a 
30-year period (1991–2021). Using multi-temporal Land-
sat imagery and the Digital Shoreline Analysis System 
(DSAS), key findings revealed the highest erosion rate of 
-13.8 m/year in the central BC part and the highest accre-
tion rate of +25.58 m/year in the southeastern zone.

These findings underscore the dynamic nature of the 
Kuakata coastline, and due to our ignoring a direct field 
visit, we could not detect the exact reason among many 
probable reasons, including climate change, anthropogenic 
activities, tidal flux, etc. The study highlights the vulnera-
bility of coastal communities and infrastructure, necessi-
tating immediate action to mitigate erosion risks and 
promote sustainable development.

Future research should focus on discontinuous areas, deep 
social impact with accurate reasons, and detecting the 
exact reason by integrating higher-resolution satellite 
imagery, field validation, and hydrodynamic modeling.
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Graph 2. Erosion and deposition rate per year along
         transect
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Descriptive statistics  Zone AB Zone BC Zone CD Total 

Total transects 45 59 70 174 
Total Erosional Transects 33 58 20 111 
Total Accretional transects 07 00 38 45 
Total Stable transects 00 01 12 00 
Undefined transects 05 00 00 18 
Erosional transects (%) 73.33 98.30 28.57 63.79 
Accretional transects (%) 15.56 00 54.28 25.86 
Mean shoreline change -5.87 -9.47 5.87 -2.84 
Max shoreline change 3.6 -6.35 25.58 25.58 
Min shoreline change -13.12 -13.80 -7.02 -13.80 
Mean erosion -5.40 -9.31 -1.30 -5.07 
SD erosion 4.21 2.21 2.32 4.49 
Mean accretion 0.18 00 6.17 2.54 
SD accretion 0.60 00 7.47 0.31 

Table III. Quantitative assessment of shoreline movement across three zones



Bangladesh has increased from 144 million in 2011 to  
165.16 million in 2022, according to the latest population 
and housing census, and is projected to reach 175 million 
by 2024 (BBS, 2022; MacroTrends, 2024) with many 
living in low-lying floodplains vulnerable to monsoon 
flooding and tidal surges (BBS, 2011). The global average 
sea level rose by 0.21 meters from 1902 to 2015, but the 
Ganges Delta has experienced a much higher rate of 5–15 
mm per year (Mullick et al. 2019; Anwar et al. 2022).

Tidal dynamics play a critical role in shoreline changes, 
particularly in Bangladesh’s semi-diurnal tidal regime, where 
two high and two low tides occur daily (Rose and Bhaskaran, 
2017). They, additionally, mentioned that the average tidal 
range is 1.86 to 2.47 meters, transitioning from microtidal to 
mesotidal conditions. Tide data, sourced from UHSLC 
Stations (2024) and the Bangladesh Tide Table, is essential 
for accurate shoreline delineation, especially when consider-
ing neap and spring tides. Spring tides, representing the 
highest flood levels, and neap tides, the lowest, help avoid 
biases in shoreline change analysis (UHSLC, 2024).

Remote sensing and GIS technologies, such as Landsat imag-
ery and the Digital Shoreline Analysis System (DSAS), are 
essential for monitoring shoreline changes (Himmelstoss et 
al. 2021; Bushra et al. 2021). DSAS Tool, widely accepted 
for statistical analyses, includes a number of methods, 
including WLR (Weighted Linear Regression), LRR (Linear 
Regression Rate), NSM (Net Shoreline Movement), etc. 
Tools like Sentinel-2 imagery and water indices (e.g., NDWI, 
MNDWI) enable accurate shoreline extraction and analysis 
(Astiti et al. 2019; Fejjari et al. 2023). Studies have used 
these methods to analyze shoreline changes over decades, 
employing statistical techniques like linear regression to 
predict future trends (Crowell et al. 1997; Maiti and 
Bhattacharya, 2009). 

This study focuses on Kuakata Beach, a vulnerable area in 
south-central Bangladesh, to analyze shoreline changes over 
the past 30 years using Landsat imagery, GIS, and DSAS. 
The Landsat images for analysis are collected from USGS 
Earth Explorer (https://earthexplorer.usgs.gov). This 
research highlights the critical need for integrated geospatial 
analyses and field validation in understanding coastal 
dynamics. By integrating tide data and advanced remote 
sensing techniques, the study aims to provide insights into 
erosion, accretion, and shoreline stabilization processes, 
contributing to effective coastal management and policy 
development.

This research attempts to assess quantitative factors, includ-
ing annual shoreline movement rate, land loss and land gain 

over 30 years from 1991 to 2021, and find vulnerable and 
critical areas by predicted graphical shoreline visualization, 
by integrating GIS and Remote Sensing techniques.

Materials and methods

Study area

The dynamic coastal region of Bangladesh, situated at the 
southernmost area along the Bay of Bengal, is continuously 
deformed by multiple factors, including sediment accumula-
tion from three mighty rivers source; Ganges River, the 
Meghna River, and the Brahmaputra, wave action, etc. The 
deltaic stability majorly depends on the sediment deposition 
and becomes a shelter for biodiversity. Kuakata sea coastline 
is situated in the central zone of the coast of Bangladesh, 
which contains two major estuaries: the estuaries of Andar-
manik River at the western zone, and the estuaries of Gola-
chipa River at the eastern portion (Fig. 1). This study area 
belongs to Kalapara Upazila in the Patuakhali district, and it 
covers from 21° 48’ 33.23” N to 21° 52’ 16.03” N latitude 
and 90° 6’ 16.45” E to 90° 12’ 48.46” E longitudes (Fig. 1). 
The study area get experience the high- est temperature in 
January (25.1°C) and 33.8°C in April (BMD, 2020), with a 
mean annual rainfall of 2580 mm/year.

The variation of wave height can be observed based on two 
major season, during monsoon season, the wave height is 
typically around 1.8m, on the other hand, during the summer 
season from January to March, the wave height is very small; 
however, in general, the wave height stays 1m. Tides in the 
beach region are semi-diurnal, with daily tide levels ranging 
from 1 to 1.5 m (Uddin and Niloy, 2022).

Data source

Multi-temporal Landsat images, including TM, ETM+, and 
OLI/TRIS sensors, were utilized from 1990 to 2021 to 
analyze the shoreline dynamics of Kuakata. Specifically, four 
satellite images were selected at 10- Multi-temporal Landsat 
images, including TM, ETM+, and OLI/TRIS sensors, were 
utilized from 1990 to 2021 to analyze the shoreline dynamics 
of Kuakata. Specifically, four satellite images were selected 
year intervals from 1991 to 2021 (as shown in Table I). The 
images were acquired from reliable platforms such as USGS 
Earth Explorer (https://earthexplorer.usgs.gov) and GLOVIS  
(www.glovis.gov.us), ensuring a cloud cover of less than 5% 
to maintain data quality and accuracy (Islam et al. 2022).

Here, ECurrent   represents the total positional error for the 
current year, and ENext  represents the total positional error for 
the following year.  

All the metadata of satellite images are shown in Table I. 
To ensure accuracy in shoreline change detection, tide data 
were collected from two main sources: UHSLC (2024) and 
Bangladesh Tide Times (2024). The uncertainty in shore-
line position for each time interval was calculated using 
Equation 1 (Himmelstoss et al. 2021), and the values are 
added in Table 1.

Data preparation

Four key steps were used to study the changes along the 
shoreline. These steps included: (1) processing images 
with Arc-GIS, which involved correcting the images and 
calculating the NDWI to separate the images into water 

and non-water categories, (2) using Otsu’s Binary 
Thresholding to create a binary image and to outline the 
shoreline between water and non-water areas, (3) 
estimating the errors in the LANDSAT images, and (4) 
using DSAS to measure the statistics of the changes 
(Mullick et al. 2019). Shoreline change is measured 
using the WLR, EPR, and LRR methods. This study 
looked at the dividing line between land and water by 
using a binary threshold method. While separating the 
land pixels from the water pixels, the shoreline was 
identified without including the tidal wave. As a result, 
the land boundary line considered in this study is less 
likely to have been mistakenly caused by waves and 
tides. To calculate the rate of shoreline change, we 
looked at four different shorelines from the study area 
over 30 years: 1991, 2000, 2010, and 2021. Where incon-
sistency has been found, the shoreline has been digitized 
on a scale of 1:1000, which indicates a very high accura-
cy (Kabir and Tanvir, 2020). Table II displays major 
attributes regarding shorelines and baselines, including 
their length, uncertainty, date, etc.

The baseline has been taken 200 meters away from the most 
ancient shoreline position, and transect spacing has been 
chosen to be 150m, where the number of transects is 179 
along the coastline.

Image correction

Landsat imagery captures pixel values as digital numbers 

(DN), which, as highlighted by (Chander et al. 2009) 
Top-Of-Atmosphere (TOA, serve as the foundation for 
radiometric adjustments that convert raw satellite data into 
calibrated units like radiance or reflectance, ensuring 
consistency and precision for scientific analyses across 
varying sensors, times, and atmospheric conditions.

Chander et al. (2009) Top-Of-Atmosphere (TOA suggested 
changing DN to Radiance for images taken by the Landsat 
MSS, TM, and ETM sensors by using these equations (2, 3).

Where Lλ is the radiance of a spectral unit of“W/(m2 sr. μ
m),” Qcal is the pixel value of quantized calibrated [DN], 
Qcalmin is the Minimum Qcal, Qcalmax is the Maximum Qcal, 
LMINλ = Minimum Lλ scaled to Qcalmin [W/(m2 sr μm)], LMAXλ 
= Maximum Lλ scaled to Qcalmax [W/(m2 sr μm)]. The follow-
ing formula is used to convert radiance to ToA reflectance as

where Pλ = ToA reflectance [unitless], π = 3.14159, d is the 
Earth-Sun distance [astronomical units], ESUNλ is the mean 
exo-atmospheric solar irradiance [W/(m2 μm)], Ɵz is the 
Solar zenith angle [degrees].

For images from Landsat OLI, you can directly convert DN 
into ToA reflectance according to equation 4 (U.S. Geologi-
cal Survey, 2019).

where Mp is the reflectance multiplicative scaling factor for 
the band [unitless], and Ap is the reflectance additive scaling 
factor for the band [unitless]. The metadata file associated 
with LANDSAT imagery includes values for parameters such 
as Qcal, Qcalmax, Qcalmin, LMINλ, LMAXλ, Mp, Ap, and Ɵz (U.S. 
Geological Survey, 2019).

Digital index

The NDWI index is a useful tool for spotting water bodies on 
the Earth's surface. The NDWI was determined by using the 
green and near-infrared bands, as shown in equation 5 (Hos-
sain et al. 2021).

The NDWI can range from -1 to +1. The NDWI image 
typically indicates a good result for areas with water and a 
bad result for areas without water. To show the boundary 
between land and water as a coastline, we marked the land 
features with a 0 and the water features with a 1.

DSAS tool for shoreline change analysis

The Digital Shoreline Analysis System (DSAS) Version 6 is 
the latest standalone software developed for shoreline change 
analysis. Unlike its earlier versions, which operated as an 
extension of ArcGIS, DSAS v6 is no longer tied to ArcGIS, 
offering users more flexibility and independence from GIS 
software constraints. This modern version integrates a 
user-friendly interface with enhanced features, making it a 
powerful and comfortable tool for analyzing coastal changes. 
It requires pre-processed shoreline data and a baseline in 
GeoJSON format, ensuring standardized and efficient input 
handling. With updated algorithms and capabilities, DSAS 
v6 delivers accurate results, making it ideal for shoreline 
management and research applications. It estimates common 
uncertainty 10 and provides 13 types of statistical results that 
are so effective for analysts.

Varieties of Statistical Methods applied for understanding the 
Rate of Shoreline Movement

The Shoreline Change Envelope (SCE) and the rate of shore-
line change were measured using the EPR, NSM, LRR, and 
WLR methods as outlined in the Digital Shoreline Analysis 
System (DSAS). These measurements are commonly used in 
statistics that track changes along the shoreline.

The End Point Rate (EPR) is the best method when it is 
calculated using just two shoreline positions at different 
times (Sarwar and Woodroffe, 2013). The EPR method calcu-
lates how much the shoreline changes by dividing the 
distance by the number of years, as shown in equation six.

The distance (m) between the newest and oldest shoreline is 
represented by D1 − D2, and the time gap (years) between the 
two shoreline positions is shown as t1 − t0.

On the other hand, LRR (Linear regression method) is more 
appropriate when the number of shorelines exceeds two. 
OBrien et al. (2014) utilized the following LRR formula 
(Equation 7) for long-term shoreline analysis

Y = a + bX              (7)

In this equation, y represents the distance (in meters) from the 
baseline. The variable is the starting point of y, while b shows the 
slope of the line that describes how the shoreline changes over time.  

The variable x stands for the shoreline position in various years. 
A ±5 m uncertainty and a 95% confidence interval were set as 
default parameters for statistical calculations. Linear regression 
involves several key aspects: (1) it uses all available data, no 
matter if there are changes in trends or accuracy, (2) it relies 
entirely on calculations, (3) it follows recognized statistical 
principles, and (4) it is simple to use (Crowell et al. 2018). The 
linear regression method can be affected by outliers and often 
underestimates how quickly things change compared to other 
statistics, like EPR (Dolan, 1991). 

The Weighted Linear Regression (WLR) method employs a 
linear regression approach similar to the Linear Regression 
Rate (LRR) method but incorporates a weighting factor 
(Equation 8) applied to Equation seven to account for 
positional uncertainty (Himmelstoss et al. 2021).

In the DSAS tool, Hossain et al. (2021) utilized the R2 value 
to be determined for LRR and WLR methods as presented in 
Eq.9, and it represents the accuracy and perfection between 
linear regression rate and weighted linear regression rate.

Where y = distance from baseline and known shoreline 
position, y′= predicted value of the best-fit regression line 
according to the equation, y = mean of the shoreline position 
data. The R-squared value, denoted as LR2, evaluates how 
well the shoreline position data fits the linear regression line.

Forecasting model

This model (Equation 10) calculates the adjusted shoreline 
position by incorporating the rate of shoreline movement 
(LRR) over a given time period. It uses the original inter-
sect point position and adjusts it by multiplying the Linear 
Regression Rate (LRR), which represents the rate of 
shoreline change per year, by the time elapsed. This 
adjustment accounts for both erosion (negative LRR) and 
accretion (positive LRR), ensuring that the shoreline's 
movement landward or seaward is accurately represented 
(Crowell et al. 1997). The model can be applied separately 
to the X and Y coordinates, allowing for a comprehensive 
adjustment in both directions, and is useful in predicting 
future shoreline positions or validating trends of coastal 
change observed over time.

Where:

Xnew  : Adjusted shoreline position.
Xoriginal  : Original intersect point position.
LRR: Linear Regression Rate (rate of change in shoreline 
position per year).
Δt represents the time span.

Validation of the Shoreline Prediction Model

The root mean square error is the square root of the variance 
of the residuals. It shows how well the model fits the data, 
i.e., how close the actual data points are to what the model 
predicted Lower RMSE values indicate a better fit, while 
higher values mean there is more error. The RMSE was used 
to check how well the actual coastline change rates matched 
the predicted ones. In shoreline observation, Uddin and Niloy 
(2022) assessed the calculated model and satellite observa-
tions of the shoreline change rate for 2021 by using RMSE 
values (Equation 11). 

Land loss and land gain computation

The areas identified as water or non-water in the images were 
compared to find out the values of land loss and gain, using 
the ArcGIS raster calculator tool (Mullick et al. 2019). The 
changes in land, both lost and gained, were measured over 
four years in a row, covering a total period of 30 years from 
1991 to 2021.

Results and discussion

The general view begins by describing the analysis of 179 
transects, with 174 considered active, along an approximate-
ly 25 km shoreline. This study utilized Weighted Linear 
Regression Rate (WLR) and Linear Regression Rate (LRR) 
for long-term analysis (1991–2021) and End Point Rate 
(EPR) and Net Shoreline Movement (NSM) for short-term 
intervals (1991–2000, 2000–2010, and 2010–2021).

Long term observation

Long-term observation includes overall analyses over the 
past 30 years from 1991 to 2021. There are a number of 
statistical methods developed to analyze long-term observa-
tion (more than two years) involving LRR, WLR, SCE, etc.

Shoreline change envelope

The highest distance range, from 590.78 to 495.79, belongs 
to the eastern region of shorelines (Graph 1, Fig 4). The 
farthest distance from the baseline belongs to the range of 
transect ID from 170 to 150. The nearest distance from the 
graph lies to the most eastward crossed 170 transect Id 
(Graph 1, Fig. 4).

Rate of shoreline movement

The Weighted Linear Regression (WLR) method shows 
varying rates of shoreline change along the studied coastal 
stretch. The spatial and temporal assessment of shoreline 
change across zones AB (Western), BC (Central), and CD 
(Eastern) of the Bay of Bengal reveals distinct patterns of 
erosion and accretion over the 30-year study period 
(1991-2021).

Spatial variation in shoreline dynamics

As shown in Fig. 6, the Bay of Bengal coastline demon-
strates significant zonal heterogeneity in shoreline change. 
Zone AB (Western Zone) exhibits a mixed pattern with 
predominantly erosional transects (73.33%), particularly in 
its central segment, though some accretional areas 
(15.56%) appear toward the boundaries. Zone BC (Central 
Zone) represents the most severely eroded region, with an 
overwhelming 98.31% of transects classified as erosional 
and no accretional transects observed. In contrast, Zone 
CD (Eastern Zone) displays a markedly different pattern 
with a majority of accretional transects (54.29%) concen-
trated in its central portion, though erosional processes still 
affect 28.57% of the area.

Quantitative assessment of shoreline change

The magnitude of shoreline change varies considerably 
across the study area, as illustrated in Table III. Zone BC 
exhibits the highest mean erosion rate (-9.48 m/yr), followed 
by Zone AB (-5.87 m/yr), while Zone CD shows net accre-

tion with a mean shoreline change of +5.88 m/yr. Maximum 
shoreline retreat was recorded in Zone BC (-13.8 m/yr), 
closely followed by Zone AB (-13.12 m/yr). Conversely, 
Zone CD registered the most substantial accretion, with a 
maximum shoreline advance of +25.58 m/yr, highlighting the 
dynamic nature of this eastern segment.

Transect-wise analysis

Graph 2 provides a detailed transect-by-transect visualization 
of erosion versus deposition patterns. The predominance of 
erosional processes (red areas) is evident across transects 

1-120, corresponding primarily to Zones AB and BC. The 
pronounced erosional trough between transects 43-64 corre-
sponds to the area of maximum retreat in Zone AB.

A dramatic shift occurs around transect 127, where 
substantial depositional processes (green areas) begin to 
dominate, reaching peak values exceeding +20 m/yr at 
transects 148-152, which aligns with the central portion 
of Zone CD. Notable interruptions in the accretional 
pattern occur around transects 155-158 and 168-169, 
indicating localized erosional hotspots within the general-
ly accretional eastern zone.

Short term observation

Shoreline variation is observed for each 10-year period 
from 1991 to 2021. The Fig. 6 shows seaward and 
landward movement at Kuakata area, Bay of Bengal, 
across three periods: 1991–2000, 2000–2010, and 
2010–2021. Accretion dominates in the eastern region, 
while erosion is prevalent in the western section, particu-
larly post-2000. In terms of short-period observation, the 
number of green transects is increasing both eastward 
and It reaches a peak point in 2021 from both the east and 
west portions, as shown in graph. 3 and Fig. 6. The 
method for frequent analyses is followed by NSM (Net 
Shoreline Movement) and EPR (End Point Rate).

Quantitative analysis using the EPR (End Point Rate) method

The End Point Rate (EPR) analysis is presented across 
three time periods: 1991-2000, 2000-2010, and 2010-2021. 
The Graph 3 and the Table IV demonstrate predominantly 
erosional rates with peaks reaching more than -20 meters/-
year, though a notable accretion peak of about more than 
30 meters/year appears around transect 125 between 1991 
and 2000.

The 2000-2010 period exhibits similar erosional trends in the 
central part of the transects but displays a significant accre-
tion peak of nearly 40 meters/year around transect 125 (Table 
IV). The most recent period (2010-2021) shows a more 
variable pattern with two distinct accretion peaks: one at the 
beginning of the stretch (around transect 15) reaching 
approximately 35 meters/year (Graph 3), and another more 

pronounced peak near transect 175 reaching about 44.9 
meters/year, as shown in Table IV, and Graph 3. All three 
time periods demonstrate fluctuating patterns of shoreline 
change rates across the study area, with the magnitude and 
location of peaks varying between periods. The average 
rate of shoreline change shows a progressive shift from 
erosional dominance to accretional tendency, changing 
from -9.68 m/year (1991-2000) to -0.98 m/year 
(2000-2010), and finally to 2.1 m/year (2010-2021), in 
Table IV, which supports Fig. 8.

