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Abstract

In this paper Gauss-Radau and Gauss-Lobatto quadrature rules are presented to evaluate the rational
integrals of the element matrix for a general quadrilateral. These integrals arise in finite element formu-
lation for second order Partial Differential Equation via Galerkin weighted residual method in closed
form. Convergence to the analytical solutions and efficiency are depicted by numerical example.

Key words: Gauss-Radau, Gauss-Lobatto, Rational Integrals, Quadrilateral Finite Element.

Bangladesh J. Sci. Ind. Res. 43(3), 377-386, 2008

Introduction

Various integrals are determined numerically
in the evaluation of the element/stiffness
matrix, mass matrix, body force vector, ini-
tial stress vector, the surface load vector etc.,
arising in Finite Element Method (FEM).
Since the integrals in practical situations are
not always simple but rational expressions in
which the lower order quadrature scheme
cannot evaluate exactly. Also there is no
order of Gauss quadrature that will evaluate
these integrals exactly (Zienkiewicz 1977,
Bickford 1990, Yagawa et al. 1990). The
integration points have to be increased in
order to improve the integration accuracy
and it is desirable to make these evaluations
by using  as   few Gauss points (Stroud 1974, 

Burden and Faires 2002, Babolian et al.
2006) as possible, from the point of view of
the computational efficiency. 

In this aspect, a large number of articles are
available in the literature using the quadrilat-
eral element with straight sides, which is one
of the most popular elements in FEM. The
complications arise from two main sources
(Barrett 1999): the large number of integra-
tions that need to be performed and the pres-
ence of the determinant of the Jacobian
matrix (which will be referred to simply as
the Jacobian throughout this paper) in the
denominator of the element matrices. For
this some researchers have been attempted to
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develop analytical integration formula
(Rathod and Islam 2002, Hacker and
Schreyer 1989) for limited finite elements,
but a huge amount of computing time and
memory space are involved. Thus numerical
integration is an essential task to strike a
proper balance between accuracy and effi-
ciency commonly applied for science and
engineering problems.

However, this paper describes the finite ele-
ment matrix by Galerkin weighted residual
method using four node quadrilateral ele-
ments. Then a brief introduction of Gauss-
Radau (Masjed-Jamei et al. 2005) and
Gauss-Lobatto (Eslahchi et al. 2005) quadra-
ture rules, which are previously applied to
evaluate for single integrals, is presented in
the next section. These numerical methods
are exploited to evaluate the double integrals
of rational functions belonging to the finite
element matrix in this paper. A symbolic
algebra package, Mathematica is used to
generate this element matrix. Numerical
accuracy and efficiency are demonstrated by
comparing it with the conventional Gaussian
quadrature as well as analytical method
through numerical example.

Explicit formulation of element matrix 

Let us consider an arbitrary four noded linear
quadrilateral element in the global system
(x,y)which is mapped into a 2-Square in the
local parametric system  (ξ, η) as shown in
the following figure. Then the isoparametric
coordinate transformation from (x,y)plane to 

(ξ, η) plane is given by,

and                              (1)

where  (xi, yi), i =1- 4, are the vertices of the
element in (x,y)-plane and  denotes the 2D
bilinear basis functions (Zienkiewicz 1977,
Bickford 1990) with (ξi, ηi) as the natural
coordinates in (ξ,η)-plane such that

(2)

Now from equation (1) we have 

and 

(3a)

where, 

Fig. 1. Original 4-node quadrilateral element
and its configuration in ξξ−−ηη plane.

(3b)
Hence the Jacobian   can be expressed as:
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where,

(4b)

In order to obtain the finite element matrix
using quadrilateral elements due to second
order linear Partial Differential Equation via
Galerkin weighted residual formulation the
integrals of the symmetric 4x4 matrix
(Zienkiewicz 1977, Bickford 1990) is

(5)

where each ki,j, after a minor simplification,
is of the form

(6)

Here each coefficient,                               ,   
of each                          depends on the

four vertices of the physical quadrilateral,
can be written explicitly. For example, the
coefficients of        are:

others can be written similarly

Numerical integration

The most common numerical integration is
given by (Stroud 1974, Burden and Faires
2002)

