

Available online at www.banglajol.info

Bangladesh J. Sci. Ind. Res. 51(1), 69-74, 2016

BANGLADESH JOURNAL OF SCIENTIFIC AND INDUSTRIAL RESEARCH

E-mail: bjstr07@gmail.com

(U, M)-derivations in completely semiprime \(\Gamma\)-rings

M. M. Rahman1* and A. C. Paul2

Department of Mathematics, Jagannath University, Dhaka, Bangladesh

Department of Mathematics, University of Rajshahi, Rajshahi, Bangladesh

Abstract

The objective of this paper is to extend and generalize some results of (Rahman and Paul, 2014) in completely semiprime Γ - rings. We prove that, if U is an admissible Lie ideal of a completely semiprime Γ -ring M and d is a (U,M) -derivation of M then d(u cov) = d(u)cov + ucod(v) for all $u, v \in U$ and $\alpha \in \Gamma$.

Mathematics Subject Classification: 13N15, 16W10, 17C50.

Keywords: Admissible Lie ideal; (U,M) -derivation; Γ -ring; Completely semiprime Γ -ring

Introduction

Herstein (1957) proved a well-known result in prime rings which states that 'every Jordan derivation on a 2-torsion free prime ring is a derivation'. Afterwards Mathematicians studied extensively the derivations in prime rings. Awtar (1984) extended Herstein's result to Lie ideals. (U,R)-derivations in rings have been introduced by Faraj et al (2010) as a generalization of Jordan derivations on a Lie ideal U of a ring R. The notion of a (U,R)-derivation extends the concept given by Awtar (1984). Faraj et al (2010) proved that if R is a prime ring, char $(R) \neq 2$, U is a square closed Lie ideal of R and d is a (U,R) -derivation of R, then d(ur) = d(u)r + ud(r) for all $u \in U, r \in R$. This result is a generalization of a result of Awtar (1984). Some extensive results of left derivation and Jordan left derivation of a \(\Gamma\)-ring were determined by Ceven (2002). Halder and Paul (2012) extended the results of Ceven (2002) to Lie ideals. In this article, we have generalized a result of (Rahman and Paul 2014) in completely semiprime Γ -rings by (U, M) -derivation.

Preliminaries

Barnes (1966) generalized the notion of a Γ -ring which was introduced by Nobusawa (1964). Let M and Γ be additive abelian groups. If there is a mapping $M \times \Gamma \times M \to M$ such that

(i) $(x+y)\alpha z = x\alpha z + y\alpha z$, $x(\alpha + \beta)y = x\alpha y + x\beta y$, $x\alpha(y+z) = x\alpha y + x\alpha z$

(ii) $(x\alpha y)\beta z = x\alpha(y\beta z)$ for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$,

then M is called a Γ -ring. This concept is more general than that of a ring. A Γ -ring M is completely semiprime if $a\Gamma a=0$ (with $a\in M$) implies a=0. A Γ -ring M is 2-torsion free if 2a=0 implies a=0 for all $a\in M$. For any $x,y\in M$ and $\alpha\in\Gamma$, the Lie product is defined by $[x,y]_{\alpha}=x\alpha y-y\alpha x$. An additive subgroup $U\subseteq M$ is said to be a Lie ideal if $u\in U$, $m\in M$ and $\alpha\in\Gamma$ implies $[u,m]_{\alpha}\in U$. A Lie ideal U is square closed if it satisfies $ucau\in U$ for all $u\in U$, $\alpha\in\Gamma$ and a Lie ideal U is an admissible Lie ideal of M if U is square closed and $U\subseteq Z(M)$, where Z(M) denotes the center of M.