The number of erosional transects decreased over time 
from 123 (87.86%) in 1991-2000 to 99 (61.11%) in 
2010-2021, while depositional transects increased from 17 
(12.14%) to 63 (38.89%) during the same period. Maxi-
mum erosion rates decreased from -24.5 m/year to -14.64 
m/year, while maximum accretion rates increased from 
33.49 m/year to 44.9 m/year. The average erosional rates 
moderated from -13.11 m/year to -8.38 m/year, while 

average depositional rates increased from 15.09 m/year to 
18.56 m/year across the study period.

Computation of land loss and land gain

In Fig. 7, the analysis of shoreline movement (NSM) along 
the Bay of Bengal coast revealed distinct patterns of morpho-
logical changes across three temporal periods: 1991-2000, 

2000-2010, and 2010-2021. The shoreline exhibited both 
erosional and accretional trends, with varying intensities 
along different coastal segments. During 1991-2000, the 
coastline was predominantly characterized by erosion 
(indicated in red), particularly along the central portion of the 
study area.
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A small section in the eastern segment showed accretion 
(shown in green), while isolated stable areas (indicated in 
grey) were observed intermittently along the shoreline. The 
period 2000-2010 demonstrated a similar erosional pattern, 
though with some notable changes. The extent of erosion 
remained significant along the western and central sections, 
while the eastern portion showed increased accretional 
tendencies compared to the previous decade. The stable zones 
appeared to be more fragmentary during this period.

The most recent period (2010-2021) exhibited a continuation 
of the erosional trend along the western and central coastline. 
However, the eastern section displayed enhanced accretion, 
suggesting a persistent pattern of sediment accumulation in 
this area. The transition between erosional and accretional 
zones appeared more distinct compared to earlier periods. The 
analysis of shoreline movement (NSM) along the Bay of 
Bengal coast revealed significant morphological changes 
across three temporal periods: 1991-2000, 2000 2010, and 
2010-2021. The total affected area over the entire study 
period was 13.27 km², indicating substantial coastal dynamics 
in the region, as mentioned in Table V and Graph 4.

Expected shoreline position

According to Fig. 8, these historical trends manifest in 
distinct spatial patterns. The eastern portion, however, exhib-
its a significant landward movement, indicating persistent 
erosional processes despite the overall increase in previous 
erosional transects. 

This spatial variation in shoreline movement suggests that 
while accretional processes at the central zone have increased 
over time at a broader scale, localized erosional hotspots 
persist, particularly in the eastern section.

A remarkable morphological change along the coastline was 
observed with high fluctuation in some coastal zones from 
1991 to 2021. These physiological changes along the Bay 
of Bengal at Kuakata experienced both erosion and deposi-
tion, along with inward and outward movement of the 
shoreline. This study has highlighted both long-term obser-
vation over one period from 1991 to 2021 and short-term 
observation into three periods with a 10-year interval.

A comparable study conducted by Goswami et al. (2022) 
analyzed 1052 transects over a 55 km shoreline of Kuakata 
area, employing metrics such as EPR, NSM, and LRR 
while integrating SCE to assess shoreline variability over 
20 years from 2000 to 2020. Another study by Islam et al. 
(2014) found, in their study on Kutubdia Island, south 
eastern zone of Bangladesh, a strong correlation between 
EPR with WLR and LRR. However, their prime result of 
the transect rates is 0.29 m/yr, 2.91m/yr, and 3.53 for EPR, 
LRR, and WLR, respectively.

Similar studies conducted in the same location by Bushra 
et al.   (2021), their studies strongly supported our 
findings, though they chose a bit longer distance toward 
the north part from the Golachipa River at the eastern side. 
They got lost area of approximately 13.59 km2, over 30 
years from 1989 to 2020, likely, in my studies (Table V, 
Graph. 4) loss of area is more than 8 km2.

On the side of Red Crab Island in south eastern zone, it is 
literally being sedimentation from past years according to 
all previous publications and our research as well (Fig. 7). 
In this study, the shoreline dynamics along the Kuakata 

coast from 1991 to 2021 revealed significant erosion 
patterns, consistent with the findings of  Uddin & Niloy 
(2022). Their investigation results have clarified that red 
crab char, the eastern part of Kuakata beach, is more 
dynamic, demonstrating a vulnerable region and high 
SCE is 486m from  Uddin and Niloy (2022) and 490 in 
order to this report (Graph. 1, Fig. 4). My study found 
higher overall shoreline loss (~8.2 km²) and gain (~5.3 
km²) compared to their 6.11 km² loss and 3.26 km² gain. 
Differences may arise from data sources and methodolo-
gy, but both studies indicate a long-term erosional trend. 
On the side of statistical rate of shoreline variation, max, 
and min shoreline change rates regarding three zones 
(Table III) are homogenized by them, for instance, mean 
coastline variation -2.84 from our study and -3.11 in 
order to Uddin and Niloy (2022), similarly, highest accre-
tion rate from CD altered section shows insignificant 
difference as from my study is 25.58 and 23.88 from their 
study. Overall, it can be observed that no significant 
variation is found between the studies. 

Coastal districts are evaluated considering temporal shore-
line change analyses by Shamsuzzoha and Tofael (2023), 
and they analyzed the whole southern part of Bangladesh 
altogether, with a different approach, which poses 
challenges to making comparisons.

Shoreline forecasting has been limited, primarily for 
identifying critical areas. Rahman and Ferdous (2019) and 
Uddin & Niloy (2022) predicted shorelines for 2028 and 
2041, while this study forecasts 2050 (Fig. 8). Rahman and 
Ferdous (2019) analyzed the entire northern Bay of Bengal, 
making a Kalapara-specific evaluation difficult. Uddin and 
Niloy (2022) used DSAS beta forecasting, differing from 
this study’s equation-based model (equation_10), which 
aligns with observed short-term trends (1991–2021). The 
central part of Kuakata is predicted to shift seaward, which 
is in contrast findings of Uddin and Niloy (2022), while the 
eastern part will experience significant landward move-
ment, partially aligning with previous findings. However, 
uncertainties remain due to the long projection period (29 
years) and using a different prediction model, making the 
forecast probabilistic rather than absolute. 

Notably, the southeastern zone, which includes Red Crab 
Island (or char), appears to be highly dynamic, with signif-
icant landward shoreline movement indicating erosion. 
This region’s vulnerability may stem from its exposure to 
high-energy tidal forces and sediment-starved conditions, 

leading to the gradual loss of land (Uddin and Niloy, 
2022). The ecological significance of Red Crab Island, 
coupled with its role as a potential buffer against coastal 
erosion, makes it a critical area for focused conservation 
and monitoring efforts.

Conclusion

This study provides a comprehensive analysis of shoreline 
dynamics along the Kuakata coast, Bangladesh, over a 
30-year period (1991–2021). Using multi-temporal Land-
sat imagery and the Digital Shoreline Analysis System 
(DSAS), key findings revealed the highest erosion rate of 
-13.8 m/year in the central BC part and the highest accre-
tion rate of +25.58 m/year in the southeastern zone.

These findings underscore the dynamic nature of the 
Kuakata coastline, and due to our ignoring a direct field 
visit, we could not detect the exact reason among many 
probable reasons, including climate change, anthropogenic 
activities, tidal flux, etc. The study highlights the vulnera-
bility of coastal communities and infrastructure, necessi-
tating immediate action to mitigate erosion risks and 
promote sustainable development.

Future research should focus on discontinuous areas, deep 
social impact with accurate reasons, and detecting the 
exact reason by integrating higher-resolution satellite 
imagery, field validation, and hydrodynamic modeling.

Acknowledgement

Special thanks to the supervisor, Professor Mohammad 
Zahedur Rahman Chowdhury, for his close cooperation 
and guidance throughout, and parents for their mental and 
financial support.

References

Alam R, Saiful IM, Raqubul HM and Zahirul HKM (2014), 
Characteristics of hydrodynamic processes in the 
Meghna Estuary due to dynamic whirl action. IOSR 
Journal of Engineering 4: 3-39. Retrieved from 
http://www.iosrjen.org.

Anwar S, Rahman K and Bhuiyan AE (2022), Assessment of 
sea level and morphological changes along the eastern 
coast of Bangladesh, Journal of Marine Science and 
Engineering 10: 527. https:// doi.org/ 10.3390/ jmse 
10040527.

Fig. 6. Three periodical maps for understanding seaward
           and landward movement patterns

Table IV. Showing quantitative values of seaward (positive value) and landward (negative value) movement, over 
every ten-year period with an overall 30-year period

Descriptive Statistics Period (1991 
to 2000) 

Period 
(2000 to 

2010) 

Period (2010 
to 2021) 

Period 
(1991 to 

2021) 
Total number of 
Transects 140 136 162 174 

Average Rate -9.68 -0.98 2.10 -2.84 
Number of Erosional 
Transects 123 101 99 111 

Erosional Transects (%) 87.86 74.26 61.11 63.80 
Average Erosional Rates -13.11 -6.42 -8.38 -5.08 
Maximum Value Erosion -24.50 -15.49 -14.64 -13.80 
Number of Accretional 
Transects 17 35 63 45 

Accretional Transects (%) 12.14 25.74 38.89 25.86 
Average Accretional 
Rates 15.09 14.73 18.56 2.54 

Maximum Value 
Accretion 33.49 40.34 44.90 25.58 

Fig. 5. Map of three zones showing their transect rate



Bangladesh has increased from 144 million in 2011 to  
165.16 million in 2022, according to the latest population 
and housing census, and is projected to reach 175 million 
by 2024 (BBS, 2022; MacroTrends, 2024) with many 
living in low-lying floodplains vulnerable to monsoon 
flooding and tidal surges (BBS, 2011). The global average 
sea level rose by 0.21 meters from 1902 to 2015, but the 
Ganges Delta has experienced a much higher rate of 5–15 
mm per year (Mullick et al. 2019; Anwar et al. 2022).

Tidal dynamics play a critical role in shoreline changes, 
particularly in Bangladesh’s semi-diurnal tidal regime, where 
two high and two low tides occur daily (Rose and Bhaskaran, 
2017). They, additionally, mentioned that the average tidal 
range is 1.86 to 2.47 meters, transitioning from microtidal to 
mesotidal conditions. Tide data, sourced from UHSLC 
Stations (2024) and the Bangladesh Tide Table, is essential 
for accurate shoreline delineation, especially when consider-
ing neap and spring tides. Spring tides, representing the 
highest flood levels, and neap tides, the lowest, help avoid 
biases in shoreline change analysis (UHSLC, 2024).

Remote sensing and GIS technologies, such as Landsat imag-
ery and the Digital Shoreline Analysis System (DSAS), are 
essential for monitoring shoreline changes (Himmelstoss et 
al. 2021; Bushra et al. 2021). DSAS Tool, widely accepted 
for statistical analyses, includes a number of methods, 
including WLR (Weighted Linear Regression), LRR (Linear 
Regression Rate), NSM (Net Shoreline Movement), etc. 
Tools like Sentinel-2 imagery and water indices (e.g., NDWI, 
MNDWI) enable accurate shoreline extraction and analysis 
(Astiti et al. 2019; Fejjari et al. 2023). Studies have used 
these methods to analyze shoreline changes over decades, 
employing statistical techniques like linear regression to 
predict future trends (Crowell et al. 1997; Maiti and 
Bhattacharya, 2009). 

This study focuses on Kuakata Beach, a vulnerable area in 
south-central Bangladesh, to analyze shoreline changes over 
the past 30 years using Landsat imagery, GIS, and DSAS. 
The Landsat images for analysis are collected from USGS 
Earth Explorer (https://earthexplorer.usgs.gov). This 
research highlights the critical need for integrated geospatial 
analyses and field validation in understanding coastal 
dynamics. By integrating tide data and advanced remote 
sensing techniques, the study aims to provide insights into 
erosion, accretion, and shoreline stabilization processes, 
contributing to effective coastal management and policy 
development.

This research attempts to assess quantitative factors, includ-
ing annual shoreline movement rate, land loss and land gain 

over 30 years from 1991 to 2021, and find vulnerable and 
critical areas by predicted graphical shoreline visualization, 
by integrating GIS and Remote Sensing techniques.

Materials and methods

Study area

The dynamic coastal region of Bangladesh, situated at the 
southernmost area along the Bay of Bengal, is continuously 
deformed by multiple factors, including sediment accumula-
tion from three mighty rivers source; Ganges River, the 
Meghna River, and the Brahmaputra, wave action, etc. The 
deltaic stability majorly depends on the sediment deposition 
and becomes a shelter for biodiversity. Kuakata sea coastline 
is situated in the central zone of the coast of Bangladesh, 
which contains two major estuaries: the estuaries of Andar-
manik River at the western zone, and the estuaries of Gola-
chipa River at the eastern portion (Fig. 1). This study area 
belongs to Kalapara Upazila in the Patuakhali district, and it 
covers from 21° 48’ 33.23” N to 21° 52’ 16.03” N latitude 
and 90° 6’ 16.45” E to 90° 12’ 48.46” E longitudes (Fig. 1). 
The study area get experience the high- est temperature in 
January (25.1°C) and 33.8°C in April (BMD, 2020), with a 
mean annual rainfall of 2580 mm/year.

The variation of wave height can be observed based on two 
major season, during monsoon season, the wave height is 
typically around 1.8m, on the other hand, during the summer 
season from January to March, the wave height is very small; 
however, in general, the wave height stays 1m. Tides in the 
beach region are semi-diurnal, with daily tide levels ranging 
from 1 to 1.5 m (Uddin and Niloy, 2022).

Data source

Multi-temporal Landsat images, including TM, ETM+, and 
OLI/TRIS sensors, were utilized from 1990 to 2021 to 
analyze the shoreline dynamics of Kuakata. Specifically, four 
satellite images were selected at 10- Multi-temporal Landsat 
images, including TM, ETM+, and OLI/TRIS sensors, were 
utilized from 1990 to 2021 to analyze the shoreline dynamics 
of Kuakata. Specifically, four satellite images were selected 
year intervals from 1991 to 2021 (as shown in Table I). The 
images were acquired from reliable platforms such as USGS 
Earth Explorer (https://earthexplorer.usgs.gov) and GLOVIS  
(www.glovis.gov.us), ensuring a cloud cover of less than 5% 
to maintain data quality and accuracy (Islam et al. 2022).

Here, ECurrent   represents the total positional error for the 
current year, and ENext  represents the total positional error for 
the following year.  

All the metadata of satellite images are shown in Table I. 
To ensure accuracy in shoreline change detection, tide data 
were collected from two main sources: UHSLC (2024) and 
Bangladesh Tide Times (2024). The uncertainty in shore-
line position for each time interval was calculated using 
Equation 1 (Himmelstoss et al. 2021), and the values are 
added in Table 1.

Data preparation

Four key steps were used to study the changes along the 
shoreline. These steps included: (1) processing images 
with Arc-GIS, which involved correcting the images and 
calculating the NDWI to separate the images into water 

and non-water categories, (2) using Otsu’s Binary 
Thresholding to create a binary image and to outline the 
shoreline between water and non-water areas, (3) 
estimating the errors in the LANDSAT images, and (4) 
using DSAS to measure the statistics of the changes 
(Mullick et al. 2019). Shoreline change is measured 
using the WLR, EPR, and LRR methods. This study 
looked at the dividing line between land and water by 
using a binary threshold method. While separating the 
land pixels from the water pixels, the shoreline was 
identified without including the tidal wave. As a result, 
the land boundary line considered in this study is less 
likely to have been mistakenly caused by waves and 
tides. To calculate the rate of shoreline change, we 
looked at four different shorelines from the study area 
over 30 years: 1991, 2000, 2010, and 2021. Where incon-
sistency has been found, the shoreline has been digitized 
on a scale of 1:1000, which indicates a very high accura-
cy (Kabir and Tanvir, 2020). Table II displays major 
attributes regarding shorelines and baselines, including 
their length, uncertainty, date, etc.

The baseline has been taken 200 meters away from the most 
ancient shoreline position, and transect spacing has been 
chosen to be 150m, where the number of transects is 179 
along the coastline.

Image correction

Landsat imagery captures pixel values as digital numbers 

(DN), which, as highlighted by (Chander et al. 2009) 
Top-Of-Atmosphere (TOA, serve as the foundation for 
radiometric adjustments that convert raw satellite data into 
calibrated units like radiance or reflectance, ensuring 
consistency and precision for scientific analyses across 
varying sensors, times, and atmospheric conditions.

Chander et al. (2009) Top-Of-Atmosphere (TOA suggested 
changing DN to Radiance for images taken by the Landsat 
MSS, TM, and ETM sensors by using these equations (2, 3).

Where Lλ is the radiance of a spectral unit of“W/(m2 sr. μ
m),” Qcal is the pixel value of quantized calibrated [DN], 
Qcalmin is the Minimum Qcal, Qcalmax is the Maximum Qcal, 
LMINλ = Minimum Lλ scaled to Qcalmin [W/(m2 sr μm)], LMAXλ 
= Maximum Lλ scaled to Qcalmax [W/(m2 sr μm)]. The follow-
ing formula is used to convert radiance to ToA reflectance as

where Pλ = ToA reflectance [unitless], π = 3.14159, d is the 
Earth-Sun distance [astronomical units], ESUNλ is the mean 
exo-atmospheric solar irradiance [W/(m2 μm)], Ɵz is the 
Solar zenith angle [degrees].

For images from Landsat OLI, you can directly convert DN 
into ToA reflectance according to equation 4 (U.S. Geologi-
cal Survey, 2019).

where Mp is the reflectance multiplicative scaling factor for 
the band [unitless], and Ap is the reflectance additive scaling 
factor for the band [unitless]. The metadata file associated 
with LANDSAT imagery includes values for parameters such 
as Qcal, Qcalmax, Qcalmin, LMINλ, LMAXλ, Mp, Ap, and Ɵz (U.S. 
Geological Survey, 2019).

Digital index

The NDWI index is a useful tool for spotting water bodies on 
the Earth's surface. The NDWI was determined by using the 
green and near-infrared bands, as shown in equation 5 (Hos-
sain et al. 2021).

The NDWI can range from -1 to +1. The NDWI image 
typically indicates a good result for areas with water and a 
bad result for areas without water. To show the boundary 
between land and water as a coastline, we marked the land 
features with a 0 and the water features with a 1.

DSAS tool for shoreline change analysis

The Digital Shoreline Analysis System (DSAS) Version 6 is 
the latest standalone software developed for shoreline change 
analysis. Unlike its earlier versions, which operated as an 
extension of ArcGIS, DSAS v6 is no longer tied to ArcGIS, 
offering users more flexibility and independence from GIS 
software constraints. This modern version integrates a 
user-friendly interface with enhanced features, making it a 
powerful and comfortable tool for analyzing coastal changes. 
It requires pre-processed shoreline data and a baseline in 
GeoJSON format, ensuring standardized and efficient input 
handling. With updated algorithms and capabilities, DSAS 
v6 delivers accurate results, making it ideal for shoreline 
management and research applications. It estimates common 
uncertainty 10 and provides 13 types of statistical results that 
are so effective for analysts.

Varieties of Statistical Methods applied for understanding the 
Rate of Shoreline Movement

The Shoreline Change Envelope (SCE) and the rate of shore-
line change were measured using the EPR, NSM, LRR, and 
WLR methods as outlined in the Digital Shoreline Analysis 
System (DSAS). These measurements are commonly used in 
statistics that track changes along the shoreline.

The End Point Rate (EPR) is the best method when it is 
calculated using just two shoreline positions at different 
times (Sarwar and Woodroffe, 2013). The EPR method calcu-
lates how much the shoreline changes by dividing the 
distance by the number of years, as shown in equation six.

The distance (m) between the newest and oldest shoreline is 
represented by D1 − D2, and the time gap (years) between the 
two shoreline positions is shown as t1 − t0.

On the other hand, LRR (Linear regression method) is more 
appropriate when the number of shorelines exceeds two. 
OBrien et al. (2014) utilized the following LRR formula 
(Equation 7) for long-term shoreline analysis

Y = a + bX              (7)

In this equation, y represents the distance (in meters) from the 
baseline. The variable is the starting point of y, while b shows the 
slope of the line that describes how the shoreline changes over time.  