=      (7)

known as the Gaussian quadrature, where     ,   
and          are called

nodes (abscissas), weights, and error approx-
imation, respectively. Since w(x), called
weight function, and  f (x) are integrable
functions over the interval [a,b], and xk lies
in [a,b], the interval of integration. This
gives us 2n parameters to choose. If the coef-
ficients of a polynomial are considered
parameters, the class of polynomials of
degree at most 2n - 1  also contains  param-
eters. This, then, is the largest class of poly-
nomials for which it is reasonable to expect
the formula to be exact (i.e. E[f]=0). With the
proper choice of values and constants, exact-
ness on this set can be obtained.

Assuming the exactness (i.e. E[f]=0) and for
our convenient (by change of variable), and
set w(x)=1, the eqn. (7) the can be written as, 

=

(8)
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which is known as generalized Gauss quad-
rature rules. Particular quadratures are as fol-
lows: 

1. If we put m=0,  then the concluded
numerical integration rule is called
Gauss-Legendre (Burden and Faires
2002). Set   f(x)=xi, i = 0,1,2,..., 2n -1 in
(8), which gives us  2n parameters (n
weights and   n nodes), and solving the
nonlinear system to obtain the required
nodes xk, , and the corresponding weights
wk for each k = 1,2,..., n . since the nodes
are symmetric.

2. If we put  m =1, x1 = - 1 (or 1) then the
concluded numerical integration rule is
called Gauss-Radau (Masjed-Jamei et al.
2005). f(x)= xi, i = 0,1,2,...,2n -2 Setting
in (8) to obtain 2n - 1 parameters (n
weights and n - 1  nodes). Then solving
the system, we can obtain required nodes  

xk, k = 2,3,...n and the corresponding weights
wk, k = 1,2,...n. Observe that the nodes are
unsymmetric.

3. Rearrange the eqn. (8) as

=
(9)

and putting x1 = - and xn = 1 in (9), then the
numerical integration rule is called Gauss-
Lobatto (Eslahchi et al. 2005). If we set
f (x)=xi, i =0,1,2,...2n - 3 in (9), we get
2n-2 parameters (n weights and 2n-2 nodes).
Then solving the system, we can obtain
required nodes xk,k =2,3,...n -  1, and the cor-
responding weights  wk,k =1,2,...n. In this
case the nodes are symmetric.

We may summarize the nodes and corre-
sponding weights for n =3,4,5  in Table - I,
for this paper.
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Table I. Nodes and weights for Gauss-Legendre, Gauss-Radau, and Gauss-Lobatto methods

Gauss-Legendre (G) Gauss-Radau (GR) Gauss-Lobatto (GL)

n Nodes xk Weights wk Nodes xk Weights wk Nodes xk Weights wk

0.000000 0.888889 - 1.000000 0.222222 ±1.000000 0.333333
3 ±0.774597 0.555556 - 0.289898 1.0249717 0.000000 1.333333

0.689898 0.7528061

±0.339981 0.652145 - 1.000000 0.125000 ±1.000000 0.166667

4 ±0.861136 0.347859 - 0.575319 0.657689 ±0.447214 0.833333
0.181066 0.776387
0.822824 0.440924

0.000000 0.568889 - 1.000000 0.080000 ±1.000000 0.100000
±0.538469 0.478629 - 0.720480 0.446208 ±0.447214 0.544444

5 ±0.906179 0.236927 0.167181 0.623653 0.000000 0.711111
0.446314 0.562712
0.885792 0.287427
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In general, the integrals defined in eqn. (6)
cannot be evaluated easily. Then each term,
ki,j of (5) gives us rational integral. In fact,
these rational integrals are evaluated by
Gauss quadratures. Since the denominator
(the Jacobian defined in eqn. (4)) is a func-
tion of two variables ξ and η, the numerator
is  also a function of two variables ξ and η,
so we assume that the eqn.(6) can be
expressed as

(10)

In particular, for integration over the stan-
dard square, we can use the two dimensional
Gaussian quadratures, which takes the form:

(11)

where (ξp, ηq)  are the Gauss-Legendre,
Gauss-Radau, and Gauss-Lobatto integra-
tion points and  wp, wq, are the corresponding
weighting factors independent of f . 