We introduce the concept of (U,M) -derivation of a Γ ring using the notion of (U,R)-derivation of a ring due to
Faraj et al (2010) as follows:

Definition 2.1 Let M be a Γ -ring and U be a Lie ideal of M. An additive mapping $d:M\to M$ is said to be a (U,M)-derivation of M if for all $u\in U;m,s\in M$ and $\alpha\in\Gamma$

Corresponding author, e-mail: mizanorrahman@gmail.com

 $d(u\cos t + s\cos t) = d(u)\cos t + u\cos t(m) + d(s)\cos t + s\cos t(u) = D(u_1)\cos t + u_1\cos t(x) + D(y)\cos t_1 + y\cos t(u_1), \text{ where holds}$

Example 2.1 Suppose R is an associative ring with 1, and U U is a Lie ideal of R. Let $M = M_{1,2}(R)$ and

$$\Gamma = \left\{ \begin{pmatrix} n, 1 \\ 0 \end{pmatrix} : n \in Z \right\}$$
, then M is a Γ -ring. Let

 $N = \{(x, x) : x \in R\} \subseteq M$, then N is a sub Γ -ring. Let $U_1 = \{(u, u) : u \in U\}$, then for $una - anu \in U$

$$(u,u)$$
 $\begin{pmatrix} n \\ 0 \end{pmatrix}$ $(u,a)-(a,a)$ $\begin{pmatrix} n \\ 0 \end{pmatrix}$ (u,u)

=(una,una)-(anu,anu)

 $=(una-anu,una-anu)\in U.$

Thus, U_1 is a Lie ideal of N. Let $d: R \rightarrow R$ be a (U,R)-derivation. Now, we define a mapping $D: N \rightarrow N$ by D((x,x)) = (d(x),d(x)). Then

$$D((u,u)\binom{n}{0}(a,a) + (b,b)\binom{n}{0}(u,u))$$

= D((una,una) + (bnu,bnu))

= D((una + bnu, una + bnu))

=(d(una+bnu),d(una+bnu))

= (d(u)na + und(a) + d(b)nu + bnd(u), d(u)na

+ und(a) + d(b)nu + bnd(u)

= (d(u)na + und(a), d(u)na + und(a))

+(d(b)nu+bnd(u),d(b)nu+bnd(u))

= (d(u)na, d(u)na) + (und(a), und(a))

+(d(b)nu,d(b)nu)+(bnd(u),bnd(u))

$$= (d(u), d(u)) \binom{n}{0} (a, a) + (u, u) \binom{n}{0} (d(a), d(a)) +$$

$$(d(b),d(b))\binom{n}{0}(u,u) + (b,b)\binom{n}{0}(d(u),d(u))$$

$$= D((u,u)\binom{n}{0}(a,a) + (u,u)\binom{n}{0}(D((a,a)) +$$

$$D((b,b))\binom{n}{0}(u,u) + (b,b)\binom{n}{0}D((u,u))$$

 $u_1 = (u, u), \alpha = \binom{n}{0}, x = (a, a), y = (b, b).$

Therefore,

 $D(u_1 \alpha x + y \alpha u_1) = D(u_1) \alpha x + u_1 \alpha D(x) + D(y) \alpha u_1$ + $y \alpha D(u_1)$.

Hence D is a (U_1, N) - derivation of N.

(U,M) -Derivations in Semiprime Γ -Rings

In order to prove the main result, we have to establish some necessary results in the following way. All these results are due to the concept of (U, M) -derivations of a Γ -ring M.

We begin with the following lemma.

Lemma 3.1 Let d be a (U,M)-derivation of a Γ -ring M. Then for all $u \in U, m \in M$ and $\alpha, \beta \in \Gamma$, $d(u com \beta u) = d(u) com \beta u + u cod(m) \beta u + u com \beta d(u)$.

Proof. By (U, M) -derivation of M, for all $u \in U, m, s \in M$ and $\alpha \in \Gamma$, we have $d(u \cos m + s \cos u) = d(u) \cos n + u \cos d(m) + d(s) \cos u + s \cos d(u)$

If we replace both m and s by $(2u)\beta m + m\beta(2u)$ and suppose that

 $v = u\alpha((2u)\beta m + m\beta(2u)) + ((2u)\beta m + m\beta(2u))\alpha u$

Then using (U,M) -derivation and the assumption (*).