The variable x stands for the shoreline position in various years. 
A ±5 m uncertainty and a 95% confidence interval were set as 
default parameters for statistical calculations. Linear regression 
involves several key aspects: (1) it uses all available data, no 
matter if there are changes in trends or accuracy, (2) it relies 
entirely on calculations, (3) it follows recognized statistical 
principles, and (4) it is simple to use (Crowell et al. 2018). The 
linear regression method can be affected by outliers and often 
underestimates how quickly things change compared to other 
statistics, like EPR (Dolan, 1991). 

The Weighted Linear Regression (WLR) method employs a 
linear regression approach similar to the Linear Regression 
Rate (LRR) method but incorporates a weighting factor 
(Equation 8) applied to Equation seven to account for 
positional uncertainty (Himmelstoss et al. 2021).

In the DSAS tool, Hossain et al. (2021) utilized the R2 value 
to be determined for LRR and WLR methods as presented in 
Eq.9, and it represents the accuracy and perfection between 
linear regression rate and weighted linear regression rate.

Where y = distance from baseline and known shoreline 
position, y′= predicted value of the best-fit regression line 
according to the equation, y = mean of the shoreline position 
data. The R-squared value, denoted as LR2, evaluates how 
well the shoreline position data fits the linear regression line.

Forecasting model

This model (Equation 10) calculates the adjusted shoreline 
position by incorporating the rate of shoreline movement 
(LRR) over a given time period. It uses the original inter-
sect point position and adjusts it by multiplying the Linear 
Regression Rate (LRR), which represents the rate of 
shoreline change per year, by the time elapsed. This 
adjustment accounts for both erosion (negative LRR) and 
accretion (positive LRR), ensuring that the shoreline's 
movement landward or seaward is accurately represented 
(Crowell et al. 1997). The model can be applied separately 
to the X and Y coordinates, allowing for a comprehensive 
adjustment in both directions, and is useful in predicting 
future shoreline positions or validating trends of coastal 
change observed over time.

Where:

Xnew  : Adjusted shoreline position.
Xoriginal  : Original intersect point position.
LRR: Linear Regression Rate (rate of change in shoreline 
position per year).
Δt represents the time span.

Validation of the Shoreline Prediction Model

The root mean square error is the square root of the variance 
of the residuals. It shows how well the model fits the data, 
i.e., how close the actual data points are to what the model 
predicted Lower RMSE values indicate a better fit, while 
higher values mean there is more error. The RMSE was used 
to check how well the actual coastline change rates matched 
the predicted ones. In shoreline observation, Uddin and Niloy 
(2022) assessed the calculated model and satellite observa-
tions of the shoreline change rate for 2021 by using RMSE 
values (Equation 11). 

Land loss and land gain computation

The areas identified as water or non-water in the images were 
compared to find out the values of land loss and gain, using 
the ArcGIS raster calculator tool (Mullick et al. 2019). The 
changes in land, both lost and gained, were measured over 
four years in a row, covering a total period of 30 years from 
1991 to 2021.

Results and discussion

The general view begins by describing the analysis of 179 
transects, with 174 considered active, along an approximate-
ly 25 km shoreline. This study utilized Weighted Linear 
Regression Rate (WLR) and Linear Regression Rate (LRR) 
for long-term analysis (1991–2021) and End Point Rate 
(EPR) and Net Shoreline Movement (NSM) for short-term 
intervals (1991–2000, 2000–2010, and 2010–2021).

Long term observation

Long-term observation includes overall analyses over the 
past 30 years from 1991 to 2021. There are a number of 
statistical methods developed to analyze long-term observa-
tion (more than two years) involving LRR, WLR, SCE, etc.

Shoreline change envelope

The highest distance range, from 590.78 to 495.79, belongs 
to the eastern region of shorelines (Graph 1, Fig 4). The 
farthest distance from the baseline belongs to the range of 
transect ID from 170 to 150. The nearest distance from the 
graph lies to the most eastward crossed 170 transect Id 
(Graph 1, Fig. 4).

Rate of shoreline movement

The Weighted Linear Regression (WLR) method shows 
varying rates of shoreline change along the studied coastal 
stretch. The spatial and temporal assessment of shoreline 
change across zones AB (Western), BC (Central), and CD 
(Eastern) of the Bay of Bengal reveals distinct patterns of 
erosion and accretion over the 30-year study period 
(1991-2021).

Spatial variation in shoreline dynamics

As shown in Fig. 6, the Bay of Bengal coastline demon-
strates significant zonal heterogeneity in shoreline change. 
Zone AB (Western Zone) exhibits a mixed pattern with 
predominantly erosional transects (73.33%), particularly in 
its central segment, though some accretional areas 
(15.56%) appear toward the boundaries. Zone BC (Central 
Zone) represents the most severely eroded region, with an 
overwhelming 98.31% of transects classified as erosional 
and no accretional transects observed. In contrast, Zone 
CD (Eastern Zone) displays a markedly different pattern 
with a majority of accretional transects (54.29%) concen-
trated in its central portion, though erosional processes still 
affect 28.57% of the area.

Quantitative assessment of shoreline change

The magnitude of shoreline change varies considerably 
across the study area, as illustrated in Table III. Zone BC 
exhibits the highest mean erosion rate (-9.48 m/yr), followed 
by Zone AB (-5.87 m/yr), while Zone CD shows net accre-

tion with a mean shoreline change of +5.88 m/yr. Maximum 
shoreline retreat was recorded in Zone BC (-13.8 m/yr), 
closely followed by Zone AB (-13.12 m/yr). Conversely, 
Zone CD registered the most substantial accretion, with a 
maximum shoreline advance of +25.58 m/yr, highlighting the 
dynamic nature of this eastern segment.

Transect-wise analysis

Graph 2 provides a detailed transect-by-transect visualization 
of erosion versus deposition patterns. The predominance of 
erosional processes (red areas) is evident across transects 

1-120, corresponding primarily to Zones AB and BC. The 
pronounced erosional trough between transects 43-64 corre-
sponds to the area of maximum retreat in Zone AB.

A dramatic shift occurs around transect 127, where 
substantial depositional processes (green areas) begin to 
dominate, reaching peak values exceeding +20 m/yr at 
transects 148-152, which aligns with the central portion 
of Zone CD. Notable interruptions in the accretional 
pattern occur around transects 155-158 and 168-169, 
indicating localized erosional hotspots within the general-
ly accretional eastern zone.

Short term observation

Shoreline variation is observed for each 10-year period 
from 1991 to 2021. The Fig. 6 shows seaward and 
landward movement at Kuakata area, Bay of Bengal, 
across three periods: 1991–2000, 2000–2010, and 
2010–2021. Accretion dominates in the eastern region, 
while erosion is prevalent in the western section, particu-
larly post-2000. In terms of short-period observation, the 
number of green transects is increasing both eastward 
and It reaches a peak point in 2021 from both the east and 
west portions, as shown in graph. 3 and Fig. 6. The 
method for frequent analyses is followed by NSM (Net 
Shoreline Movement) and EPR (End Point Rate).

Quantitative analysis using the EPR (End Point Rate) method

The End Point Rate (EPR) analysis is presented across 
three time periods: 1991-2000, 2000-2010, and 2010-2021. 
The Graph 3 and the Table IV demonstrate predominantly 
erosional rates with peaks reaching more than -20 meters/-
year, though a notable accretion peak of about more than 
30 meters/year appears around transect 125 between 1991 
and 2000.

The 2000-2010 period exhibits similar erosional trends in the 
central part of the transects but displays a significant accre-
tion peak of nearly 40 meters/year around transect 125 (Table 
IV). The most recent period (2010-2021) shows a more 
variable pattern with two distinct accretion peaks: one at the 
beginning of the stretch (around transect 15) reaching 
approximately 35 meters/year (Graph 3), and another more 

pronounced peak near transect 175 reaching about 44.9 
meters/year, as shown in Table IV, and Graph 3. All three 
time periods demonstrate fluctuating patterns of shoreline 
change rates across the study area, with the magnitude and 
location of peaks varying between periods. The average 
rate of shoreline change shows a progressive shift from 
erosional dominance to accretional tendency, changing 
from -9.68 m/year (1991-2000) to -0.98 m/year 
(2000-2010), and finally to 2.1 m/year (2010-2021), in 
Table IV, which supports Fig. 8.

The number of erosional transects decreased over time 
from 123 (87.86%) in 1991-2000 to 99 (61.11%) in 
2010-2021, while depositional transects increased from 17 
(12.14%) to 63 (38.89%) during the same period. Maxi-
mum erosion rates decreased from -24.5 m/year to -14.64 
m/year, while maximum accretion rates increased from 
33.49 m/year to 44.9 m/year. The average erosional rates 
moderated from -13.11 m/year to -8.38 m/year, while 

average depositional rates increased from 15.09 m/year to 
18.56 m/year across the study period.

Computation of land loss and land gain

In Fig. 7, the analysis of shoreline movement (NSM) along 
the Bay of Bengal coast revealed distinct patterns of morpho-
logical changes across three temporal periods: 1991-2000, 

2000-2010, and 2010-2021. The shoreline exhibited both 
erosional and accretional trends, with varying intensities 
along different coastal segments. During 1991-2000, the 
coastline was predominantly characterized by erosion 
(indicated in red), particularly along the central portion of the 
study area.
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A small section in the eastern segment showed accretion 
(shown in green), while isolated stable areas (indicated in 
grey) were observed intermittently along the shoreline. The 
period 2000-2010 demonstrated a similar erosional pattern, 
though with some notable changes. The extent of erosion 
remained significant along the western and central sections, 
while the eastern portion showed increased accretional 
tendencies compared to the previous decade. The stable zones 
appeared to be more fragmentary during this period.

The most recent period (2010-2021) exhibited a continuation 
of the erosional trend along the western and central coastline. 
However, the eastern section displayed enhanced accretion, 
suggesting a persistent pattern of sediment accumulation in 
this area. The transition between erosional and accretional 
zones appeared more distinct compared to earlier periods. The 
analysis of shoreline movement (NSM) along the Bay of 
Bengal coast revealed significant morphological changes 
across three temporal periods: 1991-2000, 2000 2010, and 
2010-2021. The total affected area over the entire study 
period was 13.27 km², indicating substantial coastal dynamics 
in the region, as mentioned in Table V and Graph 4.

Expected shoreline position

According to Fig. 8, these historical trends manifest in 
distinct spatial patterns. The eastern portion, however, exhib-
its a significant landward movement, indicating persistent 
erosional processes despite the overall increase in previous 
erosional transects. 

This spatial variation in shoreline movement suggests that 
while accretional processes at the central zone have increased 
over time at a broader scale, localized erosional hotspots 
persist, particularly in the eastern section.

A remarkable morphological change along the coastline was 
observed with high fluctuation in some coastal zones from 
1991 to 2021. These physiological changes along the Bay 
of Bengal at Kuakata experienced both erosion and deposi-
tion, along with inward and outward movement of the 
shoreline. This study has highlighted both long-term obser-
vation over one period from 1991 to 2021 and short-term 
observation into three periods with a 10-year interval.

A comparable study conducted by Goswami et al. (2022) 
analyzed 1052 transects over a 55 km shoreline of Kuakata 
area, employing metrics such as EPR, NSM, and LRR 
while integrating SCE to assess shoreline variability over 
20 years from 2000 to 2020. Another study by Islam et al. 
(2014) found, in their study on Kutubdia Island, south 
eastern zone of Bangladesh, a strong correlation between 
EPR with WLR and LRR. However, their prime result of 
the transect rates is 0.29 m/yr, 2.91m/yr, and 3.53 for EPR, 
LRR, and WLR, respectively.

Similar studies conducted in the same location by Bushra 
et al.   (2021), their studies strongly supported our 
findings, though they chose a bit longer distance toward 
the north part from the Golachipa River at the eastern side. 
They got lost area of approximately 13.59 km2, over 30 
years from 1989 to 2020, likely, in my studies (Table V, 
Graph. 4) loss of area is more than 8 km2.

On the side of Red Crab Island in south eastern zone, it is 
literally being sedimentation from past years according to 
all previous publications and our research as well (Fig. 7). 
In this study, the shoreline dynamics along the Kuakata 

coast from 1991 to 2021 revealed significant erosion 
patterns, consistent with the findings of  Uddin & Niloy 
(2022). Their investigation results have clarified that red 
crab char, the eastern part of Kuakata beach, is more 
dynamic, demonstrating a vulnerable region and high 
SCE is 486m from  Uddin and Niloy (2022) and 490 in 
order to this report (Graph. 1, Fig. 4). My study found 
higher overall shoreline loss (~8.2 km²) and gain (~5.3 
km²) compared to their 6.11 km² loss and 3.26 km² gain. 
Differences may arise from data sources and methodolo-
gy, but both studies indicate a long-term erosional trend. 
On the side of statistical rate of shoreline variation, max, 
and min shoreline change rates regarding three zones 
(Table III) are homogenized by them, for instance, mean 
coastline variation -2.84 from our study and -3.11 in 
order to Uddin and Niloy (2022), similarly, highest accre-
tion rate from CD altered section shows insignificant 
difference as from my study is 25.58 and 23.88 from their 
study. Overall, it can be observed that no significant 
variation is found between the studies. 

Coastal districts are evaluated considering temporal shore-
line change analyses by Shamsuzzoha and Tofael (2023), 
and they analyzed the whole southern part of Bangladesh 
altogether, with a different approach, which poses 
challenges to making comparisons.

Shoreline forecasting has been limited, primarily for 
identifying critical areas. Rahman and Ferdous (2019) and 
Uddin & Niloy (2022) predicted shorelines for 2028 and 
2041, while this study forecasts 2050 (Fig. 8). Rahman and 
Ferdous (2019) analyzed the entire northern Bay of Bengal, 
making a Kalapara-specific evaluation difficult. Uddin and 
Niloy (2022) used DSAS beta forecasting, differing from 
this study’s equation-based model (equation_10), which 
aligns with observed short-term trends (1991–2021). The 
central part of Kuakata is predicted to shift seaward, which 
is in contrast findings of Uddin and Niloy (2022), while the 
eastern part will experience significant landward move-
ment, partially aligning with previous findings. However, 
uncertainties remain due to the long projection period (29 
years) and using a different prediction model, making the 
forecast probabilistic rather than absolute. 

Notably, the southeastern zone, which includes Red Crab 
Island (or char), appears to be highly dynamic, with signif-
icant landward shoreline movement indicating erosion. 
This region’s vulnerability may stem from its exposure to 
high-energy tidal forces and sediment-starved conditions, 

leading to the gradual loss of land (Uddin and Niloy, 
2022). The ecological significance of Red Crab Island, 
coupled with its role as a potential buffer against coastal 
erosion, makes it a critical area for focused conservation 
and monitoring efforts.

Conclusion

This study provides a comprehensive analysis of shoreline 
dynamics along the Kuakata coast, Bangladesh, over a 
30-year period (1991–2021). Using multi-temporal Land-
sat imagery and the Digital Shoreline Analysis System 
(DSAS), key findings revealed the highest erosion rate of 
-13.8 m/year in the central BC part and the highest accre-
tion rate of +25.58 m/year in the southeastern zone.

These findings underscore the dynamic nature of the 
Kuakata coastline, and due to our ignoring a direct field 
visit, we could not detect the exact reason among many 
probable reasons, including climate change, anthropogenic 
activities, tidal flux, etc. The study highlights the vulnera-
bility of coastal communities and infrastructure, necessi-
tating immediate action to mitigate erosion risks and 
promote sustainable development.

Future research should focus on discontinuous areas, deep 
social impact with accurate reasons, and detecting the 
exact reason by integrating higher-resolution satellite 
imagery, field validation, and hydrodynamic modeling.
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Graph 3. Per year positional variation of three shorelines
             along transects

Fig. 7. Three maps of shorelines over three times showing
           their sediment loss and gain

Table V. Quantitative values of sedimentation and sediment removal

Descriptive Statistics Period (1991 to 
2000) 

Period (2000 to 
2010) 

Period (2010 to 
2021) Total 

Sum of Area (Km2) 4.60 2.85 5.81 13.27 
Average of Area(Km2) 0.03 0.02 0.03 0.09 
Erosional Area(Km2) 3.87 1.71 2.54 8.13 
Mean Erosional Area(Km2) 0.03 0.01 0.02 0.07 
Accretional Area(Km2) 0.72 1.14 3.27 5.14 
Mean Accretional Area(Km2) 0.04 0.03 0.051 0.13 
Non-transectional Area(Km2) 0.0007 0.0001 0.00003 0.0009 



Bangladesh has increased from 144 million in 2011 to  
165.16 million in 2022, according to the latest population 
and housing census, and is projected to reach 175 million 
by 2024 (BBS, 2022; MacroTrends, 2024) with many 
living in low-lying floodplains vulnerable to monsoon 
flooding and tidal surges (BBS, 2011). The global average 
sea level rose by 0.21 meters from 1902 to 2015, but the 
Ganges Delta has experienced a much higher rate of 5–15 
mm per year (Mullick et al. 2019; Anwar et al. 2022).

Tidal dynamics play a critical role in shoreline changes, 
particularly in Bangladesh’s semi-diurnal tidal regime, where 
two high and two low tides occur daily (Rose and Bhaskaran, 
2017). They, additionally, mentioned that the average tidal 
range is 1.86 to 2.47 meters, transitioning from microtidal to 
mesotidal conditions. Tide data, sourced from UHSLC 
Stations (2024) and the Bangladesh Tide Table, is essential 
for accurate shoreline delineation, especially when consider-
ing neap and spring tides. Spring tides, representing the 
highest flood levels, and neap tides, the lowest, help avoid 
biases in shoreline change analysis (UHSLC, 2024).

Remote sensing and GIS technologies, such as Landsat imag-
ery and the Digital Shoreline Analysis System (DSAS), are 
essential for monitoring shoreline changes (Himmelstoss et 
al. 2021; Bushra et al. 2021). DSAS Tool, widely accepted 
for statistical analyses, includes a number of methods, 
including WLR (Weighted Linear Regression), LRR (Linear 
Regression Rate), NSM (Net Shoreline Movement), etc. 
Tools like Sentinel-2 imagery and water indices (e.g., NDWI, 
MNDWI) enable accurate shoreline extraction and analysis 
(Astiti et al. 2019; Fejjari et al. 2023). Studies have used 
these methods to analyze shoreline changes over decades, 
employing statistical techniques like linear regression to 
predict future trends (Crowell et al. 1997; Maiti and 
Bhattacharya, 2009). 

This study focuses on Kuakata Beach, a vulnerable area in 
south-central Bangladesh, to analyze shoreline changes over 
the past 30 years using Landsat imagery, GIS, and DSAS. 
The Landsat images for analysis are collected from USGS 
Earth Explorer (https://earthexplorer.usgs.gov). This 
research highlights the critical need for integrated geospatial 
analyses and field validation in understanding coastal 
dynamics. By integrating tide data and advanced remote 
sensing techniques, the study aims to provide insights into 
erosion, accretion, and shoreline stabilization processes, 
contributing to effective coastal management and policy 
development.

This research attempts to assess quantitative factors, includ-
ing annual shoreline movement rate, land loss and land gain 

over 30 years from 1991 to 2021, and find vulnerable and 
critical areas by predicted graphical shoreline visualization, 
by integrating GIS and Remote Sensing techniques.

Materials and methods

Study area

The dynamic coastal region of Bangladesh, situated at the 
southernmost area along the Bay of Bengal, is continuously 
deformed by multiple factors, including sediment accumula-
tion from three mighty rivers source; Ganges River, the 
Meghna River, and the Brahmaputra, wave action, etc. The 
deltaic stability majorly depends on the sediment deposition 
and becomes a shelter for biodiversity. Kuakata sea coastline 
is situated in the central zone of the coast of Bangladesh, 
which contains two major estuaries: the estuaries of Andar-
manik River at the western zone, and the estuaries of Gola-
chipa River at the eastern portion (Fig. 1). This study area 
belongs to Kalapara Upazila in the Patuakhali district, and it 
covers from 21° 48’ 33.23” N to 21° 52’ 16.03” N latitude 
and 90° 6’ 16.45” E to 90° 12’ 48.46” E longitudes (Fig. 1). 
The study area get experience the high- est temperature in 
January (25.1°C) and 33.8°C in April (BMD, 2020), with a 
mean annual rainfall of 2580 mm/year.