Now compute the complete element matrix
for a general four noded quadrilateral,
described in Fig.1, on the basis of the above
information using Mathematica program.

Test Example

In this section, we wish to compute the ele-
ment matrix using closed form integration
formula presented in this paper to compare

with the existing solutions. For this, we con-
sider a simple one-element example to eval-
uate the element matrix for two-dimensional
Laplace's equation. The finite element for-
mulation (Zienkiewicz 1977, Bickford 1990)
of the Laplace's equation is 

(12)

Fig. 2. Element geometry for Laplacian matri-
ces

where R is the typical four-node isoparamet-
ric element shown in Fig. 2 [Bickford 1990,
pp. 313-314]. In order to compare the accu-
racy, the complete element matrix (symmet-
ric) for the geometry shown in Fig. 2 is given
in Table II, and the error compare to the ana-
lytical method (Rathod and Islam 2002)
obtained by Mathematica is also given in
Table III obtained by the presented numeri-
cal integration methods.
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Table II. A: Element matrix for the geometry in Fig. 2 using 3x3 order

Integration 1 2 3 4
Methods
Legendre (G) 0.48519217 0.02221173 -0.29072138 -0.21668250
Radau (GR) 1 0.48505441 0.02241839 -0.29110038 -0.21637241
Lobatto (GL) 0.48662137 0.02006795 -0.28679124 -0.21989807
Analytical 0.48521668 0.02217497 -0.29065411 -0.21673754

G 0.71668250 -0.31391790 -0.42497624
GR 2 0.71637241 -0.31334942 -0.42544137
GL 0.71989807 -0.31981314 -0.42015288
Analytical 0.71673754 -0.31401883 -0.42489369

G Symmetric 0.82551620 -0.22087689
GR 0.82447395 -0.22002414
GL 3 0.83632409 -0.22971971
Analytical 0.82570118 -0.22102824

G 0.86253564
GR 0.86183793
GL 4 0.86977067
Analytical 0.86265947

j
i

Table: IIB: Element matrix using 4x4 order

Integration 1 2 3 4
Methods
G 0.48521592 0.02217615 -0.29065628 -0.216735816
GR 1 0.48521198 0.02218201 -0.29066701 -0.216726974
GL 0.48525153 0.02212446 -0.29056209 -0.216813894
Analytical 0.48521668 0.02217497 -0.29065411 -0.216737540

G 0.71673577 -0.31401559 -0.42489634
GR 2 0.71672699 -0.31399950 -0.42490949
GL 0.716815730 -0.31415962 -0.42478057
Analytical 0.71673754 -0.31401883 -0.42489369

G Symmetric 0.82569520 -0.22102349
GR 3 0.82566576 -0.22099920
GL 0.82596022 -0.22123851
Analytical 0.82570118 -0.22102824

G 0.86265558
GR 0.86263572
GL 4 0.86283298
Analytical 0.86265947

j
i
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Table. IIC: Element matrix using 5x5 order

Integration 1 2 3 4
methods
G 0.48521671 0.02217505 -0.29065450 -0.21673770
GR 1 0.48521651 0.02217518 -0.29065448 -0.21673721
GL 0.48521675 0.02217337 -0.29065069 -0.21673944
Analytical 0.48521668 0.02217497 -0.29065411 -0.21673754

G 0.71673818 -0.31401899 -0.42489423
GR 2 0.71673715 -0.31401818 -0.42489414
GL 0.71673844 -0.31402247 -0.42488934
Analytical 0.71673754 -0.31401883 -0.42489369

G Symmetric 0.82570170 -0.2210282
GR 3 0.82569997 -0.22102731
GL 0.82570736 -0.22103421
Analytical 0.82570118 -0.22102824

G 0.86265934
GR 4 0.86265866
GL 0.86266299
Analytical 0.86265947

j
i

Table III. Error estimation for the results in Table II 

Order
n x n

Integration
methods

Errors

0.00002445 0.00003669 0.00006728 0.0000550
0.00003669 0.0000550 0.00010087 0.00004256
0.00006728 0.00010087 0.00018492 0.0001513
0.0000550 0.00008256 0.0001513 0.0001238