$$d(v) = 2(d(u)\alpha(u\beta m + m\beta u) + u\alpha d(u\beta m + m\beta u) + d(u\beta m + m\beta u)\alpha d(u)) + d(u\beta m + m\beta u)\alpha d(u)) = 2(d(u)\alpha u\beta m + d(u)\alpha n\beta u + u\alpha d(u)\beta m + d(u)\beta m\alpha u + u\beta d(m)\beta u + u\alpha m\beta d(u) + d(u)\beta m\alpha u + u\beta d(m)\alpha u + d(m)\beta u\alpha u + m\beta d(u)\alpha u + u\beta m\alpha d(u) + m\beta u\alpha d(u)) = 2(d(u)\alpha u\beta m + d(u)\alpha n\beta u + u\alpha d(u)\beta m + u\alpha u\beta d(m) + u\alpha d(m)\beta u + u\alpha m\beta d(u) + d(u)\alpha m\beta u + u\alpha d(m)\beta u + d(m)\alpha u\beta u + m\alpha d(u)\beta u + u\alpha m\beta d(u))$$

Again, we obtain

$$d(v) = d((2u\alpha u)\beta m + m\beta(2u\alpha u)) + 2d(u\alpha m\beta u) + 2d(u\beta m\alpha u)$$

$$+ 2d(u\beta m\alpha u)$$

- $=2(d(u)cau\beta m+ucad(u)\beta m+ucau\beta d(m)$
- $+d(m)\beta u \alpha u + m\beta d(u)\alpha u + m\beta u \alpha d(u)$
- $+2d(ucon\beta u)+2d(ucon\beta u)$
- $= 2(d(u)cas\beta m + ucad(u)\beta m + ucas\beta d(m))$
- $+d(m)c\alpha u\beta u+mc\alpha d(u)\beta u+mc\alpha u\beta d(u))$
- $+4d(ucan\beta u)$

Equating the two expressions for d(v) and cancelling the like terms from both sides, we get

$$4d(u cm \beta u) = 4d(u) cm \beta u + 4u cal(m) \beta u + 4u can \beta d(u).$$

By the 2-torsion freeness of M, we obtain

$$d(u c m \beta u) = d(u) c m \beta u + u c d(m) \beta u$$

+ $u c m \beta d(u)$

for all $u \in U$, $m \in M$ and $\alpha, \beta \in \Gamma$.

Definition 3.1

Let M be a 2-torsion free completely semiprime Γ -ring satisfying the condition (*), and U be a Lie ideal of M. Let d be a (U, M)- derivation of M. Then for all $a,b \in U$ and $\alpha \in \Gamma$, we define $T_{\alpha}(a,b) = d(a\alpha b) - d(a)\alpha b - a\alpha d(b)$.

We get the following lemma as the consequece of the previous definition.

Lemma 3.2

Let M be 2-torsion free completely semiprime Γ -ring satisfying the condition (*) and U be a Lie ideal of M. Let d be a (U, M)- derivation of M. Then for all $a,b,c\in U$ and $\alpha,\beta\in\Gamma$, the following statements hold:

(i)
$$T_{\alpha}(a,b) + T_{\alpha}(b,a) = 0$$
;

(ii)
$$T_{\alpha}(a+b,c) = T_{\alpha}(a,c) + T_{\alpha}(b,c)$$
;

(iii)
$$T_{\alpha}(a,b+c) = T_{\alpha}(a,b) + T_{\alpha}(a,c)$$
;

(iv)
$$T_{\alpha i \beta}(a,b) = T_{\alpha}(a,b) + T_{\beta}(a,b)$$
.

To reach our goal we need an important result as below.

Lemma 3.3 Let M be a 2-torsion free completely semiprime Γ -ring satisfying the condition (*) and U be a

Lie ideal of M . If $u \in U$ such that $[u, |u, x|_{\alpha}]_{\alpha} = 0$ for all $x \in M$ and $\alpha \in \Gamma$, then $[u, x]_{\alpha} = 0$.

Proof. Since $[u,[u,x]_{\alpha}]_{\alpha} = 0$ for all $x \in M$ and $\alpha \in \Gamma$. Let $\gamma \in \Gamma$ be any element.