The variation of wave height can be observed based on two 
major season, during monsoon season, the wave height is 
typically around 1.8m, on the other hand, during the summer 
season from January to March, the wave height is very small; 
however, in general, the wave height stays 1m. Tides in the 
beach region are semi-diurnal, with daily tide levels ranging 
from 1 to 1.5 m (Uddin and Niloy, 2022).

Data source

Multi-temporal Landsat images, including TM, ETM+, and 
OLI/TRIS sensors, were utilized from 1990 to 2021 to 
analyze the shoreline dynamics of Kuakata. Specifically, four 
satellite images were selected at 10- Multi-temporal Landsat 
images, including TM, ETM+, and OLI/TRIS sensors, were 
utilized from 1990 to 2021 to analyze the shoreline dynamics 
of Kuakata. Specifically, four satellite images were selected 
year intervals from 1991 to 2021 (as shown in Table I). The 
images were acquired from reliable platforms such as USGS 
Earth Explorer (https://earthexplorer.usgs.gov) and GLOVIS  
(www.glovis.gov.us), ensuring a cloud cover of less than 5% 
to maintain data quality and accuracy (Islam et al. 2022).

Here, ECurrent   represents the total positional error for the 
current year, and ENext  represents the total positional error for 
the following year.  

All the metadata of satellite images are shown in Table I. 
To ensure accuracy in shoreline change detection, tide data 
were collected from two main sources: UHSLC (2024) and 
Bangladesh Tide Times (2024). The uncertainty in shore-
line position for each time interval was calculated using 
Equation 1 (Himmelstoss et al. 2021), and the values are 
added in Table 1.

Data preparation

Four key steps were used to study the changes along the 
shoreline. These steps included: (1) processing images 
with Arc-GIS, which involved correcting the images and 
calculating the NDWI to separate the images into water 

and non-water categories, (2) using Otsu’s Binary 
Thresholding to create a binary image and to outline the 
shoreline between water and non-water areas, (3) 
estimating the errors in the LANDSAT images, and (4) 
using DSAS to measure the statistics of the changes 
(Mullick et al. 2019). Shoreline change is measured 
using the WLR, EPR, and LRR methods. This study 
looked at the dividing line between land and water by 
using a binary threshold method. While separating the 
land pixels from the water pixels, the shoreline was 
identified without including the tidal wave. As a result, 
the land boundary line considered in this study is less 
likely to have been mistakenly caused by waves and 
tides. To calculate the rate of shoreline change, we 
looked at four different shorelines from the study area 
over 30 years: 1991, 2000, 2010, and 2021. Where incon-
sistency has been found, the shoreline has been digitized 
on a scale of 1:1000, which indicates a very high accura-
cy (Kabir and Tanvir, 2020). Table II displays major 
attributes regarding shorelines and baselines, including 
their length, uncertainty, date, etc.

The baseline has been taken 200 meters away from the most 
ancient shoreline position, and transect spacing has been 
chosen to be 150m, where the number of transects is 179 
along the coastline.

Image correction

Landsat imagery captures pixel values as digital numbers 

(DN), which, as highlighted by (Chander et al. 2009) 
Top-Of-Atmosphere (TOA, serve as the foundation for 
radiometric adjustments that convert raw satellite data into 
calibrated units like radiance or reflectance, ensuring 
consistency and precision for scientific analyses across 
varying sensors, times, and atmospheric conditions.

Chander et al. (2009) Top-Of-Atmosphere (TOA suggested 
changing DN to Radiance for images taken by the Landsat 
MSS, TM, and ETM sensors by using these equations (2, 3).

Where Lλ is the radiance of a spectral unit of“W/(m2 sr. μ
m),” Qcal is the pixel value of quantized calibrated [DN], 
Qcalmin is the Minimum Qcal, Qcalmax is the Maximum Qcal, 
LMINλ = Minimum Lλ scaled to Qcalmin [W/(m2 sr μm)], LMAXλ 
= Maximum Lλ scaled to Qcalmax [W/(m2 sr μm)]. The follow-
ing formula is used to convert radiance to ToA reflectance as

where Pλ = ToA reflectance [unitless], π = 3.14159, d is the 
Earth-Sun distance [astronomical units], ESUNλ is the mean 
exo-atmospheric solar irradiance [W/(m2 μm)], Ɵz is the 
Solar zenith angle [degrees].

For images from Landsat OLI, you can directly convert DN 
into ToA reflectance according to equation 4 (U.S. Geologi-
cal Survey, 2019).

where Mp is the reflectance multiplicative scaling factor for 
the band [unitless], and Ap is the reflectance additive scaling 
factor for the band [unitless]. The metadata file associated 
with LANDSAT imagery includes values for parameters such 
as Qcal, Qcalmax, Qcalmin, LMINλ, LMAXλ, Mp, Ap, and Ɵz (U.S. 
Geological Survey, 2019).

Digital index

The NDWI index is a useful tool for spotting water bodies on 
the Earth's surface. The NDWI was determined by using the 
green and near-infrared bands, as shown in equation 5 (Hos-
sain et al. 2021).

The NDWI can range from -1 to +1. The NDWI image 
typically indicates a good result for areas with water and a 
bad result for areas without water. To show the boundary 
between land and water as a coastline, we marked the land 
features with a 0 and the water features with a 1.

DSAS tool for shoreline change analysis

The Digital Shoreline Analysis System (DSAS) Version 6 is 
the latest standalone software developed for shoreline change 
analysis. Unlike its earlier versions, which operated as an 
extension of ArcGIS, DSAS v6 is no longer tied to ArcGIS, 
offering users more flexibility and independence from GIS 
software constraints. This modern version integrates a 
user-friendly interface with enhanced features, making it a 
powerful and comfortable tool for analyzing coastal changes. 
It requires pre-processed shoreline data and a baseline in 
GeoJSON format, ensuring standardized and efficient input 
handling. With updated algorithms and capabilities, DSAS 
v6 delivers accurate results, making it ideal for shoreline 
management and research applications. It estimates common 
uncertainty 10 and provides 13 types of statistical results that 
are so effective for analysts.

Varieties of Statistical Methods applied for understanding the 
Rate of Shoreline Movement

The Shoreline Change Envelope (SCE) and the rate of shore-
line change were measured using the EPR, NSM, LRR, and 
WLR methods as outlined in the Digital Shoreline Analysis 
System (DSAS). These measurements are commonly used in 
statistics that track changes along the shoreline.

The End Point Rate (EPR) is the best method when it is 
calculated using just two shoreline positions at different 
times (Sarwar and Woodroffe, 2013). The EPR method calcu-
lates how much the shoreline changes by dividing the 
distance by the number of years, as shown in equation six.

The distance (m) between the newest and oldest shoreline is 
represented by D1 − D2, and the time gap (years) between the 
two shoreline positions is shown as t1 − t0.

On the other hand, LRR (Linear regression method) is more 
appropriate when the number of shorelines exceeds two. 
OBrien et al. (2014) utilized the following LRR formula 
(Equation 7) for long-term shoreline analysis

Y = a + bX              (7)

In this equation, y represents the distance (in meters) from the 
baseline. The variable is the starting point of y, while b shows the 
slope of the line that describes how the shoreline changes over time.  

The variable x stands for the shoreline position in various years. 
A ±5 m uncertainty and a 95% confidence interval were set as 
default parameters for statistical calculations. Linear regression 
involves several key aspects: (1) it uses all available data, no 
matter if there are changes in trends or accuracy, (2) it relies 
entirely on calculations, (3) it follows recognized statistical 
principles, and (4) it is simple to use (Crowell et al. 2018). The 
linear regression method can be affected by outliers and often 
underestimates how quickly things change compared to other 
statistics, like EPR (Dolan, 1991). 

The Weighted Linear Regression (WLR) method employs a 
linear regression approach similar to the Linear Regression 
Rate (LRR) method but incorporates a weighting factor 
(Equation 8) applied to Equation seven to account for 
positional uncertainty (Himmelstoss et al. 2021).

In the DSAS tool, Hossain et al. (2021) utilized the R2 value 
to be determined for LRR and WLR methods as presented in 
Eq.9, and it represents the accuracy and perfection between 
linear regression rate and weighted linear regression rate.

Where y = distance from baseline and known shoreline 
position, y′= predicted value of the best-fit regression line 
according to the equation, y = mean of the shoreline position 
data. The R-squared value, denoted as LR2, evaluates how 
well the shoreline position data fits the linear regression line.

Forecasting model

This model (Equation 10) calculates the adjusted shoreline 
position by incorporating the rate of shoreline movement 
(LRR) over a given time period. It uses the original inter-
sect point position and adjusts it by multiplying the Linear 
Regression Rate (LRR), which represents the rate of 
shoreline change per year, by the time elapsed. This 
adjustment accounts for both erosion (negative LRR) and 
accretion (positive LRR), ensuring that the shoreline's 
movement landward or seaward is accurately represented 
(Crowell et al. 1997). The model can be applied separately 
to the X and Y coordinates, allowing for a comprehensive 
adjustment in both directions, and is useful in predicting 
future shoreline positions or validating trends of coastal 
change observed over time.

Where:

Xnew  : Adjusted shoreline position.
Xoriginal  : Original intersect point position.
LRR: Linear Regression Rate (rate of change in shoreline 
position per year).
Δt represents the time span.

Validation of the Shoreline Prediction Model

The root mean square error is the square root of the variance 
of the residuals. It shows how well the model fits the data, 
i.e., how close the actual data points are to what the model 
predicted Lower RMSE values indicate a better fit, while 
higher values mean there is more error. The RMSE was used 
to check how well the actual coastline change rates matched 
the predicted ones. In shoreline observation, Uddin and Niloy 
(2022) assessed the calculated model and satellite observa-
tions of the shoreline change rate for 2021 by using RMSE 
values (Equation 11). 

Land loss and land gain computation

The areas identified as water or non-water in the images were 
compared to find out the values of land loss and gain, using 
the ArcGIS raster calculator tool (Mullick et al. 2019). The 
changes in land, both lost and gained, were measured over 
four years in a row, covering a total period of 30 years from 
1991 to 2021.

Results and discussion

The general view begins by describing the analysis of 179 
transects, with 174 considered active, along an approximate-
ly 25 km shoreline. This study utilized Weighted Linear 
Regression Rate (WLR) and Linear Regression Rate (LRR) 
for long-term analysis (1991–2021) and End Point Rate 
(EPR) and Net Shoreline Movement (NSM) for short-term 
intervals (1991–2000, 2000–2010, and 2010–2021).

Long term observation

Long-term observation includes overall analyses over the 
past 30 years from 1991 to 2021. There are a number of 
statistical methods developed to analyze long-term observa-
tion (more than two years) involving LRR, WLR, SCE, etc.

Shoreline change envelope

The highest distance range, from 590.78 to 495.79, belongs 
to the eastern region of shorelines (Graph 1, Fig 4). The 
farthest distance from the baseline belongs to the range of 
transect ID from 170 to 150. The nearest distance from the 
graph lies to the most eastward crossed 170 transect Id 
(Graph 1, Fig. 4).

Rate of shoreline movement

The Weighted Linear Regression (WLR) method shows 
varying rates of shoreline change along the studied coastal 
stretch. The spatial and temporal assessment of shoreline 
change across zones AB (Western), BC (Central), and CD 
(Eastern) of the Bay of Bengal reveals distinct patterns of 
erosion and accretion over the 30-year study period 
(1991-2021).

Spatial variation in shoreline dynamics

As shown in Fig. 6, the Bay of Bengal coastline demon-
strates significant zonal heterogeneity in shoreline change. 
Zone AB (Western Zone) exhibits a mixed pattern with 
predominantly erosional transects (73.33%), particularly in 
its central segment, though some accretional areas 
(15.56%) appear toward the boundaries. Zone BC (Central 
Zone) represents the most severely eroded region, with an 
overwhelming 98.31% of transects classified as erosional 
and no accretional transects observed. In contrast, Zone 
CD (Eastern Zone) displays a markedly different pattern 
with a majority of accretional transects (54.29%) concen-
trated in its central portion, though erosional processes still 
affect 28.57% of the area.

Quantitative assessment of shoreline change

The magnitude of shoreline change varies considerably 
across the study area, as illustrated in Table III. Zone BC 
exhibits the highest mean erosion rate (-9.48 m/yr), followed 
by Zone AB (-5.87 m/yr), while Zone CD shows net accre-

tion with a mean shoreline change of +5.88 m/yr. Maximum 
shoreline retreat was recorded in Zone BC (-13.8 m/yr), 
closely followed by Zone AB (-13.12 m/yr). Conversely, 
Zone CD registered the most substantial accretion, with a 
maximum shoreline advance of +25.58 m/yr, highlighting the 
dynamic nature of this eastern segment.

Transect-wise analysis

Graph 2 provides a detailed transect-by-transect visualization 
of erosion versus deposition patterns. The predominance of 
erosional processes (red areas) is evident across transects 

1-120, corresponding primarily to Zones AB and BC. The 
pronounced erosional trough between transects 43-64 corre-
sponds to the area of maximum retreat in Zone AB.

A dramatic shift occurs around transect 127, where 
substantial depositional processes (green areas) begin to 
dominate, reaching peak values exceeding +20 m/yr at 
transects 148-152, which aligns with the central portion 
of Zone CD. Notable interruptions in the accretional 
pattern occur around transects 155-158 and 168-169, 
indicating localized erosional hotspots within the general-
ly accretional eastern zone.

Short term observation

Shoreline variation is observed for each 10-year period 
from 1991 to 2021. The Fig. 6 shows seaward and 
landward movement at Kuakata area, Bay of Bengal, 
across three periods: 1991–2000, 2000–2010, and 
2010–2021. Accretion dominates in the eastern region, 
while erosion is prevalent in the western section, particu-
larly post-2000. In terms of short-period observation, the 
number of green transects is increasing both eastward 
and It reaches a peak point in 2021 from both the east and 
west portions, as shown in graph. 3 and Fig. 6. The 
method for frequent analyses is followed by NSM (Net 
Shoreline Movement) and EPR (End Point Rate).

Quantitative analysis using the EPR (End Point Rate) method

The End Point Rate (EPR) analysis is presented across 
three time periods: 1991-2000, 2000-2010, and 2010-2021. 
The Graph 3 and the Table IV demonstrate predominantly 
erosional rates with peaks reaching more than -20 meters/-
year, though a notable accretion peak of about more than 
30 meters/year appears around transect 125 between 1991 
and 2000.

The 2000-2010 period exhibits similar erosional trends in the 
central part of the transects but displays a significant accre-
tion peak of nearly 40 meters/year around transect 125 (Table 
IV). The most recent period (2010-2021) shows a more 
variable pattern with two distinct accretion peaks: one at the 
beginning of the stretch (around transect 15) reaching 
approximately 35 meters/year (Graph 3), and another more 

pronounced peak near transect 175 reaching about 44.9 
meters/year, as shown in Table IV, and Graph 3. All three 
time periods demonstrate fluctuating patterns of shoreline 
change rates across the study area, with the magnitude and 
location of peaks varying between periods. The average 
rate of shoreline change shows a progressive shift from 
erosional dominance to accretional tendency, changing 
from -9.68 m/year (1991-2000) to -0.98 m/year 
(2000-2010), and finally to 2.1 m/year (2010-2021), in 
Table IV, which supports Fig. 8.

The number of erosional transects decreased over time 
from 123 (87.86%) in 1991-2000 to 99 (61.11%) in 
2010-2021, while depositional transects increased from 17 
(12.14%) to 63 (38.89%) during the same period. Maxi-
mum erosion rates decreased from -24.5 m/year to -14.64 
m/year, while maximum accretion rates increased from 
33.49 m/year to 44.9 m/year. The average erosional rates 
moderated from -13.11 m/year to -8.38 m/year, while 

average depositional rates increased from 15.09 m/year to 
18.56 m/year across the study period.

Computation of land loss and land gain

In Fig. 7, the analysis of shoreline movement (NSM) along 
the Bay of Bengal coast revealed distinct patterns of morpho-
logical changes across three temporal periods: 1991-2000, 

2000-2010, and 2010-2021. The shoreline exhibited both 
erosional and accretional trends, with varying intensities 
along different coastal segments. During 1991-2000, the 
coastline was predominantly characterized by erosion 
(indicated in red), particularly along the central portion of the 
study area.

A small section in the eastern segment showed accretion 
(shown in green), while isolated stable areas (indicated in 
grey) were observed intermittently along the shoreline. The 
period 2000-2010 demonstrated a similar erosional pattern, 
though with some notable changes. The extent of erosion 
remained significant along the western and central sections, 
while the eastern portion showed increased accretional 
tendencies compared to the previous decade. The stable zones 
appeared to be more fragmentary during this period.

The most recent period (2010-2021) exhibited a continuation 
of the erosional trend along the western and central coastline. 
However, the eastern section displayed enhanced accretion, 
suggesting a persistent pattern of sediment accumulation in 
this area. The transition between erosional and accretional 
zones appeared more distinct compared to earlier periods. The 
analysis of shoreline movement (NSM) along the Bay of 
Bengal coast revealed significant morphological changes 
across three temporal periods: 1991-2000, 2000 2010, and 
2010-2021. The total affected area over the entire study 
period was 13.27 km², indicating substantial coastal dynamics 
in the region, as mentioned in Table V and Graph 4.

Expected shoreline position

According to Fig. 8, these historical trends manifest in 
distinct spatial patterns. The eastern portion, however, exhib-
its a significant landward movement, indicating persistent 
erosional processes despite the overall increase in previous 
erosional transects. 

This spatial variation in shoreline movement suggests that 
while accretional processes at the central zone have increased 
over time at a broader scale, localized erosional hotspots 
persist, particularly in the eastern section.

A remarkable morphological change along the coastline was 
observed with high fluctuation in some coastal zones from 
1991 to 2021. These physiological changes along the Bay 
of Bengal at Kuakata experienced both erosion and deposi-
tion, along with inward and outward movement of the 
shoreline. This study has highlighted both long-term obser-
vation over one period from 1991 to 2021 and short-term 
observation into three periods with a 10-year interval.

A comparable study conducted by Goswami et al. (2022) 
analyzed 1052 transects over a 55 km shoreline of Kuakata 
area, employing metrics such as EPR, NSM, and LRR 
while integrating SCE to assess shoreline variability over 
20 years from 2000 to 2020. Another study by Islam et al. 
(2014) found, in their study on Kutubdia Island, south 
eastern zone of Bangladesh, a strong correlation between 
EPR with WLR and LRR. However, their prime result of 
the transect rates is 0.29 m/yr, 2.91m/yr, and 3.53 for EPR, 
LRR, and WLR, respectively.

Similar studies conducted in the same location by Bushra 
et al.   (2021), their studies strongly supported our 
findings, though they chose a bit longer distance toward 
the north part from the Golachipa River at the eastern side. 
They got lost area of approximately 13.59 km2, over 30 
years from 1989 to 2020, likely, in my studies (Table V, 
Graph. 4) loss of area is more than 8 km2.

On the side of Red Crab Island in south eastern zone, it is 
literally being sedimentation from past years according to 
all previous publications and our research as well (Fig. 7). 
In this study, the shoreline dynamics along the Kuakata 

coast from 1991 to 2021 revealed significant erosion 
patterns, consistent with the findings of  Uddin & Niloy 
(2022). Their investigation results have clarified that red 
crab char, the eastern part of Kuakata beach, is more 
dynamic, demonstrating a vulnerable region and high 
SCE is 486m from  Uddin and Niloy (2022) and 490 in 
order to this report (Graph. 1, Fig. 4). My study found 
higher overall shoreline loss (~8.2 km²) and gain (~5.3 
km²) compared to their 6.11 km² loss and 3.26 km² gain. 
Differences may arise from data sources and methodolo-
gy, but both studies indicate a long-term erosional trend. 
On the side of statistical rate of shoreline variation, max, 
and min shoreline change rates regarding three zones 
(Table III) are homogenized by them, for instance, mean 
coastline variation -2.84 from our study and -3.11 in 
order to Uddin and Niloy (2022), similarly, highest accre-
tion rate from CD altered section shows insignificant 
difference as from my study is 25.58 and 23.88 from their 
study. Overall, it can be observed that no significant 
variation is found between the studies. 

Coastal districts are evaluated considering temporal shore-
line change analyses by Shamsuzzoha and Tofael (2023), 
and they analyzed the whole southern part of Bangladesh 
altogether, with a different approach, which poses 
challenges to making comparisons.