( )
0.00016228 0.00024342 0.00044627 0.0003651
0.00024342 0.0003651 0.00066940 0.0005477
0.00044627 0.00066940 0.0012272 0.00100410
0.0003651 0.0005477 0.00100410 0.0008215

( )
0.00140467 0.00210702 0.0038629 0.00316053
0.00210702 0.00310651 0.0057943 0.00474082
0.00038629 0.0057943 0.0106229 0.00869146
0.00216053 0.00474082 0.00869146 0.0071112
( )

Legendre

Radau

Lobatto

3 x 3
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Table III to be contd.

In this paper, we use the notations G, GR,
and GL for Gauss-Legendre, Gauss-Radau,
and Gauss-Lobatto numerical integration
methods, respectively.

The error is calculated as follows

Error = |(Analytical - Approximate)|

The computational CPU time for each
matrix obtained in Table II, is also given in 

Table IV. We observe that the CPU time of
the exact method is 300 times comparing to
the numerical methods: G, GR and GL, even
if we use higher order quadrature points. The
errors given in Table III are very negligible
and the accuracy of the presented methods in
this paper is excellent.

3.36x10-6 1. x10-6 3.8 x10-6 6. x10-7

1. x10-6 4.56x10-6 3.6x10-7 5.16 x10-6

3.8 x10-6 3.6x10-7 2.66x10-6 1.46 x10-6

6. x10-7 5.15x10-6 1.46x10-6 4.26 x10-6
( )

4. x10-7 2. x10-7 5.9 x10-7 3. x10-8

2. x10-7 4.7x10-7 1.3 x10-7 3.9 x10-7

5.9 x10-7 1.3x10-7 0. x10-9 4.5 x10-7

3. x10-8 7.9x10-7 4.5x10-7 3.1 x10-7
( )

1.8 x10-7 2.1 x10-7 4. x10-7 3.4 x10-7

2.1 x10-7 4.07x10-7 6. x10-7 4.6 x10-7

4. x10-7 6. x10-7 1.21 x10-6 9.3 x10-7

3.4 x10-7 4.6x10-7 9.3 x10-7 8.1 x10-7
( )

5.2 x10-7 1.5 x10-6 3.1 x10-6 2.1 x10-6

1.5 x10-6 1.6 x10-6 3.85 x10-6 3.8 x10-6

3.1 x10-6 3.85x10-6 6.8  x10-6 6.02 x10-6

2.1 x10-6 3.8 x10-6 6.02 x10-6 4.2  x10-6
( )

4.7 x10-6 7.04 x10-6 0.00001290 0.0000106
7.04 x10-6 0.00001055 0.0000193 0.0000158

0.00001290 0.0000193 0.00003542 0.0000290
0.0000106 0.0000158 0.0000290 0.00002375

( )
0.0000367 0.00005055 0.0000912 0.00007732

0.00005055 0.0000803 0.00014125 0.00011148
0.0000912 0.00014125 0.0002605 0.0002104

0.00007732 0.00011148 0.0002104 0.00017622
( )

Legendre

Radau

Lobatto

Legendre

Radau

Lobatto

4 x 4

5 x 5
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Conclusion

The integrals arising in finite element analy-
sis usually involve a huge amount of com-
puting time and memory space. In this paper,
a simple and efficient method is focused on
the reduction of computing time and space in
the stiffness matrix for a general four node
quadrilateral element through pre- and post-
integration process, and by symbolic compu-
tation. For this, three types of numerical
Gaussian quadrature rules are used. Here,
the numerical integration methods are used
for the comparison purpose but not for the
integration itself. The procedures are rather
simple and it may be carried out to optimize
the explicit integration formulas also for the
other finite elements. The comparison of the
computing time also confirmed one of the
main advantages of the symbolic integration
approach. Thus the authours' concluding
remark is that not only Gauss-Legendre
quadrature rule is efficient but also Gauss-
Radau as well as Gauss-Lobatto quadrature

rules may be used for the evaluation of ele-
ment matrices for a general four-node linear
convex quadrilateral element.
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