Replacing X by x/x, we obtain

$$0 = [u, [u, x]x]_{\alpha}]_{\alpha}$$

$$= [u, x]\gamma[u, x]_{\alpha} + [u, x]_{\alpha}]x]_{\alpha}$$

$$= [u, x]\gamma[u, x]_{\alpha}]_{\alpha} + [u, [u, x]_{\alpha}]x]_{\alpha}$$

$$= x[u, [u, x]_{\alpha}]_{\alpha} + [u, x]_{\alpha}[u, x]_{\alpha}$$

$$+ [u, [u, x]_{\alpha}]_{\alpha}[x] + [u, x]_{\alpha}[u, x]_{\alpha}$$

$$= 2[u, x]_{\alpha}[u, x]_{\alpha}.$$

By the 2-torsion freeness of M, $[u,x]_{\alpha} \gamma [u,x]_{\alpha} = 0$. Since M is completely semiprime, so $[u,x]_{\alpha} = 0$ for all $x \in M$ and $\alpha \in \Gamma$. This completes the proof.

It follows the following lemma.

Lemma 3.4 Let M be a 2-torsion free completely emiprime Γ -ring satisfying the condition (*), and U be a commutative Lie ideal of M, then $U \subseteq Z(M)$.

Proof. Since U is a commutative Lie ideal of a completely semiprime Γ -ring M, so we have $[u,[u,x]_\alpha]_\alpha=0$ for all $u\in U, x\in M$ and $\alpha\in\Gamma$. In view of Lemma 3.3, we get $[u,x]_\alpha=0$, which implies $U\subseteq Z(M)$.

Then in view of Lemma 3.4 we can state the following:

Lemma 3.5 If U is a non-zero sub- Γ -ring and a Lie ideal of a 2-torsion free completely semiprime Γ -ring M, then either $U \subset Z(M)$ or U contains a non-zero ideal of M.

Proof. If we consider U is a commutative Lie ideal of M, then by Lemma 3.4, $U \subseteq Z(M)$. So let U be non-commutative, then for some $u,v \in M$ and $\alpha \in \Gamma$, we have $[u,v]_{\alpha} \in U$. Hence there exists an ideal S of M generated by $[u,v]_{\alpha} (\neq 0)$ and $S \subseteq U$.

This leads us to state the following:

Lemma 3.6: Let M be a 2-torsion free completely semiprime Γ -ring satisfying the condition (*). If $U \subseteq Z(M)$, then Z(U) = Z(M).

Proof. Since Z(U) is both a sub- Γ -ring and a Lie ideal of M such that Z(U) does not contain non-zero ideal of

M . Therefore, by Lemma 3.5, we obtain that $Z(U) \subseteq Z(M)$. Hence Z(U) = Z(M).

In view of Lemma 3.4 and Lemma 3.6 we can conclude the following:

Lemma 3.7 Let M be a 2-torsion free completely semiprime Γ -ring satisfying the condition (*) and U be a Lie ideal of M, then $Z([U,U]_{\Gamma}) = Z(U)$.

Proof. Suppose that a is any element of M. If $[a,[U,U]_{\Gamma}]_{\Gamma}=0$, then we have $[a,U]_{\Gamma}=0$. Thus we get $Z([U,U]_{\Gamma})=Z(U)$. If $[U,U]_{\Gamma}\subseteq Z(M)$ then by Lemma 3.6, $a\in Z(U)$. So a centralizes U. Now, let $[U,U]_{\Gamma}\subseteq Z(M)$. Then we have $[u,[u,a]_{\alpha}]_{\alpha}=0$ for all $u\in U,a\in M$ and $\alpha\in \Gamma$. Using Lemma 3.4, we get $[u,a]_{\alpha}=0$ for all $u\in U,a\in M$ and $\alpha\in \Gamma$. Therefore, $a\in Z(U)$. Thus the proof of the lemma is completed.

In order to prove our main result, we need to costruct the following important result.

Lemma 3.8 : Let M be 2-torsion free completely semiprime Γ -ring satisfying the condition (*) and U be a Lie ideal of M. If d is a (U, M)- derivation of M. Then for all $a,b \in U$ and $\alpha,\beta \in \Gamma$: $T_{\alpha}(a,b)\beta[a,b]_{\alpha}+[a,b]_{\alpha}\beta T_{\alpha}(a,b)=0$.

Proof. Let $a,b \in U$ and α , $\beta \in \Gamma$ be any elements. Suppose $x = 2(a\alpha b\beta b\alpha a + b\alpha a\beta a\alpha b)$.