Shoreline forecasting has been limited, primarily for 
identifying critical areas. Rahman and Ferdous (2019) and 
Uddin & Niloy (2022) predicted shorelines for 2028 and 
2041, while this study forecasts 2050 (Fig. 8). Rahman and 
Ferdous (2019) analyzed the entire northern Bay of Bengal, 
making a Kalapara-specific evaluation difficult. Uddin and 
Niloy (2022) used DSAS beta forecasting, differing from 
this study’s equation-based model (equation_10), which 
aligns with observed short-term trends (1991–2021). The 
central part of Kuakata is predicted to shift seaward, which 
is in contrast findings of Uddin and Niloy (2022), while the 
eastern part will experience significant landward move-
ment, partially aligning with previous findings. However, 
uncertainties remain due to the long projection period (29 
years) and using a different prediction model, making the 
forecast probabilistic rather than absolute. 

Notably, the southeastern zone, which includes Red Crab 
Island (or char), appears to be highly dynamic, with signif-
icant landward shoreline movement indicating erosion. 
This region’s vulnerability may stem from its exposure to 
high-energy tidal forces and sediment-starved conditions, 

leading to the gradual loss of land (Uddin and Niloy, 
2022). The ecological significance of Red Crab Island, 
coupled with its role as a potential buffer against coastal 
erosion, makes it a critical area for focused conservation 
and monitoring efforts.

Conclusion

This study provides a comprehensive analysis of shoreline 
dynamics along the Kuakata coast, Bangladesh, over a 
30-year period (1991–2021). Using multi-temporal Land-
sat imagery and the Digital Shoreline Analysis System 
(DSAS), key findings revealed the highest erosion rate of 
-13.8 m/year in the central BC part and the highest accre-
tion rate of +25.58 m/year in the southeastern zone.

These findings underscore the dynamic nature of the 
Kuakata coastline, and due to our ignoring a direct field 
visit, we could not detect the exact reason among many 
probable reasons, including climate change, anthropogenic 
activities, tidal flux, etc. The study highlights the vulnera-
bility of coastal communities and infrastructure, necessi-
tating immediate action to mitigate erosion risks and 
promote sustainable development.

Future research should focus on discontinuous areas, deep 
social impact with accurate reasons, and detecting the 
exact reason by integrating higher-resolution satellite 
imagery, field validation, and hydrodynamic modeling.
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Bangladesh has increased from 144 million in 2011 to  
165.16 million in 2022, according to the latest population 
and housing census, and is projected to reach 175 million 
by 2024 (BBS, 2022; MacroTrends, 2024) with many 
living in low-lying floodplains vulnerable to monsoon 
flooding and tidal surges (BBS, 2011). The global average 
sea level rose by 0.21 meters from 1902 to 2015, but the 
Ganges Delta has experienced a much higher rate of 5–15 
mm per year (Mullick et al. 2019; Anwar et al. 2022).

Tidal dynamics play a critical role in shoreline changes, 
particularly in Bangladesh’s semi-diurnal tidal regime, where 
two high and two low tides occur daily (Rose and Bhaskaran, 
2017). They, additionally, mentioned that the average tidal 
range is 1.86 to 2.47 meters, transitioning from microtidal to 
mesotidal conditions. Tide data, sourced from UHSLC 
Stations (2024) and the Bangladesh Tide Table, is essential 
for accurate shoreline delineation, especially when consider-
ing neap and spring tides. Spring tides, representing the 
highest flood levels, and neap tides, the lowest, help avoid 
biases in shoreline change analysis (UHSLC, 2024).

Remote sensing and GIS technologies, such as Landsat imag-
ery and the Digital Shoreline Analysis System (DSAS), are 
essential for monitoring shoreline changes (Himmelstoss et 
al. 2021; Bushra et al. 2021). DSAS Tool, widely accepted 
for statistical analyses, includes a number of methods, 
including WLR (Weighted Linear Regression), LRR (Linear 
Regression Rate), NSM (Net Shoreline Movement), etc. 
Tools like Sentinel-2 imagery and water indices (e.g., NDWI, 
MNDWI) enable accurate shoreline extraction and analysis 
(Astiti et al. 2019; Fejjari et al. 2023). Studies have used 
these methods to analyze shoreline changes over decades, 
employing statistical techniques like linear regression to 
predict future trends (Crowell et al. 1997; Maiti and 
Bhattacharya, 2009). 

This study focuses on Kuakata Beach, a vulnerable area in 
south-central Bangladesh, to analyze shoreline changes over 
the past 30 years using Landsat imagery, GIS, and DSAS. 
The Landsat images for analysis are collected from USGS 
Earth Explorer (https://earthexplorer.usgs.gov). This 
research highlights the critical need for integrated geospatial 
analyses and field validation in understanding coastal 
dynamics. By integrating tide data and advanced remote 
sensing techniques, the study aims to provide insights into 
erosion, accretion, and shoreline stabilization processes, 
contributing to effective coastal management and policy 
development.

This research attempts to assess quantitative factors, includ-
ing annual shoreline movement rate, land loss and land gain 

over 30 years from 1991 to 2021, and find vulnerable and 
critical areas by predicted graphical shoreline visualization, 
by integrating GIS and Remote Sensing techniques.

Materials and methods

Study area

The dynamic coastal region of Bangladesh, situated at the 
southernmost area along the Bay of Bengal, is continuously 
deformed by multiple factors, including sediment accumula-
tion from three mighty rivers source; Ganges River, the 
Meghna River, and the Brahmaputra, wave action, etc. The 
deltaic stability majorly depends on the sediment deposition 
and becomes a shelter for biodiversity. Kuakata sea coastline 
is situated in the central zone of the coast of Bangladesh, 
which contains two major estuaries: the estuaries of Andar-
manik River at the western zone, and the estuaries of Gola-
chipa River at the eastern portion (Fig. 1). This study area 
belongs to Kalapara Upazila in the Patuakhali district, and it 
covers from 21° 48’ 33.23” N to 21° 52’ 16.03” N latitude 
and 90° 6’ 16.45” E to 90° 12’ 48.46” E longitudes (Fig. 1). 
The study area get experience the high- est temperature in 
January (25.1°C) and 33.8°C in April (BMD, 2020), with a 
mean annual rainfall of 2580 mm/year.

The variation of wave height can be observed based on two 
major season, during monsoon season, the wave height is 
typically around 1.8m, on the other hand, during the summer 
season from January to March, the wave height is very small; 
however, in general, the wave height stays 1m. Tides in the 
beach region are semi-diurnal, with daily tide levels ranging 
from 1 to 1.5 m (Uddin and Niloy, 2022).

Data source

Multi-temporal Landsat images, including TM, ETM+, and 
OLI/TRIS sensors, were utilized from 1990 to 2021 to 
analyze the shoreline dynamics of Kuakata. Specifically, four 
satellite images were selected at 10- Multi-temporal Landsat 
images, including TM, ETM+, and OLI/TRIS sensors, were 
utilized from 1990 to 2021 to analyze the shoreline dynamics 
of Kuakata. Specifically, four satellite images were selected 
year intervals from 1991 to 2021 (as shown in Table I). The 
images were acquired from reliable platforms such as USGS 
Earth Explorer (https://earthexplorer.usgs.gov) and GLOVIS  
(www.glovis.gov.us), ensuring a cloud cover of less than 5% 
to maintain data quality and accuracy (Islam et al. 2022).

Here, ECurrent   represents the total positional error for the 
current year, and ENext  represents the total positional error for 
the following year.  

All the metadata of satellite images are shown in Table I. 
To ensure accuracy in shoreline change detection, tide data 
were collected from two main sources: UHSLC (2024) and 
Bangladesh Tide Times (2024). The uncertainty in shore-
line position for each time interval was calculated using 
Equation 1 (Himmelstoss et al. 2021), and the values are 
added in Table 1.

Data preparation

Four key steps were used to study the changes along the 
shoreline. These steps included: (1) processing images 
with Arc-GIS, which involved correcting the images and 
calculating the NDWI to separate the images into water 

and non-water categories, (2) using Otsu’s Binary 
Thresholding to create a binary image and to outline the 
shoreline between water and non-water areas, (3) 
estimating the errors in the LANDSAT images, and (4) 
using DSAS to measure the statistics of the changes 
(Mullick et al. 2019). Shoreline change is measured 
using the WLR, EPR, and LRR methods. This study 
looked at the dividing line between land and water by 
using a binary threshold method. While separating the 
land pixels from the water pixels, the shoreline was 
identified without including the tidal wave. As a result, 
the land boundary line considered in this study is less 
likely to have been mistakenly caused by waves and 
tides. To calculate the rate of shoreline change, we 
looked at four different shorelines from the study area 
over 30 years: 1991, 2000, 2010, and 2021. Where incon-
sistency has been found, the shoreline has been digitized 
on a scale of 1:1000, which indicates a very high accura-
cy (Kabir and Tanvir, 2020). Table II displays major 
attributes regarding shorelines and baselines, including 
their length, uncertainty, date, etc.

The baseline has been taken 200 meters away from the most 
ancient shoreline position, and transect spacing has been 
chosen to be 150m, where the number of transects is 179 
along the coastline.

Image correction

Landsat imagery captures pixel values as digital numbers 

(DN), which, as highlighted by (Chander et al. 2009) 
Top-Of-Atmosphere (TOA, serve as the foundation for 
radiometric adjustments that convert raw satellite data into 
calibrated units like radiance or reflectance, ensuring 
consistency and precision for scientific analyses across 
varying sensors, times, and atmospheric conditions.

Chander et al. (2009) Top-Of-Atmosphere (TOA suggested 
changing DN to Radiance for images taken by the Landsat 
MSS, TM, and ETM sensors by using these equations (2, 3).

Where Lλ is the radiance of a spectral unit of“W/(m2 sr. μ
m),” Qcal is the pixel value of quantized calibrated [DN], 
Qcalmin is the Minimum Qcal, Qcalmax is the Maximum Qcal, 
LMINλ = Minimum Lλ scaled to Qcalmin [W/(m2 sr μm)], LMAXλ 
= Maximum Lλ scaled to Qcalmax [W/(m2 sr μm)]. The follow-
ing formula is used to convert radiance to ToA reflectance as

where Pλ = ToA reflectance [unitless], π = 3.14159, d is the 
Earth-Sun distance [astronomical units], ESUNλ is the mean 
exo-atmospheric solar irradiance [W/(m2 μm)], Ɵz is the 
Solar zenith angle [degrees].

For images from Landsat OLI, you can directly convert DN 
into ToA reflectance according to equation 4 (U.S. Geologi-
cal Survey, 2019).

where Mp is the reflectance multiplicative scaling factor for 
the band [unitless], and Ap is the reflectance additive scaling 
factor for the band [unitless]. The metadata file associated 
with LANDSAT imagery includes values for parameters such 
as Qcal, Qcalmax, Qcalmin, LMINλ, LMAXλ, Mp, Ap, and Ɵz (U.S. 
Geological Survey, 2019).

Digital index

The NDWI index is a useful tool for spotting water bodies on 
the Earth's surface. The NDWI was determined by using the 
green and near-infrared bands, as shown in equation 5 (Hos-
sain et al. 2021).

The NDWI can range from -1 to +1. The NDWI image 
typically indicates a good result for areas with water and a 
bad result for areas without water. To show the boundary 
between land and water as a coastline, we marked the land 
features with a 0 and the water features with a 1.

DSAS tool for shoreline change analysis

The Digital Shoreline Analysis System (DSAS) Version 6 is 
the latest standalone software developed for shoreline change 
analysis. Unlike its earlier versions, which operated as an 
extension of ArcGIS, DSAS v6 is no longer tied to ArcGIS, 
offering users more flexibility and independence from GIS 
software constraints. This modern version integrates a 
user-friendly interface with enhanced features, making it a 
powerful and comfortable tool for analyzing coastal changes. 
It requires pre-processed shoreline data and a baseline in 
GeoJSON format, ensuring standardized and efficient input 
handling. With updated algorithms and capabilities, DSAS 
v6 delivers accurate results, making it ideal for shoreline 
management and research applications. It estimates common 
uncertainty 10 and provides 13 types of statistical results that 
are so effective for analysts.

Varieties of Statistical Methods applied for understanding the 
Rate of Shoreline Movement

The Shoreline Change Envelope (SCE) and the rate of shore-
line change were measured using the EPR, NSM, LRR, and 
WLR methods as outlined in the Digital Shoreline Analysis 
System (DSAS). These measurements are commonly used in 
statistics that track changes along the shoreline.

The End Point Rate (EPR) is the best method when it is 
calculated using just two shoreline positions at different 
times (Sarwar and Woodroffe, 2013). The EPR method calcu-
lates how much the shoreline changes by dividing the 
distance by the number of years, as shown in equation six.

The distance (m) between the newest and oldest shoreline is 
represented by D1 − D2, and the time gap (years) between the 
two shoreline positions is shown as t1 − t0.

On the other hand, LRR (Linear regression method) is more 
appropriate when the number of shorelines exceeds two. 
OBrien et al. (2014) utilized the following LRR formula 
(Equation 7) for long-term shoreline analysis

Y = a + bX              (7)

In this equation, y represents the distance (in meters) from the 
baseline. The variable is the starting point of y, while b shows the 
slope of the line that describes how the shoreline changes over time.  

The variable x stands for the shoreline position in various years. 
A ±5 m uncertainty and a 95% confidence interval were set as 
default parameters for statistical calculations. Linear regression 
involves several key aspects: (1) it uses all available data, no 
matter if there are changes in trends or accuracy, (2) it relies 
entirely on calculations, (3) it follows recognized statistical 
principles, and (4) it is simple to use (Crowell et al. 2018). The 
linear regression method can be affected by outliers and often 
underestimates how quickly things change compared to other 
statistics, like EPR (Dolan, 1991). 

The Weighted Linear Regression (WLR) method employs a 
linear regression approach similar to the Linear Regression 
Rate (LRR) method but incorporates a weighting factor 
(Equation 8) applied to Equation seven to account for 
positional uncertainty (Himmelstoss et al. 2021).

In the DSAS tool, Hossain et al. (2021) utilized the R2 value 
to be determined for LRR and WLR methods as presented in 
Eq.9, and it represents the accuracy and perfection between 
linear regression rate and weighted linear regression rate.

Where y = distance from baseline and known shoreline 
position, y′= predicted value of the best-fit regression line 
according to the equation, y = mean of the shoreline position 
data. The R-squared value, denoted as LR2, evaluates how 
well the shoreline position data fits the linear regression line.

Forecasting model

This model (Equation 10) calculates the adjusted shoreline 
position by incorporating the rate of shoreline movement 
(LRR) over a given time period. It uses the original inter-
sect point position and adjusts it by multiplying the Linear 
Regression Rate (LRR), which represents the rate of 
shoreline change per year, by the time elapsed. This 
adjustment accounts for both erosion (negative LRR) and 
accretion (positive LRR), ensuring that the shoreline's 
movement landward or seaward is accurately represented 
(Crowell et al. 1997). The model can be applied separately 
to the X and Y coordinates, allowing for a comprehensive 
adjustment in both directions, and is useful in predicting 
future shoreline positions or validating trends of coastal 
change observed over time.

Where:

Xnew  : Adjusted shoreline position.
Xoriginal  : Original intersect point position.
LRR: Linear Regression Rate (rate of change in shoreline 
position per year).
Δt represents the time span.

Validation of the Shoreline Prediction Model

The root mean square error is the square root of the variance 
of the residuals. It shows how well the model fits the data, 
i.e., how close the actual data points are to what the model 
predicted Lower RMSE values indicate a better fit, while 
higher values mean there is more error. The RMSE was used 
to check how well the actual coastline change rates matched 
the predicted ones. In shoreline observation, Uddin and Niloy 
(2022) assessed the calculated model and satellite observa-
tions of the shoreline change rate for 2021 by using RMSE 
values (Equation 11). 

Land loss and land gain computation

The areas identified as water or non-water in the images were 
compared to find out the values of land loss and gain, using 
the ArcGIS raster calculator tool (Mullick et al. 2019). The 
changes in land, both lost and gained, were measured over 
four years in a row, covering a total period of 30 years from 
1991 to 2021.

Results and discussion

The general view begins by describing the analysis of 179 
transects, with 174 considered active, along an approximate-
ly 25 km shoreline. This study utilized Weighted Linear 
Regression Rate (WLR) and Linear Regression Rate (LRR) 
for long-term analysis (1991–2021) and End Point Rate 
(EPR) and Net Shoreline Movement (NSM) for short-term 
intervals (1991–2000, 2000–2010, and 2010–2021).

Long term observation

Long-term observation includes overall analyses over the 
past 30 years from 1991 to 2021. There are a number of 
statistical methods developed to analyze long-term observa-
tion (more than two years) involving LRR, WLR, SCE, etc.

Shoreline change envelope

The highest distance range, from 590.78 to 495.79, belongs 
to the eastern region of shorelines (Graph 1, Fig 4). The 
farthest distance from the baseline belongs to the range of 
transect ID from 170 to 150. The nearest distance from the 
graph lies to the most eastward crossed 170 transect Id 
(Graph 1, Fig. 4).

Rate of shoreline movement

The Weighted Linear Regression (WLR) method shows 
varying rates of shoreline change along the studied coastal 
stretch. The spatial and temporal assessment of shoreline 
change across zones AB (Western), BC (Central), and CD 
(Eastern) of the Bay of Bengal reveals distinct patterns of 
erosion and accretion over the 30-year study period 
(1991-2021).

Spatial variation in shoreline dynamics

As shown in Fig. 6, the Bay of Bengal coastline demon-
strates significant zonal heterogeneity in shoreline change. 
Zone AB (Western Zone) exhibits a mixed pattern with 
predominantly erosional transects (73.33%), particularly in 
its central segment, though some accretional areas 
(15.56%) appear toward the boundaries. Zone BC (Central 
Zone) represents the most severely eroded region, with an 
overwhelming 98.31% of transects classified as erosional 
and no accretional transects observed. In contrast, Zone 
CD (Eastern Zone) displays a markedly different pattern 
with a majority of accretional transects (54.29%) concen-
trated in its central portion, though erosional processes still 
affect 28.57% of the area.

Quantitative assessment of shoreline change

The magnitude of shoreline change varies considerably 
across the study area, as illustrated in Table III. Zone BC 
exhibits the highest mean erosion rate (-9.48 m/yr), followed 
by Zone AB (-5.87 m/yr), while Zone CD shows net accre-

tion with a mean shoreline change of +5.88 m/yr. Maximum 
shoreline retreat was recorded in Zone BC (-13.8 m/yr), 
closely followed by Zone AB (-13.12 m/yr). Conversely, 
Zone CD registered the most substantial accretion, with a 
maximum shoreline advance of +25.58 m/yr, highlighting the 
dynamic nature of this eastern segment.

Transect-wise analysis

Graph 2 provides a detailed transect-by-transect visualization 
of erosion versus deposition patterns. The predominance of 
erosional processes (red areas) is evident across transects 

1-120, corresponding primarily to Zones AB and BC. The 
pronounced erosional trough between transects 43-64 corre-
sponds to the area of maximum retreat in Zone AB.

A dramatic shift occurs around transect 127, where 
substantial depositional processes (green areas) begin to 
dominate, reaching peak values exceeding +20 m/yr at 
transects 148-152, which aligns with the central portion 
of Zone CD. Notable interruptions in the accretional 
pattern occur around transects 155-158 and 168-169, 
indicating localized erosional hotspots within the general-
ly accretional eastern zone.

Short term observation

Shoreline variation is observed for each 10-year period 
from 1991 to 2021. The Fig. 6 shows seaward and 
landward movement at Kuakata area, Bay of Bengal, 
across three periods: 1991–2000, 2000–2010, and 
2010–2021. Accretion dominates in the eastern region, 
while erosion is prevalent in the western section, particu-
larly post-2000. In terms of short-period observation, the 
number of green transects is increasing both eastward 
and It reaches a peak point in 2021 from both the east and 
west portions, as shown in graph. 3 and Fig. 6. The 
method for frequent analyses is followed by NSM (Net 
Shoreline Movement) and EPR (End Point Rate).

Quantitative analysis using the EPR (End Point Rate) method

The End Point Rate (EPR) analysis is presented across 
three time periods: 1991-2000, 2000-2010, and 2010-2021. 
The Graph 3 and the Table IV demonstrate predominantly 
erosional rates with peaks reaching more than -20 meters/-
year, though a notable accretion peak of about more than 
30 meters/year appears around transect 125 between 1991 
and 2000.

The 2000-2010 period exhibits similar erosional trends in the 
central part of the transects but displays a significant accre-
tion peak of nearly 40 meters/year around transect 125 (Table 
IV). The most recent period (2010-2021) shows a more 
variable pattern with two distinct accretion peaks: one at the 
beginning of the stretch (around transect 15) reaching 
approximately 35 meters/year (Graph 3), and another more 

pronounced peak near transect 175 reaching about 44.9 
meters/year, as shown in Table IV, and Graph 3. All three 
time periods demonstrate fluctuating patterns of shoreline 
change rates across the study area, with the magnitude and 
location of peaks varying between periods. The average 
rate of shoreline change shows a progressive shift from 
erosional dominance to accretional tendency, changing 
from -9.68 m/year (1991-2000) to -0.98 m/year 
(2000-2010), and finally to 2.1 m/year (2010-2021), in 
Table IV, which supports Fig. 8.

The number of erosional transects decreased over time 
from 123 (87.86%) in 1991-2000 to 99 (61.11%) in 
2010-2021, while depositional transects increased from 17 
(12.14%) to 63 (38.89%) during the same period. Maxi-
mum erosion rates decreased from -24.5 m/year to -14.64 
m/year, while maximum accretion rates increased from 
33.49 m/year to 44.9 m/year. The average erosional rates 
moderated from -13.11 m/year to -8.38 m/year, while 

average depositional rates increased from 15.09 m/year to 
18.56 m/year across the study period.

Computation of land loss and land gain

In Fig. 7, the analysis of shoreline movement (NSM) along 
the Bay of Bengal coast revealed distinct patterns of morpho-
logical changes across three temporal periods: 1991-2000, 

2000-2010, and 2010-2021. The shoreline exhibited both 
erosional and accretional trends, with varying intensities 
along different coastal segments. During 1991-2000, the 
coastline was predominantly characterized by erosion 
(indicated in red), particularly along the central portion of the 
study area.
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A small section in the eastern segment showed accretion 
(shown in green), while isolated stable areas (indicated in 
grey) were observed intermittently along the shoreline. The 
period 2000-2010 demonstrated a similar erosional pattern, 
though with some notable changes. The extent of erosion 
remained significant along the western and central sections, 
while the eastern portion showed increased accretional 
tendencies compared to the previous decade. The stable zones 
appeared to be more fragmentary during this period.

The most recent period (2010-2021) exhibited a continuation 
of the erosional trend along the western and central coastline. 
However, the eastern section displayed enhanced accretion, 
suggesting a persistent pattern of sediment accumulation in 
this area. The transition between erosional and accretional 
zones appeared more distinct compared to earlier periods. The 
analysis of shoreline movement (NSM) along the Bay of 
Bengal coast revealed significant morphological changes 
across three temporal periods: 1991-2000, 2000 2010, and 
2010-2021. The total affected area over the entire study 
period was 13.27 km², indicating substantial coastal dynamics 
in the region, as mentioned in Table V and Graph 4.

Expected shoreline position

According to Fig. 8, these historical trends manifest in 
distinct spatial patterns. The eastern portion, however, exhib-
its a significant landward movement, indicating persistent 
erosional processes despite the overall increase in previous 
erosional transects. 

This spatial variation in shoreline movement suggests that 
while accretional processes at the central zone have increased 
over time at a broader scale, localized erosional hotspots 
persist, particularly in the eastern section.

A remarkable morphological change along the coastline was 
observed with high fluctuation in some coastal zones from 
1991 to 2021. These physiological changes along the Bay 
of Bengal at Kuakata experienced both erosion and deposi-
tion, along with inward and outward movement of the 
shoreline. This study has highlighted both long-term obser-
vation over one period from 1991 to 2021 and short-term 
observation into three periods with a 10-year interval.

A comparable study conducted by Goswami et al. (2022) 
analyzed 1052 transects over a 55 km shoreline of Kuakata 
area, employing metrics such as EPR, NSM, and LRR 
while integrating SCE to assess shoreline variability over 
20 years from 2000 to 2020. Another study by Islam et al. 
(2014) found, in their study on Kutubdia Island, south 
eastern zone of Bangladesh, a strong correlation between 
EPR with WLR and LRR. However, their prime result of 
the transect rates is 0.29 m/yr, 2.91m/yr, and 3.53 for EPR, 
LRR, and WLR, respectively.

Similar studies conducted in the same location by Bushra 
et al.   (2021), their studies strongly supported our 
findings, though they chose a bit longer distance toward 
the north part from the Golachipa River at the eastern side. 
They got lost area of approximately 13.59 km2, over 30 
years from 1989 to 2020, likely, in my studies (Table V, 
Graph. 4) loss of area is more than 8 km2.

On the side of Red Crab Island in south eastern zone, it is 
literally being sedimentation from past years according to 
all previous publications and our research as well (Fig. 7). 
In this study, the shoreline dynamics along the Kuakata 

coast from 1991 to 2021 revealed significant erosion 
patterns, consistent with the findings of  Uddin & Niloy 
(2022). Their investigation results have clarified that red 
crab char, the eastern part of Kuakata beach, is more 
dynamic, demonstrating a vulnerable region and high 
SCE is 486m from  Uddin and Niloy (2022) and 490 in 
order to this report (Graph. 1, Fig. 4). My study found 
higher overall shoreline loss (~8.2 km²) and gain (~5.3 
km²) compared to their 6.11 km² loss and 3.26 km² gain. 
Differences may arise from data sources and methodolo-
gy, but both studies indicate a long-term erosional trend. 
On the side of statistical rate of shoreline variation, max, 
and min shoreline change rates regarding three zones 
(Table III) are homogenized by them, for instance, mean 
coastline variation -2.84 from our study and -3.11 in 
order to Uddin and Niloy (2022), similarly, highest accre-
tion rate from CD altered section shows insignificant 
difference as from my study is 25.58 and 23.88 from their 
study. Overall, it can be observed that no significant 
variation is found between the studies. 

Coastal districts are evaluated considering temporal shore-
line change analyses by Shamsuzzoha and Tofael (2023), 
and they analyzed the whole southern part of Bangladesh 
altogether, with a different approach, which poses 
challenges to making comparisons.

Shoreline forecasting has been limited, primarily for 
identifying critical areas. Rahman and Ferdous (2019) and 
Uddin & Niloy (2022) predicted shorelines for 2028 and 
2041, while this study forecasts 2050 (Fig. 8). Rahman and 
Ferdous (2019) analyzed the entire northern Bay of Bengal, 
making a Kalapara-specific evaluation difficult. Uddin and 
Niloy (2022) used DSAS beta forecasting, differing from 
this study’s equation-based model (equation_10), which 
aligns with observed short-term trends (1991–2021). The 
central part of Kuakata is predicted to shift seaward, which 
is in contrast findings of Uddin and Niloy (2022), while the 
eastern part will experience significant landward move-
ment, partially aligning with previous findings. However, 
uncertainties remain due to the long projection period (29 
years) and using a different prediction model, making the 
forecast probabilistic rather than absolute. 

Notably, the southeastern zone, which includes Red Crab 
Island (or char), appears to be highly dynamic, with signif-
icant landward shoreline movement indicating erosion. 
This region’s vulnerability may stem from its exposure to 
high-energy tidal forces and sediment-starved conditions, 

leading to the gradual loss of land (Uddin and Niloy, 
2022). The ecological significance of Red Crab Island, 
coupled with its role as a potential buffer against coastal 
erosion, makes it a critical area for focused conservation 
and monitoring efforts.

Conclusion

This study provides a comprehensive analysis of shoreline 
dynamics along the Kuakata coast, Bangladesh, over a 
30-year period (1991–2021). Using multi-temporal Land-
sat imagery and the Digital Shoreline Analysis System 
(DSAS), key findings revealed the highest erosion rate of 
-13.8 m/year in the central BC part and the highest accre-
tion rate of +25.58 m/year in the southeastern zone.

These findings underscore the dynamic nature of the 
Kuakata coastline, and due to our ignoring a direct field 
visit, we could not detect the exact reason among many 
probable reasons, including climate change, anthropogenic 
activities, tidal flux, etc. The study highlights the vulnera-
bility of coastal communities and infrastructure, necessi-
tating immediate action to mitigate erosion risks and 
promote sustainable development.

Future research should focus on discontinuous areas, deep 
social impact with accurate reasons, and detecting the 
exact reason by integrating higher-resolution satellite 
imagery, field validation, and hydrodynamic modeling.
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Bangladesh has increased from 144 million in 2011 to  
165.16 million in 2022, according to the latest population 
and housing census, and is projected to reach 175 million 
by 2024 (BBS, 2022; MacroTrends, 2024) with many 
living in low-lying floodplains vulnerable to monsoon 
flooding and tidal surges (BBS, 2011). The global average 
sea level rose by 0.21 meters from 1902 to 2015, but the 
Ganges Delta has experienced a much higher rate of 5–15 
mm per year (Mullick et al. 2019; Anwar et al. 2022).

Tidal dynamics play a critical role in shoreline changes, 
particularly in Bangladesh’s semi-diurnal tidal regime, where 
two high and two low tides occur daily (Rose and Bhaskaran, 
2017). They, additionally, mentioned that the average tidal 
range is 1.86 to 2.47 meters, transitioning from microtidal to 
mesotidal conditions. Tide data, sourced from UHSLC 
Stations (2024) and the Bangladesh Tide Table, is essential 
for accurate shoreline delineation, especially when consider-
ing neap and spring tides. Spring tides, representing the 
highest flood levels, and neap tides, the lowest, help avoid 
biases in shoreline change analysis (UHSLC, 2024).

Remote sensing and GIS technologies, such as Landsat imag-
ery and the Digital Shoreline Analysis System (DSAS), are 
essential for monitoring shoreline changes (Himmelstoss et 
al. 2021; Bushra et al. 2021). DSAS Tool, widely accepted 
for statistical analyses, includes a number of methods, 
including WLR (Weighted Linear Regression), LRR (Linear 
Regression Rate), NSM (Net Shoreline Movement), etc. 
Tools like Sentinel-2 imagery and water indices (e.g., NDWI, 
MNDWI) enable accurate shoreline extraction and analysis 
(Astiti et al. 2019; Fejjari et al. 2023). Studies have used 
these methods to analyze shoreline changes over decades, 
employing statistical techniques like linear regression to 
predict future trends (Crowell et al. 1997; Maiti and 
Bhattacharya, 2009). 

This study focuses on Kuakata Beach, a vulnerable area in 
south-central Bangladesh, to analyze shoreline changes over 
the past 30 years using Landsat imagery, GIS, and DSAS. 
The Landsat images for analysis are collected from USGS 
Earth Explorer (https://earthexplorer.usgs.gov). This 
research highlights the critical need for integrated geospatial 
analyses and field validation in understanding coastal 
dynamics. By integrating tide data and advanced remote 
sensing techniques, the study aims to provide insights into 
erosion, accretion, and shoreline stabilization processes, 
contributing to effective coastal management and policy 
development.

This research attempts to assess quantitative factors, includ-
ing annual shoreline movement rate, land loss and land gain 

over 30 years from 1991 to 2021, and find vulnerable and 
critical areas by predicted graphical shoreline visualization, 
by integrating GIS and Remote Sensing techniques.

Materials and methods

Study area

The dynamic coastal region of Bangladesh, situated at the 
southernmost area along the Bay of Bengal, is continuously 
deformed by multiple factors, including sediment accumula-
tion from three mighty rivers source; Ganges River, the 
Meghna River, and the Brahmaputra, wave action, etc. The 
deltaic stability majorly depends on the sediment deposition 
and becomes a shelter for biodiversity. Kuakata sea coastline 
is situated in the central zone of the coast of Bangladesh, 
which contains two major estuaries: the estuaries of Andar-
manik River at the western zone, and the estuaries of Gola-
chipa River at the eastern portion (Fig. 1). This study area 
belongs to Kalapara Upazila in the Patuakhali district, and it 
covers from 21° 48’ 33.23” N to 21° 52’ 16.03” N latitude 
and 90° 6’ 16.45” E to 90° 12’ 48.46” E longitudes (Fig. 1). 
The study area get experience the high- est temperature in 
January (25.1°C) and 33.8°C in April (BMD, 2020), with a 
mean annual rainfall of 2580 mm/year.

The variation of wave height can be observed based on two 
major season, during monsoon season, the wave height is 
typically around 1.8m, on the other hand, during the summer 
season from January to March, the wave height is very small; 
however, in general, the wave height stays 1m. Tides in the 
beach region are semi-diurnal, with daily tide levels ranging 
from 1 to 1.5 m (Uddin and Niloy, 2022).

Data source

Multi-temporal Landsat images, including TM, ETM+, and 
OLI/TRIS sensors, were utilized from 1990 to 2021 to 
analyze the shoreline dynamics of Kuakata. Specifically, four 
satellite images were selected at 10- Multi-temporal Landsat 
images, including TM, ETM+, and OLI/TRIS sensors, were 
utilized from 1990 to 2021 to analyze the shoreline dynamics 
of Kuakata. Specifically, four satellite images were selected 
year intervals from 1991 to 2021 (as shown in Table I). The 
images were acquired from reliable platforms such as USGS 
Earth Explorer (https://earthexplorer.usgs.gov) and GLOVIS  
(www.glovis.gov.us), ensuring a cloud cover of less than 5% 
to maintain data quality and accuracy (Islam et al. 2022).

Here, ECurrent   represents the total positional error for the 
current year, and ENext  represents the total positional error for 
the following year.  

All the metadata of satellite images are shown in Table I. 
To ensure accuracy in shoreline change detection, tide data 
were collected from two main sources: UHSLC (2024) and 
Bangladesh Tide Times (2024). The uncertainty in shore-
line position for each time interval was calculated using 
Equation 1 (Himmelstoss et al. 2021), and the values are 
added in Table 1.

Data preparation

Four key steps were used to study the changes along the 
shoreline. These steps included: (1) processing images 
with Arc-GIS, which involved correcting the images and 
calculating the NDWI to separate the images into water 

and non-water categories, (2) using Otsu’s Binary 
Thresholding to create a binary image and to outline the 
shoreline between water and non-water areas, (3) 
estimating the errors in the LANDSAT images, and (4) 
using DSAS to measure the statistics of the changes 
(Mullick et al. 2019). Shoreline change is measured 
using the WLR, EPR, and LRR methods. This study 
looked at the dividing line between land and water by 
using a binary threshold method. While separating the 
land pixels from the water pixels, the shoreline was 
identified without including the tidal wave. As a result, 
the land boundary line considered in this study is less 
likely to have been mistakenly caused by waves and 
tides. To calculate the rate of shoreline change, we 
looked at four different shorelines from the study area 
over 30 years: 1991, 2000, 2010, and 2021. Where incon-
sistency has been found, the shoreline has been digitized 
on a scale of 1:1000, which indicates a very high accura-
cy (Kabir and Tanvir, 2020). Table II displays major 
attributes regarding shorelines and baselines, including 
their length, uncertainty, date, etc.

The baseline has been taken 200 meters away from the most 
ancient shoreline position, and transect spacing has been 
chosen to be 150m, where the number of transects is 179 
along the coastline.

Image correction

Landsat imagery captures pixel values as digital numbers 

(DN), which, as highlighted by (Chander et al. 2009) 
Top-Of-Atmosphere (TOA, serve as the foundation for 
radiometric adjustments that convert raw satellite data into 
calibrated units like radiance or reflectance, ensuring 
consistency and precision for scientific analyses across 
varying sensors, times, and atmospheric conditions.

Chander et al. (2009) Top-Of-Atmosphere (TOA suggested 
changing DN to Radiance for images taken by the Landsat 
MSS, TM, and ETM sensors by using these equations (2, 3).

Where Lλ is the radiance of a spectral unit of“W/(m2 sr. μ
m),” Qcal is the pixel value of quantized calibrated [DN], 
Qcalmin is the Minimum Qcal, Qcalmax is the Maximum Qcal, 
LMINλ = Minimum Lλ scaled to Qcalmin [W/(m2 sr μm)], LMAXλ 
= Maximum Lλ scaled to Qcalmax [W/(m2 sr μm)]. The follow-
ing formula is used to convert radiance to ToA reflectance as

where Pλ = ToA reflectance [unitless], π = 3.14159, d is the 
Earth-Sun distance [astronomical units], ESUNλ is the mean 
exo-atmospheric solar irradiance [W/(m2 μm)], Ɵz is the 
Solar zenith angle [degrees].

For images from Landsat OLI, you can directly convert DN 
into ToA reflectance according to equation 4 (U.S. Geologi-
cal Survey, 2019).

where Mp is the reflectance multiplicative scaling factor for 
the band [unitless], and Ap is the reflectance additive scaling 
factor for the band [unitless]. The metadata file associated 
with LANDSAT imagery includes values for parameters such 
as Qcal, Qcalmax, Qcalmin, LMINλ, LMAXλ, Mp, Ap, and Ɵz (U.S. 
Geological Survey, 2019).

Digital index

The NDWI index is a useful tool for spotting water bodies on 
the Earth's surface. The NDWI was determined by using the 
green and near-infrared bands, as shown in equation 5 (Hos-
sain et al. 2021).

The NDWI can range from -1 to +1. The NDWI image 
typically indicates a good result for areas with water and a 
bad result for areas without water. To show the boundary 
between land and water as a coastline, we marked the land 
features with a 0 and the water features with a 1.

DSAS tool for shoreline change analysis

The Digital Shoreline Analysis System (DSAS) Version 6 is 
the latest standalone software developed for shoreline change 
analysis. Unlike its earlier versions, which operated as an 
extension of ArcGIS, DSAS v6 is no longer tied to ArcGIS, 
offering users more flexibility and independence from GIS 
software constraints. This modern version integrates a 
user-friendly interface with enhanced features, making it a 
powerful and comfortable tool for analyzing coastal changes. 
It requires pre-processed shoreline data and a baseline in 
GeoJSON format, ensuring standardized and efficient input 
handling. With updated algorithms and capabilities, DSAS 
v6 delivers accurate results, making it ideal for shoreline 
management and research applications. It estimates common 
uncertainty 10 and provides 13 types of statistical results that 
are so effective for analysts.

Varieties of Statistical Methods applied for understanding the 
Rate of Shoreline Movement

The Shoreline Change Envelope (SCE) and the rate of shore-
line change were measured using the EPR, NSM, LRR, and 
WLR methods as outlined in the Digital Shoreline Analysis 
System (DSAS). These measurements are commonly used in 
statistics that track changes along the shoreline.

The End Point Rate (EPR) is the best method when it is 
calculated using just two shoreline positions at different 
times (Sarwar and Woodroffe, 2013). The EPR method calcu-
lates how much the shoreline changes by dividing the 
distance by the number of years, as shown in equation six.

The distance (m) between the newest and oldest shoreline is 
represented by D1 − D2, and the time gap (years) between the 
two shoreline positions is shown as t1 − t0.

On the other hand, LRR (Linear regression method) is more 
appropriate when the number of shorelines exceeds two. 
OBrien et al. (2014) utilized the following LRR formula 
(Equation 7) for long-term shoreline analysis

Y = a + bX              (7)

In this equation, y represents the distance (in meters) from the 
baseline. The variable is the starting point of y, while b shows the 
slope of the line that describes how the shoreline changes over time.  

The variable x stands for the shoreline position in various years. 
A ±5 m uncertainty and a 95% confidence interval were set as 
default parameters for statistical calculations. Linear regression 
involves several key aspects: (1) it uses all available data, no 
matter if there are changes in trends or accuracy, (2) it relies 
entirely on calculations, (3) it follows recognized statistical 
principles, and (4) it is simple to use (Crowell et al. 2018). The 
linear regression method can be affected by outliers and often 
underestimates how quickly things change compared to other 
statistics, like EPR (Dolan, 1991). 

The Weighted Linear Regression (WLR) method employs a 
linear regression approach similar to the Linear Regression 
Rate (LRR) method but incorporates a weighting factor 
(Equation 8) applied to Equation seven to account for 
positional uncertainty (Himmelstoss et al. 2021).

In the DSAS tool, Hossain et al. (2021) utilized the R2 value 
to be determined for LRR and WLR methods as presented in 
Eq.9, and it represents the accuracy and perfection between 
linear regression rate and weighted linear regression rate.

Where y = distance from baseline and known shoreline 
position, y′= predicted value of the best-fit regression line 
according to the equation, y = mean of the shoreline position 
data. The R-squared value, denoted as LR2, evaluates how 
well the shoreline position data fits the linear regression line.