Using Definition 2.1, we get

$$d(x) = d((2a\alpha b)\beta(b\alpha a) + (b\alpha a)\beta(2a\alpha b))$$

= $2d(a\alpha b)\beta(b\alpha a) + 2(a\alpha b)\beta d(b\alpha a)$
+ $2d(b\alpha a)\beta(a\alpha b) + 2(b\alpha a)\beta d(a\alpha b).$

Using Lemma 3.1, we obtain

$$d(x) = d(2(a\alpha(b\beta b)\alpha a) + 2(b\alpha(a\beta a)\alpha b))$$

$$= 2d(a)\alpha(b\beta b)\alpha a + 2a\alpha d(b\beta b)\alpha a$$

$$+ 2a\alpha(b\beta b)\alpha d(a) + 2d(b)\alpha(a\beta a)\alpha b$$

$$+ 2b\alpha d(a\beta a)\alpha b + 2b\alpha(a\beta a)\alpha d(b)$$

$$= 2d(a)\alpha b\beta b\alpha a + 2a\alpha d(b)\beta b\alpha a$$

$$+ 2a\alpha b\beta d(b)\alpha a + 2a\alpha b\beta b\alpha d(a)$$

$$+ 2d(b)\alpha a\beta a\alpha b + 2b\alpha d(a)\beta a\alpha b$$

$$+ 2b\alpha a\beta d(a)\alpha b + 2b\alpha a\beta a\alpha d(b).$$

Comparing the two expressions for d(x)

$$2(d(a\alpha b) - d(a)\alpha b - a\alpha d(b)) \beta b \alpha a$$

$$+ 2(d(b\alpha a) - d(b)\alpha a - b\alpha d(a)) \beta a\alpha b +$$

$$2a\alpha b\beta (d(b\alpha a) - d(b)\alpha a - b\alpha d(a))$$

$$+ 2b\alpha a\beta (d(a\alpha b) - d(a)\alpha b - a\alpha d(b)) = 0.$$
Using Definition 3.1, we obtain

$$2T_{\alpha}(a,b)\beta b\alpha a + 2T_{\alpha}(b,a)\beta a\alpha b + 2a\alpha b\beta T_{\alpha}(b,a)$$

 $+2b\alpha a\beta T_{\alpha}(a,b) = 0.$

Using Lemma 3.2 (i) and applying 2-torsion freeness of M, we get

$$2T_{\alpha}(a,b)\beta b\alpha u - 2T_{\alpha}(a,b)\beta a\alpha b - 2a\alpha b\beta T_{\alpha}(a,b)$$

 $+ 2b\alpha u\beta T_{\alpha}(a,b) = 0.$
 $\Rightarrow T_{\alpha}(a,b)\beta[a,b]_{\alpha} + [a,b]_{\alpha}\beta T_{\alpha}(a,b) = 0.$

To prove Corollary 3.1 we need the following lemma.

Lemma 3.9 Let M be a 2-torsion free completely semiprime Γ -ring, U be a Lie ideal of M and let $a,b\in U$ and $\alpha\in\Gamma$. If $a\alpha b+b\alpha a=0$ then $a\alpha b=0=b\alpha a$.

Proof. Let $a,b \in U$ and $\alpha \in \Gamma$ such that $a\alpha b + b\alpha a = 0$.

Suppose $\beta \in \Gamma$ be any element. Then applying $a\alpha b = -b\alpha a$ and 2-torsion freeness of M:

$$4(acb)\beta(acb) = -4(bca)\beta(acb)$$

$$= -4(b(ca\beta)a)cb$$

$$= 4(a(ca\beta)b)cb$$

$$= 2ac(2a\beta b)cb$$

$$= -2ac(2b\beta a)cb$$

$$= -4(acb)\beta(acb)$$

$$= -4(acb)\beta(acb) = 0.$$

$$\Rightarrow (acb)\beta(acb) = 0, \quad \text{for all } \beta \in \Gamma.$$

$$\Rightarrow (acb)\Gamma(acb) = 0.$$

Since M is completely semiprime, so accb = 0. Proceeding in the similar way bcaa = 0.

As an immediate consequence, we have

Corollary 3.1 Let M be a 2-torsion free completely semiprime Γ -ring satisfying the condition (*), U be a Lie ideal of M and let d be a (U, M)- derivation of M. Then

for all $a,b \in U$ and

$$\alpha, \beta \in \Gamma$$
: (i) $T_{\alpha}(a,b)\beta[a,b]_{\alpha} = 0$;

(ii)
$$[a,b]_{\alpha} \beta T_{\alpha}(a,b) = 0$$
.

Proof. Using the result of Lemma 3.9 in that of Lemma 3.8, we get these results.

Next, we go through the following results.

Lemma 3.10 Let M be a 2-torsion free completely semiprime Γ -ring satisfying the condition(*), U be a Lie ideal of M and d be a (U, M)-derivation of M. Then for all $a, b, x, y \in U$ and $\alpha, \beta, \gamma \in \Gamma$:

$$(i) \quad T_{\alpha}(a,b)\beta[x,y]_{\alpha}=0; \quad (ii) \quad [x,y]_{\alpha}\beta T_{\alpha}(a,b)=0$$

(iii)
$$T_{\alpha}(a,b)\beta[x,y]_{\nu} = 0$$
; (iv) $[x,y]_{\nu}\beta T_{\alpha}(a,b) = 0$.

Proof. (i) Replacing a by a + x in Corollary 3.1 (i) and using Lemma 3.2(ii), we get

$$T_{\alpha}(a+x,b)\beta[a+x,b]_{\alpha}=0.$$

$$\Rightarrow T_a(a,b)\beta[a,b]_a + T_a(a,b)\beta[x,b]_a$$

$$+T_{\alpha}(x,b)\beta[a,b]_{\alpha} + T_{\alpha}(x,b)\beta[x,b]_{\alpha} = 0.$$

Using Corollary 3.1(i)

$$T_{\alpha}(a,b)\beta[x,b]_{\alpha} + T_{\alpha}(x,b)\beta[a,b]_{\alpha} = 0.$$

$$\Rightarrow T_{\alpha}(a,b)\beta[x,b]_{\alpha} = -T_{\alpha}(x,b)\beta[a,b]_{\alpha}$$

Since

$$(T_{\alpha}(a,b)\beta[x,b]_{\alpha})\beta(T_{\alpha}(a,b)\beta[x,b]_{\alpha})$$

= $-T_{\alpha}(a,b)\beta[x,b]_{\alpha}\beta T_{\alpha}(x,b)\beta[a,b]_{\alpha} = 0.$

By the complete semiprimeness of M, we have

$$T_{\alpha}(a,b)\beta[x,b]_{\alpha}=0.$$

If we replace b by b+y in this result, we get $T_{\alpha}(a,b)\beta[x,y]_{\alpha}=0.$

(ii) By the similar replacements successively in Corollary 3.1 (ii), we get

$$[x, y]_{\alpha} \beta T_{\alpha}(a, b) = 0$$
 for all $a, b, x, y \in U$ and $\alpha, \beta \in \Gamma$.

(iii) Replacing (X+Y for (X in (i), we obtain

$$T_{\alpha+\tau}(a,b)\beta[x,y]_{\alpha+\tau}=0.$$

Using Lemma 3.2(iv), we get

$$(T_{\alpha}(a,b) + T_{\gamma}(a,b))\beta([x,y]_{\alpha} + [x,y]_{\gamma}) = 0.$$

$$\Rightarrow T_{\alpha}(a,b)\beta[x,y]_{\alpha} + T_{\alpha}(a,b)\beta[x,y]_{\gamma}$$

$$+ T_{\gamma}(a,b)\beta[x,y]_{\alpha} + T_{\gamma}(a,b)\beta[x,y]_{\gamma} = 0.$$

Using (i), we get

$$T_\alpha(a,b)\beta[x,y]_y+T_y(a,b)\beta[x,y]_\alpha=0.$$

$$\Rightarrow T_{\alpha}(a,b)\beta[x,y]_{\gamma} = -T_{\gamma}(a,b)\beta[x,y]_{\alpha}.$$

Therefore.

$$\begin{split} &(T_{\alpha}(a,b)\beta[x,y]_{\gamma})\beta(T_{\alpha}(a,b)\beta[x,y]_{\gamma})\\ &=-T_{\alpha}(a,b)\beta[x,y]_{\gamma}\beta T_{\gamma}(a,b)\beta[x,y]_{\alpha}=0. \end{split}$$

Since M is completely semiprime, thus $T_{\alpha}(a,b)\beta[x,y]_{x} = 0.$

(iv) By the similar replacement in (ii), we obtain this .