Forecasting model

This model (Equation 10) calculates the adjusted shoreline 
position by incorporating the rate of shoreline movement 
(LRR) over a given time period. It uses the original inter-
sect point position and adjusts it by multiplying the Linear 
Regression Rate (LRR), which represents the rate of 
shoreline change per year, by the time elapsed. This 
adjustment accounts for both erosion (negative LRR) and 
accretion (positive LRR), ensuring that the shoreline's 
movement landward or seaward is accurately represented 
(Crowell et al. 1997). The model can be applied separately 
to the X and Y coordinates, allowing for a comprehensive 
adjustment in both directions, and is useful in predicting 
future shoreline positions or validating trends of coastal 
change observed over time.

Where:

Xnew  : Adjusted shoreline position.
Xoriginal  : Original intersect point position.
LRR: Linear Regression Rate (rate of change in shoreline 
position per year).
Δt represents the time span.

Validation of the Shoreline Prediction Model

The root mean square error is the square root of the variance 
of the residuals. It shows how well the model fits the data, 
i.e., how close the actual data points are to what the model 
predicted Lower RMSE values indicate a better fit, while 
higher values mean there is more error. The RMSE was used 
to check how well the actual coastline change rates matched 
the predicted ones. In shoreline observation, Uddin and Niloy 
(2022) assessed the calculated model and satellite observa-
tions of the shoreline change rate for 2021 by using RMSE 
values (Equation 11). 

Land loss and land gain computation

The areas identified as water or non-water in the images were 
compared to find out the values of land loss and gain, using 
the ArcGIS raster calculator tool (Mullick et al. 2019). The 
changes in land, both lost and gained, were measured over 
four years in a row, covering a total period of 30 years from 
1991 to 2021.

Results and discussion

The general view begins by describing the analysis of 179 
transects, with 174 considered active, along an approximate-
ly 25 km shoreline. This study utilized Weighted Linear 
Regression Rate (WLR) and Linear Regression Rate (LRR) 
for long-term analysis (1991–2021) and End Point Rate 
(EPR) and Net Shoreline Movement (NSM) for short-term 
intervals (1991–2000, 2000–2010, and 2010–2021).

Long term observation

Long-term observation includes overall analyses over the 
past 30 years from 1991 to 2021. There are a number of 
statistical methods developed to analyze long-term observa-
tion (more than two years) involving LRR, WLR, SCE, etc.

Shoreline change envelope

The highest distance range, from 590.78 to 495.79, belongs 
to the eastern region of shorelines (Graph 1, Fig 4). The 
farthest distance from the baseline belongs to the range of 
transect ID from 170 to 150. The nearest distance from the 
graph lies to the most eastward crossed 170 transect Id 
(Graph 1, Fig. 4).

Rate of shoreline movement

The Weighted Linear Regression (WLR) method shows 
varying rates of shoreline change along the studied coastal 
stretch. The spatial and temporal assessment of shoreline 
change across zones AB (Western), BC (Central), and CD 
(Eastern) of the Bay of Bengal reveals distinct patterns of 
erosion and accretion over the 30-year study period 
(1991-2021).

Spatial variation in shoreline dynamics

As shown in Fig. 6, the Bay of Bengal coastline demon-
strates significant zonal heterogeneity in shoreline change. 
Zone AB (Western Zone) exhibits a mixed pattern with 
predominantly erosional transects (73.33%), particularly in 
its central segment, though some accretional areas 
(15.56%) appear toward the boundaries. Zone BC (Central 
Zone) represents the most severely eroded region, with an 
overwhelming 98.31% of transects classified as erosional 
and no accretional transects observed. In contrast, Zone 
CD (Eastern Zone) displays a markedly different pattern 
with a majority of accretional transects (54.29%) concen-
trated in its central portion, though erosional processes still 
affect 28.57% of the area.

Quantitative assessment of shoreline change

The magnitude of shoreline change varies considerably 
across the study area, as illustrated in Table III. Zone BC 
exhibits the highest mean erosion rate (-9.48 m/yr), followed 
by Zone AB (-5.87 m/yr), while Zone CD shows net accre-

tion with a mean shoreline change of +5.88 m/yr. Maximum 
shoreline retreat was recorded in Zone BC (-13.8 m/yr), 
closely followed by Zone AB (-13.12 m/yr). Conversely, 
Zone CD registered the most substantial accretion, with a 
maximum shoreline advance of +25.58 m/yr, highlighting the 
dynamic nature of this eastern segment.

Transect-wise analysis

Graph 2 provides a detailed transect-by-transect visualization 
of erosion versus deposition patterns. The predominance of 
erosional processes (red areas) is evident across transects 

1-120, corresponding primarily to Zones AB and BC. The 
pronounced erosional trough between transects 43-64 corre-
sponds to the area of maximum retreat in Zone AB.

A dramatic shift occurs around transect 127, where 
substantial depositional processes (green areas) begin to 
dominate, reaching peak values exceeding +20 m/yr at 
transects 148-152, which aligns with the central portion 
of Zone CD. Notable interruptions in the accretional 
pattern occur around transects 155-158 and 168-169, 
indicating localized erosional hotspots within the general-
ly accretional eastern zone.

Short term observation

Shoreline variation is observed for each 10-year period 
from 1991 to 2021. The Fig. 6 shows seaward and 
landward movement at Kuakata area, Bay of Bengal, 
across three periods: 1991–2000, 2000–2010, and 
2010–2021. Accretion dominates in the eastern region, 
while erosion is prevalent in the western section, particu-
larly post-2000. In terms of short-period observation, the 
number of green transects is increasing both eastward 
and It reaches a peak point in 2021 from both the east and 
west portions, as shown in graph. 3 and Fig. 6. The 
method for frequent analyses is followed by NSM (Net 
Shoreline Movement) and EPR (End Point Rate).

Quantitative analysis using the EPR (End Point Rate) method

The End Point Rate (EPR) analysis is presented across 
three time periods: 1991-2000, 2000-2010, and 2010-2021. 
The Graph 3 and the Table IV demonstrate predominantly 
erosional rates with peaks reaching more than -20 meters/-
year, though a notable accretion peak of about more than 
30 meters/year appears around transect 125 between 1991 
and 2000.

The 2000-2010 period exhibits similar erosional trends in the 
central part of the transects but displays a significant accre-
tion peak of nearly 40 meters/year around transect 125 (Table 
IV). The most recent period (2010-2021) shows a more 
variable pattern with two distinct accretion peaks: one at the 
beginning of the stretch (around transect 15) reaching 
approximately 35 meters/year (Graph 3), and another more 

pronounced peak near transect 175 reaching about 44.9 
meters/year, as shown in Table IV, and Graph 3. All three 
time periods demonstrate fluctuating patterns of shoreline 
change rates across the study area, with the magnitude and 
location of peaks varying between periods. The average 
rate of shoreline change shows a progressive shift from 
erosional dominance to accretional tendency, changing 
from -9.68 m/year (1991-2000) to -0.98 m/year 
(2000-2010), and finally to 2.1 m/year (2010-2021), in 
Table IV, which supports Fig. 8.

The number of erosional transects decreased over time 
from 123 (87.86%) in 1991-2000 to 99 (61.11%) in 
2010-2021, while depositional transects increased from 17 
(12.14%) to 63 (38.89%) during the same period. Maxi-
mum erosion rates decreased from -24.5 m/year to -14.64 
m/year, while maximum accretion rates increased from 
33.49 m/year to 44.9 m/year. The average erosional rates 
moderated from -13.11 m/year to -8.38 m/year, while 

average depositional rates increased from 15.09 m/year to 
18.56 m/year across the study period.

Computation of land loss and land gain

In Fig. 7, the analysis of shoreline movement (NSM) along 
the Bay of Bengal coast revealed distinct patterns of morpho-
logical changes across three temporal periods: 1991-2000, 

2000-2010, and 2010-2021. The shoreline exhibited both 
erosional and accretional trends, with varying intensities 
along different coastal segments. During 1991-2000, the 
coastline was predominantly characterized by erosion 
(indicated in red), particularly along the central portion of the 
study area.

A small section in the eastern segment showed accretion 
(shown in green), while isolated stable areas (indicated in 
grey) were observed intermittently along the shoreline. The 
period 2000-2010 demonstrated a similar erosional pattern, 
though with some notable changes. The extent of erosion 
remained significant along the western and central sections, 
while the eastern portion showed increased accretional 
tendencies compared to the previous decade. The stable zones 
appeared to be more fragmentary during this period.

The most recent period (2010-2021) exhibited a continuation 
of the erosional trend along the western and central coastline. 
However, the eastern section displayed enhanced accretion, 
suggesting a persistent pattern of sediment accumulation in 
this area. The transition between erosional and accretional 
zones appeared more distinct compared to earlier periods. The 
analysis of shoreline movement (NSM) along the Bay of 
Bengal coast revealed significant morphological changes 
across three temporal periods: 1991-2000, 2000 2010, and 
2010-2021. The total affected area over the entire study 
period was 13.27 km², indicating substantial coastal dynamics 
in the region, as mentioned in Table V and Graph 4.

Expected shoreline position

According to Fig. 8, these historical trends manifest in 
distinct spatial patterns. The eastern portion, however, exhib-
its a significant landward movement, indicating persistent 
erosional processes despite the overall increase in previous 
erosional transects. 

This spatial variation in shoreline movement suggests that 
while accretional processes at the central zone have increased 
over time at a broader scale, localized erosional hotspots 
persist, particularly in the eastern section.

A remarkable morphological change along the coastline was 
observed with high fluctuation in some coastal zones from 
1991 to 2021. These physiological changes along the Bay 
of Bengal at Kuakata experienced both erosion and deposi-
tion, along with inward and outward movement of the 
shoreline. This study has highlighted both long-term obser-
vation over one period from 1991 to 2021 and short-term 
observation into three periods with a 10-year interval.

A comparable study conducted by Goswami et al. (2022) 
analyzed 1052 transects over a 55 km shoreline of Kuakata 
area, employing metrics such as EPR, NSM, and LRR 
while integrating SCE to assess shoreline variability over 
20 years from 2000 to 2020. Another study by Islam et al. 
(2014) found, in their study on Kutubdia Island, south 
eastern zone of Bangladesh, a strong correlation between 
EPR with WLR and LRR. However, their prime result of 
the transect rates is 0.29 m/yr, 2.91m/yr, and 3.53 for EPR, 
LRR, and WLR, respectively.

Similar studies conducted in the same location by Bushra 
et al.   (2021), their studies strongly supported our 
findings, though they chose a bit longer distance toward 
the north part from the Golachipa River at the eastern side. 
They got lost area of approximately 13.59 km2, over 30 
years from 1989 to 2020, likely, in my studies (Table V, 
Graph. 4) loss of area is more than 8 km2.

On the side of Red Crab Island in south eastern zone, it is 
literally being sedimentation from past years according to 
all previous publications and our research as well (Fig. 7). 
In this study, the shoreline dynamics along the Kuakata 

coast from 1991 to 2021 revealed significant erosion 
patterns, consistent with the findings of  Uddin & Niloy 
(2022). Their investigation results have clarified that red 
crab char, the eastern part of Kuakata beach, is more 
dynamic, demonstrating a vulnerable region and high 
SCE is 486m from  Uddin and Niloy (2022) and 490 in 
order to this report (Graph. 1, Fig. 4). My study found 
higher overall shoreline loss (~8.2 km²) and gain (~5.3 
km²) compared to their 6.11 km² loss and 3.26 km² gain. 
Differences may arise from data sources and methodolo-
gy, but both studies indicate a long-term erosional trend. 
On the side of statistical rate of shoreline variation, max, 
and min shoreline change rates regarding three zones 
(Table III) are homogenized by them, for instance, mean 
coastline variation -2.84 from our study and -3.11 in 
order to Uddin and Niloy (2022), similarly, highest accre-
tion rate from CD altered section shows insignificant 
difference as from my study is 25.58 and 23.88 from their 
study. Overall, it can be observed that no significant 
variation is found between the studies. 

Coastal districts are evaluated considering temporal shore-
line change analyses by Shamsuzzoha and Tofael (2023), 
and they analyzed the whole southern part of Bangladesh 
altogether, with a different approach, which poses 
challenges to making comparisons.

Shoreline forecasting has been limited, primarily for 
identifying critical areas. Rahman and Ferdous (2019) and 
Uddin & Niloy (2022) predicted shorelines for 2028 and 
2041, while this study forecasts 2050 (Fig. 8). Rahman and 
Ferdous (2019) analyzed the entire northern Bay of Bengal, 
making a Kalapara-specific evaluation difficult. Uddin and 
Niloy (2022) used DSAS beta forecasting, differing from 
this study’s equation-based model (equation_10), which 
aligns with observed short-term trends (1991–2021). The 
central part of Kuakata is predicted to shift seaward, which 
is in contrast findings of Uddin and Niloy (2022), while the 
eastern part will experience significant landward move-
ment, partially aligning with previous findings. However, 
uncertainties remain due to the long projection period (29 
years) and using a different prediction model, making the 
forecast probabilistic rather than absolute. 

Notably, the southeastern zone, which includes Red Crab 
Island (or char), appears to be highly dynamic, with signif-
icant landward shoreline movement indicating erosion. 
This region’s vulnerability may stem from its exposure to 
high-energy tidal forces and sediment-starved conditions, 

leading to the gradual loss of land (Uddin and Niloy, 
2022). The ecological significance of Red Crab Island, 
coupled with its role as a potential buffer against coastal 
erosion, makes it a critical area for focused conservation 
and monitoring efforts.

Conclusion

This study provides a comprehensive analysis of shoreline 
dynamics along the Kuakata coast, Bangladesh, over a 
30-year period (1991–2021). Using multi-temporal Land-
sat imagery and the Digital Shoreline Analysis System 
(DSAS), key findings revealed the highest erosion rate of 
-13.8 m/year in the central BC part and the highest accre-
tion rate of +25.58 m/year in the southeastern zone.

These findings underscore the dynamic nature of the 
Kuakata coastline, and due to our ignoring a direct field 
visit, we could not detect the exact reason among many 
probable reasons, including climate change, anthropogenic 
activities, tidal flux, etc. The study highlights the vulnera-
bility of coastal communities and infrastructure, necessi-
tating immediate action to mitigate erosion risks and 
promote sustainable development.

Future research should focus on discontinuous areas, deep 
social impact with accurate reasons, and detecting the 
exact reason by integrating higher-resolution satellite 
imagery, field validation, and hydrodynamic modeling.
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Bangladesh has increased from 144 million in 2011 to  
165.16 million in 2022, according to the latest population 
and housing census, and is projected to reach 175 million 
by 2024 (BBS, 2022; MacroTrends, 2024) with many 
living in low-lying floodplains vulnerable to monsoon 
flooding and tidal surges (BBS, 2011). The global average 
sea level rose by 0.21 meters from 1902 to 2015, but the 
Ganges Delta has experienced a much higher rate of 5–15 
mm per year (Mullick et al. 2019; Anwar et al. 2022).

Tidal dynamics play a critical role in shoreline changes, 
particularly in Bangladesh’s semi-diurnal tidal regime, where 
two high and two low tides occur daily (Rose and Bhaskaran, 
2017). They, additionally, mentioned that the average tidal 
range is 1.86 to 2.47 meters, transitioning from microtidal to 
mesotidal conditions. Tide data, sourced from UHSLC 
Stations (2024) and the Bangladesh Tide Table, is essential 
for accurate shoreline delineation, especially when consider-
ing neap and spring tides. Spring tides, representing the 
highest flood levels, and neap tides, the lowest, help avoid 
biases in shoreline change analysis (UHSLC, 2024).

Remote sensing and GIS technologies, such as Landsat imag-
ery and the Digital Shoreline Analysis System (DSAS), are 
essential for monitoring shoreline changes (Himmelstoss et 
al. 2021; Bushra et al. 2021). DSAS Tool, widely accepted 
for statistical analyses, includes a number of methods, 
including WLR (Weighted Linear Regression), LRR (Linear 
Regression Rate), NSM (Net Shoreline Movement), etc. 
Tools like Sentinel-2 imagery and water indices (e.g., NDWI, 
MNDWI) enable accurate shoreline extraction and analysis 
(Astiti et al. 2019; Fejjari et al. 2023). Studies have used 
these methods to analyze shoreline changes over decades, 
employing statistical techniques like linear regression to 
predict future trends (Crowell et al. 1997; Maiti and 
Bhattacharya, 2009). 

This study focuses on Kuakata Beach, a vulnerable area in 
south-central Bangladesh, to analyze shoreline changes over 
the past 30 years using Landsat imagery, GIS, and DSAS. 
The Landsat images for analysis are collected from USGS 
Earth Explorer (https://earthexplorer.usgs.gov). This 
research highlights the critical need for integrated geospatial 
analyses and field validation in understanding coastal 
dynamics. By integrating tide data and advanced remote 
sensing techniques, the study aims to provide insights into 
erosion, accretion, and shoreline stabilization processes, 
contributing to effective coastal management and policy 
development.

This research attempts to assess quantitative factors, includ-
ing annual shoreline movement rate, land loss and land gain 

over 30 years from 1991 to 2021, and find vulnerable and 
critical areas by predicted graphical shoreline visualization, 
by integrating GIS and Remote Sensing techniques.

Materials and methods

Study area

The dynamic coastal region of Bangladesh, situated at the 
southernmost area along the Bay of Bengal, is continuously 
deformed by multiple factors, including sediment accumula-
tion from three mighty rivers source; Ganges River, the 
Meghna River, and the Brahmaputra, wave action, etc. The 
deltaic stability majorly depends on the sediment deposition 
and becomes a shelter for biodiversity. Kuakata sea coastline 
is situated in the central zone of the coast of Bangladesh, 
which contains two major estuaries: the estuaries of Andar-
manik River at the western zone, and the estuaries of Gola-
chipa River at the eastern portion (Fig. 1). This study area 
belongs to Kalapara Upazila in the Patuakhali district, and it 
covers from 21° 48’ 33.23” N to 21° 52’ 16.03” N latitude 
and 90° 6’ 16.45” E to 90° 12’ 48.46” E longitudes (Fig. 1). 
The study area get experience the high- est temperature in 
January (25.1°C) and 33.8°C in April (BMD, 2020), with a 
mean annual rainfall of 2580 mm/year.

The variation of wave height can be observed based on two 
major season, during monsoon season, the wave height is 
typically around 1.8m, on the other hand, during the summer 
season from January to March, the wave height is very small; 
however, in general, the wave height stays 1m. Tides in the 
beach region are semi-diurnal, with daily tide levels ranging 
from 1 to 1.5 m (Uddin and Niloy, 2022).

Data source

Multi-temporal Landsat images, including TM, ETM+, and 
OLI/TRIS sensors, were utilized from 1990 to 2021 to 
analyze the shoreline dynamics of Kuakata. Specifically, four 
satellite images were selected at 10- Multi-temporal Landsat 
images, including TM, ETM+, and OLI/TRIS sensors, were 
utilized from 1990 to 2021 to analyze the shoreline dynamics 
of Kuakata. Specifically, four satellite images were selected 
year intervals from 1991 to 2021 (as shown in Table I). The 
images were acquired from reliable platforms such as USGS 
Earth Explorer (https://earthexplorer.usgs.gov) and GLOVIS  
(www.glovis.gov.us), ensuring a cloud cover of less than 5% 
to maintain data quality and accuracy (Islam et al. 2022).

Here, ECurrent   represents the total positional error for the 
current year, and ENext  represents the total positional error for 
the following year.  

All the metadata of satellite images are shown in Table I. 
To ensure accuracy in shoreline change detection, tide data 
were collected from two main sources: UHSLC (2024) and 
Bangladesh Tide Times (2024). The uncertainty in shore-
line position for each time interval was calculated using 
Equation 1 (Himmelstoss et al. 2021), and the values are 
added in Table 1.

Data preparation

Four key steps were used to study the changes along the 
shoreline. These steps included: (1) processing images 
with Arc-GIS, which involved correcting the images and 
calculating the NDWI to separate the images into water 

and non-water categories, (2) using Otsu’s Binary 
Thresholding to create a binary image and to outline the 
shoreline between water and non-water areas, (3) 
estimating the errors in the LANDSAT images, and (4) 
using DSAS to measure the statistics of the changes 
(Mullick et al. 2019). Shoreline change is measured 
using the WLR, EPR, and LRR methods. This study 
looked at the dividing line between land and water by 
using a binary threshold method. While separating the 
land pixels from the water pixels, the shoreline was 
identified without including the tidal wave. As a result, 
the land boundary line considered in this study is less 
likely to have been mistakenly caused by waves and 
tides. To calculate the rate of shoreline change, we 
looked at four different shorelines from the study area 
over 30 years: 1991, 2000, 2010, and 2021. Where incon-
sistency has been found, the shoreline has been digitized 
on a scale of 1:1000, which indicates a very high accura-
cy (Kabir and Tanvir, 2020). Table II displays major 
attributes regarding shorelines and baselines, including 
their length, uncertainty, date, etc.