Now, we are ready to prove our main result as follows.

Remark 3.2: If U is a commutative Lie ideal of a Γ -ring M, then $U \subseteq Z(M)$. So, by the Definition 2.1 and using 2-torsion freeness of M, we get d(acb) = d(a)cb + accd(b) for all $a,b \in U$ and $\alpha \in \Gamma$.

Therefore, for the final result we consider $U \subseteq Z(M)$.

Theorem 3.1 Let M be a 2-torsion free completely semiprime Γ -ring satisfying the condition(*), U be an admissible Lie ideal of M and d be a (U, M)- derivation of M, then $d(a\alpha b) = d(a)\alpha b + a\alpha d(b)$ for all $a,b \in U$ and $\alpha \in \Gamma$.

Proof. In view of Lemma 3.10 (iii), we have $T_{\alpha}(a,b)\beta[x,y]_{\gamma}=0$ for all $a,b,x,y\in U$ and $\alpha,\beta,\gamma\in\Gamma$. By Lemma 3.10(iv), $[x,y]_{\gamma}\beta T_{\alpha}(a,b)=0$ for all $a,b,x,y\in U$ and $\alpha,\beta,\gamma\in\Gamma$.

Since

$$\begin{split} &[T_{\alpha}(a,b),[x,y]_{\gamma}]_{\beta} = T_{\alpha}(a,b)\beta[x,y]_{\gamma} \\ &-[x,y]_{\gamma}\beta T_{\alpha}(a,b) = 0. \end{split}$$

So $T_{\alpha}(a,b) \subseteq Z([U,U]_{\Gamma}) = Z(U) = Z(M)$, by Lemma 3.6 and 3.7.

Therefore,
$$T_a(a,b) \in Z(M)$$
. Now, we obtain
$$2T_a(a,b)\beta T_a(a,b) = T_a(a,b)\beta (T_a(a,b) + T_a(a,b))$$

$$= T_a(a,b)\beta (T_a(a,b) - T_a(b,a))$$

$$= T_a(a,b)\beta (d(accb) - d(a)ccb)$$

$$-accd(b) - d(bcca) + d(b)cca$$

$$+bccd(a))$$

$$= T_a(a,b)\beta (d(accb - bcca))$$

$$+(bccd(a) - d(a)ccb)$$

$$+(d(b)cca - accd(b)))$$

$$= T_a(a,b)\beta (d([a,b]_a))$$

$$+[b,d(a)]_a + [d(b),a]_a)$$

$$= T_a(a,b)\beta d([a,b]_a)$$

$$+T_a(a,b)\beta [b,d(a)]_a$$

$$+T_a(a,b)\beta [d(b),a]_a.$$

Since $d(a), d(b) \in M$ and $a, b \in U$ implies that $[b, d(a)]_a, [d(b), a]_a \in U$.

Thus by Lemma 3.10 , we have $T_{\alpha}(a,b)\beta[b,d(a)]_{\alpha}=T_{\alpha}(a,b)\beta[d(b),a]_{\alpha}=0.$

Therefore, we get $2T_{\mu}(a,b)\beta T_{\mu}(a,b) = T_{\mu}(a,b)\beta d([a,b]_{\mu}).$

Now, we obtain

$$\begin{aligned} 0 &= d(T_{\alpha}(a,b)\beta[x,y]_{\gamma} + [x,y]_{\gamma}\beta T_{\alpha}(a,b)) \\ &= d(T_{\alpha}(a,b))\beta[x,y]_{\gamma} + T_{\alpha}(a,b)\beta d([x,y]_{\gamma}) \\ &+ d([x,y]_{\gamma})\beta T_{\alpha}(a,b) + [x,y]_{\gamma}\beta d(T_{\alpha}(a,b)) \\ &= d(T_{\alpha}(a,b))\beta[x,y]_{\gamma} + 2T_{\alpha}(a,b)\beta d([x,y]_{\gamma}) \\ &+ [x,y]_{\gamma}\beta d(T_{\alpha}(a,b)). \end{aligned}$$