The baseline has been taken 200 meters away from the most 
ancient shoreline position, and transect spacing has been 
chosen to be 150m, where the number of transects is 179 
along the coastline.

Image correction

Landsat imagery captures pixel values as digital numbers 

(DN), which, as highlighted by (Chander et al. 2009) 
Top-Of-Atmosphere (TOA, serve as the foundation for 
radiometric adjustments that convert raw satellite data into 
calibrated units like radiance or reflectance, ensuring 
consistency and precision for scientific analyses across 
varying sensors, times, and atmospheric conditions.

Chander et al. (2009) Top-Of-Atmosphere (TOA suggested 
changing DN to Radiance for images taken by the Landsat 
MSS, TM, and ETM sensors by using these equations (2, 3).

Where Lλ is the radiance of a spectral unit of“W/(m2 sr. μ
m),” Qcal is the pixel value of quantized calibrated [DN], 
Qcalmin is the Minimum Qcal, Qcalmax is the Maximum Qcal, 
LMINλ = Minimum Lλ scaled to Qcalmin [W/(m2 sr μm)], LMAXλ 
= Maximum Lλ scaled to Qcalmax [W/(m2 sr μm)]. The follow-
ing formula is used to convert radiance to ToA reflectance as

where Pλ = ToA reflectance [unitless], π = 3.14159, d is the 
Earth-Sun distance [astronomical units], ESUNλ is the mean 
exo-atmospheric solar irradiance [W/(m2 μm)], Ɵz is the 
Solar zenith angle [degrees].

For images from Landsat OLI, you can directly convert DN 
into ToA reflectance according to equation 4 (U.S. Geologi-
cal Survey, 2019).

where Mp is the reflectance multiplicative scaling factor for 
the band [unitless], and Ap is the reflectance additive scaling 
factor for the band [unitless]. The metadata file associated 
with LANDSAT imagery includes values for parameters such 
as Qcal, Qcalmax, Qcalmin, LMINλ, LMAXλ, Mp, Ap, and Ɵz (U.S. 
Geological Survey, 2019).

Digital index

The NDWI index is a useful tool for spotting water bodies on 
the Earth's surface. The NDWI was determined by using the 
green and near-infrared bands, as shown in equation 5 (Hos-
sain et al. 2021).

The NDWI can range from -1 to +1. The NDWI image 
typically indicates a good result for areas with water and a 
bad result for areas without water. To show the boundary 
between land and water as a coastline, we marked the land 
features with a 0 and the water features with a 1.

DSAS tool for shoreline change analysis

The Digital Shoreline Analysis System (DSAS) Version 6 is 
the latest standalone software developed for shoreline change 
analysis. Unlike its earlier versions, which operated as an 
extension of ArcGIS, DSAS v6 is no longer tied to ArcGIS, 
offering users more flexibility and independence from GIS 
software constraints. This modern version integrates a 
user-friendly interface with enhanced features, making it a 
powerful and comfortable tool for analyzing coastal changes. 
It requires pre-processed shoreline data and a baseline in 
GeoJSON format, ensuring standardized and efficient input 
handling. With updated algorithms and capabilities, DSAS 
v6 delivers accurate results, making it ideal for shoreline 
management and research applications. It estimates common 
uncertainty 10 and provides 13 types of statistical results that 
are so effective for analysts.

Varieties of Statistical Methods applied for understanding the 
Rate of Shoreline Movement

The Shoreline Change Envelope (SCE) and the rate of shore-
line change were measured using the EPR, NSM, LRR, and 
WLR methods as outlined in the Digital Shoreline Analysis 
System (DSAS). These measurements are commonly used in 
statistics that track changes along the shoreline.

The End Point Rate (EPR) is the best method when it is 
calculated using just two shoreline positions at different 
times (Sarwar and Woodroffe, 2013). The EPR method calcu-
lates how much the shoreline changes by dividing the 
distance by the number of years, as shown in equation six.

The distance (m) between the newest and oldest shoreline is 
represented by D1 − D2, and the time gap (years) between the 
two shoreline positions is shown as t1 − t0.

On the other hand, LRR (Linear regression method) is more 
appropriate when the number of shorelines exceeds two. 
OBrien et al. (2014) utilized the following LRR formula 
(Equation 7) for long-term shoreline analysis

Y = a + bX              (7)

In this equation, y represents the distance (in meters) from the 
baseline. The variable is the starting point of y, while b shows the 
slope of the line that describes how the shoreline changes over time.  

The variable x stands for the shoreline position in various years. 
A ±5 m uncertainty and a 95% confidence interval were set as 
default parameters for statistical calculations. Linear regression 
involves several key aspects: (1) it uses all available data, no 
matter if there are changes in trends or accuracy, (2) it relies 
entirely on calculations, (3) it follows recognized statistical 
principles, and (4) it is simple to use (Crowell et al. 2018). The 
linear regression method can be affected by outliers and often 
underestimates how quickly things change compared to other 
statistics, like EPR (Dolan, 1991). 

The Weighted Linear Regression (WLR) method employs a 
linear regression approach similar to the Linear Regression 
Rate (LRR) method but incorporates a weighting factor 
(Equation 8) applied to Equation seven to account for 
positional uncertainty (Himmelstoss et al. 2021).

In the DSAS tool, Hossain et al. (2021) utilized the R2 value 
to be determined for LRR and WLR methods as presented in 
Eq.9, and it represents the accuracy and perfection between 
linear regression rate and weighted linear regression rate.

Where y = distance from baseline and known shoreline 
position, y′= predicted value of the best-fit regression line 
according to the equation, y = mean of the shoreline position 
data. The R-squared value, denoted as LR2, evaluates how 
well the shoreline position data fits the linear regression line.

Forecasting model

This model (Equation 10) calculates the adjusted shoreline 
position by incorporating the rate of shoreline movement 
(LRR) over a given time period. It uses the original inter-
sect point position and adjusts it by multiplying the Linear 
Regression Rate (LRR), which represents the rate of 
shoreline change per year, by the time elapsed. This 
adjustment accounts for both erosion (negative LRR) and 
accretion (positive LRR), ensuring that the shoreline's 
movement landward or seaward is accurately represented 
(Crowell et al. 1997). The model can be applied separately 
to the X and Y coordinates, allowing for a comprehensive 
adjustment in both directions, and is useful in predicting 
future shoreline positions or validating trends of coastal 
change observed over time.

Where:

Xnew  : Adjusted shoreline position.
Xoriginal  : Original intersect point position.
LRR: Linear Regression Rate (rate of change in shoreline 
position per year).
Δt represents the time span.

Validation of the Shoreline Prediction Model

The root mean square error is the square root of the variance 
of the residuals. It shows how well the model fits the data, 
i.e., how close the actual data points are to what the model 
predicted Lower RMSE values indicate a better fit, while 
higher values mean there is more error. The RMSE was used 
to check how well the actual coastline change rates matched 
the predicted ones. In shoreline observation, Uddin and Niloy 
(2022) assessed the calculated model and satellite observa-
tions of the shoreline change rate for 2021 by using RMSE 
values (Equation 11). 

Land loss and land gain computation

The areas identified as water or non-water in the images were 
compared to find out the values of land loss and gain, using 
the ArcGIS raster calculator tool (Mullick et al. 2019). The 
changes in land, both lost and gained, were measured over 
four years in a row, covering a total period of 30 years from 
1991 to 2021.

Results and discussion

The general view begins by describing the analysis of 179 
transects, with 174 considered active, along an approximate-
ly 25 km shoreline. This study utilized Weighted Linear 
Regression Rate (WLR) and Linear Regression Rate (LRR) 
for long-term analysis (1991–2021) and End Point Rate 
(EPR) and Net Shoreline Movement (NSM) for short-term 
intervals (1991–2000, 2000–2010, and 2010–2021).

Long term observation

Long-term observation includes overall analyses over the 
past 30 years from 1991 to 2021. There are a number of 
statistical methods developed to analyze long-term observa-
tion (more than two years) involving LRR, WLR, SCE, etc.

Shoreline change envelope

The highest distance range, from 590.78 to 495.79, belongs 
to the eastern region of shorelines (Graph 1, Fig 4). The 
farthest distance from the baseline belongs to the range of 
transect ID from 170 to 150. The nearest distance from the 
graph lies to the most eastward crossed 170 transect Id 
(Graph 1, Fig. 4).

Rate of shoreline movement

The Weighted Linear Regression (WLR) method shows 
varying rates of shoreline change along the studied coastal 
stretch. The spatial and temporal assessment of shoreline 
change across zones AB (Western), BC (Central), and CD 
(Eastern) of the Bay of Bengal reveals distinct patterns of 
erosion and accretion over the 30-year study period 
(1991-2021).

Spatial variation in shoreline dynamics

As shown in Fig. 6, the Bay of Bengal coastline demon-
strates significant zonal heterogeneity in shoreline change. 
Zone AB (Western Zone) exhibits a mixed pattern with 
predominantly erosional transects (73.33%), particularly in 
its central segment, though some accretional areas 
(15.56%) appear toward the boundaries. Zone BC (Central 
Zone) represents the most severely eroded region, with an 
overwhelming 98.31% of transects classified as erosional 
and no accretional transects observed. In contrast, Zone 
CD (Eastern Zone) displays a markedly different pattern 
with a majority of accretional transects (54.29%) concen-
trated in its central portion, though erosional processes still 
affect 28.57% of the area.

Quantitative assessment of shoreline change

The magnitude of shoreline change varies considerably 
across the study area, as illustrated in Table III. Zone BC 
exhibits the highest mean erosion rate (-9.48 m/yr), followed 
by Zone AB (-5.87 m/yr), while Zone CD shows net accre-

tion with a mean shoreline change of +5.88 m/yr. Maximum 
shoreline retreat was recorded in Zone BC (-13.8 m/yr), 
closely followed by Zone AB (-13.12 m/yr). Conversely, 
Zone CD registered the most substantial accretion, with a 
maximum shoreline advance of +25.58 m/yr, highlighting the 
dynamic nature of this eastern segment.

Transect-wise analysis

Graph 2 provides a detailed transect-by-transect visualization 
of erosion versus deposition patterns. The predominance of 
erosional processes (red areas) is evident across transects 

1-120, corresponding primarily to Zones AB and BC. The 
pronounced erosional trough between transects 43-64 corre-
sponds to the area of maximum retreat in Zone AB.

A dramatic shift occurs around transect 127, where 
substantial depositional processes (green areas) begin to 
dominate, reaching peak values exceeding +20 m/yr at 
transects 148-152, which aligns with the central portion 
of Zone CD. Notable interruptions in the accretional 
pattern occur around transects 155-158 and 168-169, 
indicating localized erosional hotspots within the general-
ly accretional eastern zone.

Short term observation

Shoreline variation is observed for each 10-year period 
from 1991 to 2021. The Fig. 6 shows seaward and 
landward movement at Kuakata area, Bay of Bengal, 
across three periods: 1991–2000, 2000–2010, and 
2010–2021. Accretion dominates in the eastern region, 
while erosion is prevalent in the western section, particu-
larly post-2000. In terms of short-period observation, the 
number of green transects is increasing both eastward 
and It reaches a peak point in 2021 from both the east and 
west portions, as shown in graph. 3 and Fig. 6. The 
method for frequent analyses is followed by NSM (Net 
Shoreline Movement) and EPR (End Point Rate).

Quantitative analysis using the EPR (End Point Rate) method

The End Point Rate (EPR) analysis is presented across 
three time periods: 1991-2000, 2000-2010, and 2010-2021. 
The Graph 3 and the Table IV demonstrate predominantly 
erosional rates with peaks reaching more than -20 meters/-
year, though a notable accretion peak of about more than 
30 meters/year appears around transect 125 between 1991 
and 2000.

The 2000-2010 period exhibits similar erosional trends in the 
central part of the transects but displays a significant accre-
tion peak of nearly 40 meters/year around transect 125 (Table 
IV). The most recent period (2010-2021) shows a more 
variable pattern with two distinct accretion peaks: one at the 
beginning of the stretch (around transect 15) reaching 
approximately 35 meters/year (Graph 3), and another more 

pronounced peak near transect 175 reaching about 44.9 
meters/year, as shown in Table IV, and Graph 3. All three 
time periods demonstrate fluctuating patterns of shoreline 
change rates across the study area, with the magnitude and 
location of peaks varying between periods. The average 
rate of shoreline change shows a progressive shift from 
erosional dominance to accretional tendency, changing 
from -9.68 m/year (1991-2000) to -0.98 m/year 
(2000-2010), and finally to 2.1 m/year (2010-2021), in 
Table IV, which supports Fig. 8.

The number of erosional transects decreased over time 
from 123 (87.86%) in 1991-2000 to 99 (61.11%) in 
2010-2021, while depositional transects increased from 17 
(12.14%) to 63 (38.89%) during the same period. Maxi-
mum erosion rates decreased from -24.5 m/year to -14.64 
m/year, while maximum accretion rates increased from 
33.49 m/year to 44.9 m/year. The average erosional rates 
moderated from -13.11 m/year to -8.38 m/year, while 

average depositional rates increased from 15.09 m/year to 
18.56 m/year across the study period.

Computation of land loss and land gain

In Fig. 7, the analysis of shoreline movement (NSM) along 
the Bay of Bengal coast revealed distinct patterns of morpho-
logical changes across three temporal periods: 1991-2000, 

2000-2010, and 2010-2021. The shoreline exhibited both 
erosional and accretional trends, with varying intensities 
along different coastal segments. During 1991-2000, the 
coastline was predominantly characterized by erosion 
(indicated in red), particularly along the central portion of the 
study area.
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A small section in the eastern segment showed accretion 
(shown in green), while isolated stable areas (indicated in 
grey) were observed intermittently along the shoreline. The 
period 2000-2010 demonstrated a similar erosional pattern, 
though with some notable changes. The extent of erosion 
remained significant along the western and central sections, 
while the eastern portion showed increased accretional 
tendencies compared to the previous decade. The stable zones 
appeared to be more fragmentary during this period.

The most recent period (2010-2021) exhibited a continuation 
of the erosional trend along the western and central coastline. 
However, the eastern section displayed enhanced accretion, 
suggesting a persistent pattern of sediment accumulation in 
this area. The transition between erosional and accretional 
zones appeared more distinct compared to earlier periods. The 
analysis of shoreline movement (NSM) along the Bay of 
Bengal coast revealed significant morphological changes 
across three temporal periods: 1991-2000, 2000 2010, and 
2010-2021. The total affected area over the entire study 
period was 13.27 km², indicating substantial coastal dynamics 
in the region, as mentioned in Table V and Graph 4.

Expected shoreline position

According to Fig. 8, these historical trends manifest in 
distinct spatial patterns. The eastern portion, however, exhib-
its a significant landward movement, indicating persistent 
erosional processes despite the overall increase in previous 
erosional transects. 

This spatial variation in shoreline movement suggests that 
while accretional processes at the central zone have increased 
over time at a broader scale, localized erosional hotspots 
persist, particularly in the eastern section.

A remarkable morphological change along the coastline was 
observed with high fluctuation in some coastal zones from 
1991 to 2021. These physiological changes along the Bay 
of Bengal at Kuakata experienced both erosion and deposi-
tion, along with inward and outward movement of the 
shoreline. This study has highlighted both long-term obser-
vation over one period from 1991 to 2021 and short-term 
observation into three periods with a 10-year interval.

A comparable study conducted by Goswami et al. (2022) 
analyzed 1052 transects over a 55 km shoreline of Kuakata 
area, employing metrics such as EPR, NSM, and LRR 
while integrating SCE to assess shoreline variability over 
20 years from 2000 to 2020. Another study by Islam et al. 
(2014) found, in their study on Kutubdia Island, south 
eastern zone of Bangladesh, a strong correlation between 
EPR with WLR and LRR. However, their prime result of 
the transect rates is 0.29 m/yr, 2.91m/yr, and 3.53 for EPR, 
LRR, and WLR, respectively.

Similar studies conducted in the same location by Bushra 
et al.   (2021), their studies strongly supported our 
findings, though they chose a bit longer distance toward 
the north part from the Golachipa River at the eastern side. 
They got lost area of approximately 13.59 km2, over 30 
years from 1989 to 2020, likely, in my studies (Table V, 
Graph. 4) loss of area is more than 8 km2.

On the side of Red Crab Island in south eastern zone, it is 
literally being sedimentation from past years according to 
all previous publications and our research as well (Fig. 7). 
In this study, the shoreline dynamics along the Kuakata 

coast from 1991 to 2021 revealed significant erosion 
patterns, consistent with the findings of  Uddin & Niloy 
(2022). Their investigation results have clarified that red 
crab char, the eastern part of Kuakata beach, is more 
dynamic, demonstrating a vulnerable region and high 
SCE is 486m from  Uddin and Niloy (2022) and 490 in 
order to this report (Graph. 1, Fig. 4). My study found 
higher overall shoreline loss (~8.2 km²) and gain (~5.3 
km²) compared to their 6.11 km² loss and 3.26 km² gain. 
Differences may arise from data sources and methodolo-
gy, but both studies indicate a long-term erosional trend. 
On the side of statistical rate of shoreline variation, max, 
and min shoreline change rates regarding three zones 
(Table III) are homogenized by them, for instance, mean 
coastline variation -2.84 from our study and -3.11 in 
order to Uddin and Niloy (2022), similarly, highest accre-
tion rate from CD altered section shows insignificant 
difference as from my study is 25.58 and 23.88 from their 
study. Overall, it can be observed that no significant 
variation is found between the studies. 

Coastal districts are evaluated considering temporal shore-
line change analyses by Shamsuzzoha and Tofael (2023), 
and they analyzed the whole southern part of Bangladesh 
altogether, with a different approach, which poses 
challenges to making comparisons.

Shoreline forecasting has been limited, primarily for 
identifying critical areas. Rahman and Ferdous (2019) and 
Uddin & Niloy (2022) predicted shorelines for 2028 and 
2041, while this study forecasts 2050 (Fig. 8). Rahman and 
Ferdous (2019) analyzed the entire northern Bay of Bengal, 
making a Kalapara-specific evaluation difficult. Uddin and 
Niloy (2022) used DSAS beta forecasting, differing from 
this study’s equation-based model (equation_10), which 
aligns with observed short-term trends (1991–2021). The 
central part of Kuakata is predicted to shift seaward, which 
is in contrast findings of Uddin and Niloy (2022), while the 
eastern part will experience significant landward move-
ment, partially aligning with previous findings. However, 
uncertainties remain due to the long projection period (29 
years) and using a different prediction model, making the 
forecast probabilistic rather than absolute. 

Notably, the southeastern zone, which includes Red Crab 
Island (or char), appears to be highly dynamic, with signif-
icant landward shoreline movement indicating erosion. 
This region’s vulnerability may stem from its exposure to 
high-energy tidal forces and sediment-starved conditions, 

leading to the gradual loss of land (Uddin and Niloy, 
2022). The ecological significance of Red Crab Island, 
coupled with its role as a potential buffer against coastal 
erosion, makes it a critical area for focused conservation 
and monitoring efforts.

Conclusion

This study provides a comprehensive analysis of shoreline 
dynamics along the Kuakata coast, Bangladesh, over a 
30-year period (1991–2021). Using multi-temporal Land-
sat imagery and the Digital Shoreline Analysis System 
(DSAS), key findings revealed the highest erosion rate of 
-13.8 m/year in the central BC part and the highest accre-
tion rate of +25.58 m/year in the southeastern zone.

These findings underscore the dynamic nature of the 
Kuakata coastline, and due to our ignoring a direct field 
visit, we could not detect the exact reason among many 
probable reasons, including climate change, anthropogenic 
activities, tidal flux, etc. The study highlights the vulnera-
bility of coastal communities and infrastructure, necessi-
tating immediate action to mitigate erosion risks and 
promote sustainable development.

Future research should focus on discontinuous areas, deep 
social impact with accurate reasons, and detecting the 
exact reason by integrating higher-resolution satellite 
imagery, field validation, and hydrodynamic modeling.
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