 $T_{\alpha}(a,b) \in Z(M)$ implies that $d([x,y]_{\tau})\beta T_{\alpha}(a,b) = T_{\alpha}(a,b)\beta d([x,y]_{\tau}).$

Therefore, we get

$$2T_{\alpha}(a,b)\beta d([x,y]_{\gamma}) = -d(T_{\alpha}(a,b))\beta[x,y]_{\gamma}$$

 $-[x,y]_{\gamma}\beta d(T_{\alpha}(a,b)).$ (2)

From (1) and (2), we have

$$4T_{\alpha}(a,b)\beta T_{\alpha}(a,b) = 2T_{\alpha}(a,b)\beta d([a,b]_{\alpha})$$

 $= -d(T_{\alpha}(a,b))\beta [a,b]_{\alpha}$
 $-[a,b]_{\alpha}\beta d(T_{\alpha}(a,b)).$

Therefore,

$$\begin{split} &4T_{\alpha}(a,b)\beta T_{\alpha}(a,b)\beta T_{\alpha}(a,b)=-d(T_{\alpha}(a,b))\beta [a,b]_{\alpha}\\ &\beta T_{\alpha}(a,b)-[a,b]_{\alpha}\beta d(T_{\alpha}(a,b))\beta T_{\alpha}(a,b),\\ &\mathrm{Since}\ [a,b]_{\alpha}\beta T_{\alpha}(a,b)=0\ \ \mathrm{and}\ \ d(T_{\alpha}(a,b))\in M\ ,\ \mathrm{so}\\ &\mathrm{we\ have}\ [a,b]_{\alpha}\beta d(T_{\alpha}(a,b))\beta T_{\alpha}(a,b)=0. \end{split}$$

Therefore, we obtain

$$4T_{\alpha}(a,b)\beta T_{\alpha}(a,b)\beta T_{\alpha}(a,b) = 0$$

 $\Rightarrow T_{\alpha}(a,b)\beta T_{\alpha}(a,b)\beta T_{\alpha}(a,b) = 0.$

This shows that $T_{\alpha}(a,b)$ is a nilpotent element of the completely semiprime Γ -ring M, where $T_{\alpha}(a,b) \in Z(M)$. Since the centre of a completely semiprime Γ -ring does not contain any nonzero nilpotent elements, so we get $T_{\alpha}(a,b)=0$ for all $a,b\in U$ and $\alpha\in\Gamma$. Hence $d(a\alpha b)=d(a)\alpha b+a\alpha d(b)$ for all $a,b\in U$ and $\alpha\in\Gamma$. Which is the required result.

References

(1)

Ashraf M and Rehman N (2000), On Lie ideals and Jordan left derivations of prime rings, Arch. Math. (Brno), 36:201-206.

Awtar R (1984), Lie ideals and Jordan derivations of prime rings, Amer.Math.Soc. 90(1): 9-14.

Barnes WE (1966), On the Γ-rings of Nobusawa, Pacific J. Math. 18: 411-422.

Ceven Y (2002), Jordan left derivations on completely prime gamma rings, C. U. Fen-Edebiyat Fakultesi Fen Bilimleri Dergisi 23:39-43.

Faraj AK, Hactinger C and Majeed AH (2010), Generalized Higher (U, R)- Derivations, JP Journal of Algebra, 16(2):119-142.

Halder AK and Paul AC (2012), Jordan left derivations on Lie ideals of prime Γ-rings, Punjab University J. Math. 44:23-29.

Herstein IN (1969), Topics in Ring Theory, Ed. The University of Chicago Press, Chicago.

Nobusawa N (1964), On the generalizeation of the ring theory, Osaka J. Math. 1:81-89.

Rahman MM and Paul AC (2014), (U, M) – derivations in prime Γ -rings, Bangladesh Journal of Scientific Research, Accepted for Publication in its upcoming issue.

Received: 02 December 2015; Revised: 19 March 2015; Accepted: 30 July 2015.